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Abstract

In this note, a brief and accessible proof is given of an extension of the Ptak homomorphism
theorem to a larger class of spaces—spaces that are not necessarily assumed to be locally con-
vex. This is done by first proving a counterpart of the Bourbaki-Grothendieck homomophism
theorem for the non-locally-convex case. Our presentation utilizes the simplifying properties of
seminorms.
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1. Introduction

This note originates from a study of Kothe's generalization [5] of the Ptak
homomorphism theorem where the extension given is obtained in the case
the spaces are locally convex. What we do here is to extend these results
to the non-locally-convex situation (and therefore to a larger class of spaces)
in a simple and direct way. This is done by first proving a non-locally-
convex analog (see Lemma 2) of what we call the Bourbaki-Grothendieck
homomorphism theorem (see Theorem 4). This result, which is significant
in itself, then allows us to derive the more general theorem (see Theorem 10).
Our extensions reduce to those of Kothe when the spaces under consideration
are locally convex. The locally-convex theory can also be found in [1], [2],
[3], [4], [7], [10] and [11],
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In order to achieve our results, we first extend, in Section 2, the definitions
for incomplete and barrelled spaces from Ptak theory to the non-locally-
convex situation where we define semi-B-complete and semi-barrelled spaces.
In Section 3, we develop, with the aid of seminorms, a duality theory which
allows us to give a characterization of what we call a nearly semi-open map
and to derive our main results. In Section 4, we extend results obtained
in Section 3, to weakly open maps and discuss what we call nearly semi-
continuous maps.

Apart from obtaining more general results, our proofs are much less com-
plicated than those given in [5] and [7] where the arbitrary linear case is first
reduced to the continuous one. Here, our use of duality arguments provides
a simplification of Kothe's results and a direct approach to Ptak's theorem.

In order to keep our treatment short and simple, we do not consider the
question of maximal mappings as is done in [5] and [7], Here, every map is
defined on the entire domain space and hence assumed to be maximal (see
[7, Section 36.7(2), page 91]).

2. Preliminaries

Let E and F be real Hausdorff topological vector spaces and T: E —> F
be a linear (but not necessarily continuous) map. If P is a seminorm defined
on E, we define the quotient seminorm, P/T, on (the image of T) T(E), by

PIT{y) := mSP{T-ly) (y e

REMARK. The quotient seminorm P/T can be defined alternatively by

P/T{Tx) := inf{P(x + Ker T)} (x e E).

We say that T is semi-open if P/T is continuous on T(E) whenever P is
continuous on E.

The following are basic definitions (see [6, Section 10.7, page 90], [7,
Section 32, page 1]: T is open if it is an open map from E onto T{E) (where
T(E) has the topology induced from F) and is weakly open if it is open
when E and F are equipped with the weak topologies a(E, E') and a(F, F').
We say that T is weakly continuous if it is continuous from (E,a{E,E'))
into (F, a(F, F')). If T is (weakly continuous) continuous and (weakly open)
open then it is a topological {weak homomorphism) homomorphism.

We note that in the case both E and F are locally convex, T is semi-open
if and only if T is open. This follows directly from the identity

{y: y e T(E),P/T(y) < 1} = T{x: x e E,P(x) < 1}.
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Also, since (E, a(E, E')) and T(E) under the topology induced from a{F, F')
(which we will denote by a{F,F') \T(E)) are locally convex, we have the fol-
lowing equivalent definition of a weakly-open map: T is weakly open if
P/T is continuous on (T(E),a(F, F') \ T(E)) whenever P is continuous on
(E, a{E, E')). In the case where only F is locally convex, we have the follow-
ing example of semi-open maps:

EXAMPLE. If E is any topological vector space and F is locally convex,
then any open map is semi-open.

If E' and E* denote the topological dual and the algebraic dual of E
respectively, define E'p and E*P by

E'P:={a: aeE',a<P on E}

and
Ep := {a: a e E*,a < P on E}.

We now define the small adjoint of T, V: A -* E', by T'd := d o T (d € A)
where A := {d: d e T(E)', d o T e E'} (here T(E) has the topology induced
from F) and say that T is adequate if for all x e E and for all a e E',

{x, T'{A)) = {0} and (Ker T,a) = {0} implies (x,a) = 0.

REMARKS (ON THE SMALL ADJOINT). If for all d e A, there exists d' e F'
such that d'\im = d, then T'(A) = {doT: deF',doTe E'} =: T'(D) (the
range of the adjoint of T) where D := {d: d e F',d oT e E'} (the domain
of the adjoint). In particular, this is the case when F is locally convex. It is
this distinction that leads us to sue the term "small adjoint".

REMARKS (ON ADEQUATE MAPS). It is clear that T is adequate if A separates
points of T(E) or if Ker T — E. In particular, T is adequate if F is locally
convex and T is continuous.

EXAMPLE. The canonical injection map lxl2 «-> / ' (see [11, 1.1, page 2] for
a definition of lp (0 < p < 1)) has dense range in /' and hence is adequate
since, in this case, A = / ' = /°° (or otherwise, since / ' is locally convex and
the injection map is continuous).

Also, we define E to be semi-B-complete if every subspace L of E' is
o(E',.Enclosed in E' whenever LC\E*P is o(E',£')-compact for every contin-
uous seminorm P on E. We do not assume that E is locally convex. In the
case E is locally convex, the notion of a semi-5-complete space is equivalent
to that of a fi-complete (= Ptak) space.
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EXAMPLES. Any topological vector space with a degenerate dual is semi-
5-complete. For example, the LP (0 < p < 1) (see [11, 1.1, page 2] for a
definition) spaces are semi-5-complete. Also, (for the same reason) L2(0,1)
with the topology induced from L1/2(0,1) is semi-5-complete. The latter
example provides us with a semi-5-complete space which is not complete.
Indeed, this is clear since L2(0,1) is dense in the complete space Ll/2(0,1)
(see [4, 5.7(D), page 98]). Compare this with the fact that every incomplete
space is necessarily complete

We say that F is semi-barrelled if every lower-semicontinuous seminorm
on F is continuous. Here, again, we do not assume local convexity, requiring
only that for F to be semi-barrelled, every barrel is a neighbourhood of zero.
We do not assume that F has a zero-neighbourhood base of barrels. In the
case F is locally convex, then semi-barrelled is equivalent to barrelled (in the
usual sense). Compare the definitions given here with [6, Section 21.2(2)-(3),
page 257] and [9, Section 5, page 249] and note also that if, in the sense of [9],
F is ultrabarrelled, then it is semi-barrelled in our terminology, although the
converse is not necessarily true, even in the locally convex case, as the follow-
ing example, given by W. Robertson in [9, Section 7, page 256], shows: li/2

with the norm topology (|| • ||i) induced from Z1 is semi-barrelled (barrelled)
but not ultrabarrelled. This example also shows that, for the locally-convex
situation, in contrast with the concept of semi-barrelledness, ultrabarrelled-
ness is not equivalent to that of barrelledness.

Before we give an example of a non-locally-convex and semi-barrelled
space which is not ultrabarrelled, we have the following

EXAMPLES. Any Baire topological vector space is semi-barrelled. Let E be
Baire and B be a barrel in E. From standard proofs (see [10, II. 7.1, page
60] for example), B has some interior point x. Since B is balanced, 0 =
\/2x + \/2{-x) is interior to B and hence B is a neighbourhood of zero. In
particular, the complete metrizable I" (0 < p < 1) spaces are semi-barrelled.
More generally, any F-space (complete metrizable topological vector space) is
semi-barrelled. Note that we already know that a Baire space is ultrabarrelled
(see [9, Section 5, Proposition 12]).

REMARKS (ON THE ASSOCIATED LOCALLY-CONVEX TOPOLOGY). Suppose
that E has topology J7"; then the topology ^~°° (our notation follows that in
[9, Section 7, page 255]), formed by taking as its zero-neighbourhood base the
convex and balanced ^"-neighbourhoods of zero, is a locally-convex topology
coarser than £T. This topology, which is called the associated locally-convex
topology, is the finest locally-convex topology coarser than J7" and is Haus-
dorff if (E,E') is a dual pair, where E' = (E,?)'. Moreover, (E,^00)' = E'
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(see [9, Section 7, page 255]), a fact we will use in the next example. In that
we already know if E is ultrabarrelled under &~ then E is barrelled under ^r°°
(see [9, Section 7, Proposition 19]), we can show, more generally, that if E is
semi-barrelled under 9~ then it is barrelled under £T°°: let B be a ^°°-barrel;
then B is a ^-barrel (since &~°° c &~) and hence a (convex and balanced)
•^-neighbourhood of zero. This proves that B is a ^^-neighbourhood of
zero.

We can now give an example of a semi-barrelled space which is not ultra-
barrelled. Here, our notation follows that in [11].

EXAMPLE. Consider the identity map from (/1/2, || • ||i/2) —» (/1/2, || • II3/4)
where ||||i/2 and || ||3/4 denote the usual topologies of I112 and /3/4 respectively.
Since || • ||3/4 is coarser than || • \\i/2, the identity is continuous but not open.
Since {I112, \\ • || 1/2) is complete metrizable, an application of W. Robertson's
open mapping theorem ([9, Section 6, page 252]) to the identity shows that
(li/2> II • II3/4) is n o t ultrabarrelled. On the other hand (/1/2,|| • H3/4) is semi-
barrelled: from the above examples, (/1/2, || H1/2) is semi-barrelled. Let B be a
|| • ||3/4 barrel; then, since || • H3/4 is coarser than || • ||i/2 and (/1/2, || • \\\/2) is semi-
barrelled, B is a || • ||i/2-neighbourhood of zero. To show that B is a || • ||3/4-
neighbourhood of zero, it suffices to show that it is a || • || [-neighbourhood of
zero (since || • ||i c || • H3/4). We need to show therefore that each convex and
balanced || • ||i/2-neighbourhood of zero is a || • ||i-neighbourhood of zero. We
do this by proving that || • ||i = &~°° where Jf00 is the locally-convex topology
associated with || • ||1/2. We first show that || • ||i D ̂ ~°°. From [9, Section 7,
page 256] we know that (I1/2, \\ • | | ,) ' = /°° so || • ||i = T ( / 1 / 2 , / 0 0 ) (the Mackey
topology). Hence we need only show that (ll/2,\\ • ||i)' = (Z1/2,^00)' or,
equivalently, that (/1/2, | | | | i ) ' = (Z1/2, IHI1/2)' (see "Remarks (on the associated
locally-convex topology)" above). But this is immediate since (/1/2, || • |j 1/2)' =
/°° (see [11, 9.3, # 123, page 140]). On the other hand, since y 0 0 is the finest
locally-convex topology coarser than || • ||1/2, we have || • ||, c ^ r°° .

REMARK (ON THE BANACH-STEINHAUS THEOREM). Standard proofs of this
theorem for the locally-convex case (see [4, 11.1, pages 219-221], [10, III.4.2,
page 83] for example) are easily adapted to the non-locally-convex situation to
obtain the following: for E semi-barrelled and F locally convex, every simply
(pointwise) bounded set H c £f{E,F) is equicontinuous. In particular, this
is valid for E semi-barrelled and F = R or, as we have seen, since every Baire
space is semi-barrelled, when E is a Baire space and F locally convex.

In the following sections, E and F are real Hausdorff topological vector
spaces and T is assumed to be adequate unless otherwise stated.
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3. The main results

LEMMA I. be T(E)*p/T if and only ifboTe E*p.

PROOF, (i) For all x e E, (x,b°T) = (Tx,b) < P/T(Tx) = inf P(T~lTx)
<P(x)

(ii) For all y e T(E) and x e T~xy, {y,b) = (Tx,b) = (x,b o T) < P{x).
Taking the infimum over x gives (y,b) < P/T(y).

LEMMA 2. Let T'{A) be o(E',E)-closed and assume that

for every continuous seminorm P on E, there exists a continu-
ity) ousseminorm Q on T(E) such that, for b € T(E)', boTeE'p

implies b e T(E)'Q.

Then T is semi-open.

PROOF. We first show that b e T(E)* and b o T e E' implies b e T{E)'.
Suppose that x € E and {x, T'(A)) = {0}. Since T is adequate and (Ker T, bo
T) = 0, (x,bo T) = 0. It follows by the assumption that T'(A) is a(E',E)-
closed and the separation theorem that b o T e T'(A). This implies there
exists a d e A such that T'd = boT and hence that b = d \ T{E) e T(E)'.

Now, for b € T(E)*p/T, by Lemma 1, b o T e E*p c E' and therefore,
from the above, b e T{E)'. Since (by the Hahn-Banach theorem) P/T
is the supremum of linear functional it dominates, we then have P/T =
sup{b: b e T(E)'p,T}. By Lemma 1 and assumption (3), this implies that

P/T = sup{b: b e T(E)', boTeE'P}< sup{6: b e T(E)'Q} < Q

for some continuous seminorm Q. This shows that P/T is continuous and
hence that T is semi-open.

Lemma 2 is fundamental to this note and significant in its own right. It
not only will allow us to derive an extension to the Ptak homomorphism
theorem (see Theorem 10) but also throws light on, and parallels in the non-
locally-convex situation, the Bourbaki-Grothendieck homomorphism theo-
rem (Kothe, [7, Section 32.4(3), page 8], attributes this theorem to
Grothendieck; we also find it in Bourbaki [1, IV, Section 4, Proposition 2]).
We state this theorem next for comparison and easy reference. In what fol-
lows, ME and Mf denote the classes of equicontinuous subsets in E' and F'
respectively.
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THEOREM 4 (BOURBAKI-GROTHENDIECK HOMOMORPHISM THEOREM). Let

E and F be locally convex and T be continuous. Assume that T'(F') is
a(E', E)-closed and that

(5) T'(F')nmEcT'(mF).

Then T is open.

Here (5) reads as follows: every equicontinuous subset of E' that is con-
tained in T'(F') is contained in the image under T' of some equicontinuous
subset of F'.

Condition (5) in Theorem 4 (that is, in the case E and F are locally convex
and T is continuous) is equivalent to T being nearly open (see [5, Section 8(1),
page 321], [7, Section 34.1, page 23]). In the case T is arbitrary we have the
following dual characterization of nearly-open maps between locally-convex
spaces which is due to Kothe (see [5, Section 8(4), page 322], [7, Section
37.3(4), page 99]):

(6) T is nearly open if and only if T'(D) n 9K£ c T'{D n mF),

where D denotes the domain of the adjoint.
We show now that our condition (3) in Lemma 2 is, in fact, equivalent to

(6) in the locally convex situation and for arbitrary T.

LEMMA 1. If E and F are locally convex, T is nearly open if and only if
(3).

PROOF. In view of (6), it suffices to show that

(8) T'(D) nmEC T'{D n mF) if and only if (3).

(i) Let M\ c T'(D) and M\ e SDTf. Then since equicontinuous subsets can
be determined by continuous seminorms (H c E' is equicontinuous if and
only if there exists a continuous seminorm P on E such that h < P for all
h e H), we can write Mx = {d o T: d e F', d o T e E', d o T < P} for some
continuous seminorm P on E. Since, for each d e F',d\ T(E) € T(E)', we
deduce from (3) that M{ c {d o T: d € F\ d o T e E', d \ T{E) < Q} for some
continuous seminorm Q on T(E). Since Q determines an equicontinuous
subset of T(E)', we find that M{ c T'(Dn M) for M € MF and where
M | T{E) is the equicontinuous set determined by Q (see [4, 8.7(2), page 163]).
It follows that M\ c T'{M2) where M2 C D and M2 € fflF is given by
M2 := D n M.

(ii) Let P be a continuous seminorm on E. For b e T(E)' there exists
(since F is locally convex, by the Hahn-Banach theorem) b' e F' such that
b' | T(E) = b.lfb°TeE'P then b'°TeE'P and hence b'oT e {doT: d e F',
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doT e E',doT < P}. Since P is continuous it determines an equicontinuous
subset of E' so that we can now deduce, from the left-hand-side of (8), that

{doT:d€F',doTeE',doT<P}c T'(M)

for some M c D and M e 97lf. Hence b' o T e {d o T: d 6 F',d o T e
£'.</ < Q'} where (?' is the continuous seminorm on F which determines
Af. It follows that b < Q where Q := Q' \ T{E) is continuous on T(E).

It is also easily seen that a semi-open map satisfies (3): let P be a con-
tinuous seminorm on E and b € T(E)'. By Lemma 1, b o T & E'p implies
6 e T(E)'P/T, so (3) is satisfied by taking Q := P /7 \

In view of Lemma 7 and this observation, condition (3) in Lemma 2
can be taken to be an extension to the non-locally-convex situation of the
dual characterization (6), for nearly-open maps and, therefore, defines what
we will henceforth call a nearly semi-open map (see the example following
Corollary 11).

We now make some additional remarks on adequate maps. The condition

(9) (x, 0) € G00 implies x e (Ker T)00,

where "°" denotes the operator of polarity and G := {(x, Tx): x e E} is the
graph of T ensures that T is adequate: let {x, T'(A)) = {0} and (Ker T,a) =
{0}. If (c, b)<EG°cE'x F' then b o T = -c e E' and hence d := b | ̂  e A
and c = -do T = -T'd. Hence, ((x,0),(c,b)) = (x,c) = -{x,T'd) = 0,
which is to say, (x,0) e G00. By (9), x 6 (KerT)00 so (x,a) = 0. If, in
addition, F is assumed to be locally convex then (9) is equivalent to T being
adequate, since, in this case, the above argument can be reversed. In the case
both E and F are locally convex, by the bipolar theorem, (9) is equivalent
to T being weakly singular (T is weakly singular if (x, 0) € G =>• x € Ker T)
(see [5, Section 2, page 310], [7, Section 36.1, page 81]).

We now have

THEOREM 10. Let E be semi-B-complete and assume that T is nearly semi-
open. The T is semi-open.

PROOF. We first show that for each continuous seminorm P on E, T'(A) n
Ep is a(E', £')-compact:

T'(A) r\EP = {boT:be T(E)', b o T e E'P} = {b o T: b e T{E)'P/T}

by standard extension arguments and Lemma 1. Define R: T{E) —• R by
R := snp{b: b e T(E)',bo T € E'P} so that T is continuous, since, as T is
nearly semi-open, by (3), R < Q for some Q continuous on T(E). Also, by
Lemma l,R = sup{b: b € T(E)'p/T}. Hence T(E)'P/T = T{E)'R which then
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implies that T(E)'P/T is a{T{E)', r(£))-compact. The claim follows by the
a{T{E)', T(E)) - o(E*,E) continuity of the map b^>boT.

Since E is sernkfl-complete, T'(A) is a(E',E)-closed and the conclusion
of the theorem now follows from Lemma 2.

In view of the comparative observations given in this section, it is easily
verified that Theorem 10 extends the Ptak homomorphism theorem (Corol-
lary 13) or its generalizations as given in, for example, [4, 9.7(1), page 186],
[5, Section 11, page 325], [7, Section 37.5(4), page 104] and [10, IV.8.3, page
163]. In particular, in [5, Section 11, page 325] we find that T is open if
E and F are assumed to be locally convex and T to be weakly singular and
nearly open. It is clear that Theorem 10 reduces to this result if we take E
and F to be locally convex, since, in this case, as we have already seen, the
following are equivalent: (i) weakly singular; (ii) adequate and nearly open;
(iii) nearly semi-open. We also have

COROLLARY 11. Let E be semi-B'-complete and assume that T(E) is semi-
barrelled. Then T is semi-open.

PROOF. The assumption that T(E) is semi-barrelled satisfies condition
(3) by taking, for each continuous seminorm P on E, Q to be the (lower-
semicontinuous) seminorm defined by Q := sup{6: b € T(E)'P,T} and by
using Lemma 1. Hence T is nearly semi-open and the corollary now follows
from Theorem 10.

REMARK. It is clear from the proof of Corollary 11 that if F is semi-
barrelled, then any linear map from an arbitrary topological vector space
onto F is nearly-semi-open (cf. [7, Section 34.1(1), page 24]).

EXAMPLE. The canonical injection map /1/2 •-> / ' is nearly semi-open: its
image, ll/2, under the norm topology induced from /' is semi-barrelled (as we
have already seen) and consequently, by the argument given in the proof to
Corollary 11 above, (3) is satisfied and the injection is nearly semi-open. It is
clear, however, from the definition and the fact that the norm topology || • || i is
(strictly) coarser than the usual topology ||||i/2 on/1/2, that the injection is not
semi-open. This example also shows that a complete metrizable space need
not necessarily be semkfi-complete since, as the injection map has already
been shown to be adequate, in view of Corollary 11, /1/2 is not semi-.fi-
complete.

Further, in view of the "Remarks (on adequate maps)" on the connection
between adequate and continuous we now have the following corollaries for
continuous maps.
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COROLLARY 12. LetE be semi-B-complete, F be locally convex and assume
that T(E) is barrelled. Then T is semi-open.

COROLLARY 13 (PTAit's HOMOMORPHISM THEOREM). Let E be B-complete
{that is, a Ptdk space), F be locally convex and barrelled and assume that T
is surjective. Then T is open.

4. Ancillary results

In order to prove our next result on weakly-open maps we will use the
following result from [11, 9.1, #104, page 131]:

LEMMA 14. For S c E', S is a{E,E')-equicontinuous if and only if 5 c
conv Si for some finite subset S\ ofE' {that is, S is contained in a polyhedron).

THEROEM 15. Let F be locally convex and T'(A) {= T'{D)) be o{E',E)-
closed. Then T is weakly open.

PROOF. We need to show that P/T is continuous on (T(E), a{F, F') \ T(E))
whenever P is continuous on {E, a{E,E')). From the proof given for Lemma
2, it is clear that it suffices to show that for every seminorm P continuous on
{E, a{E, E')), there exists a seminorm Q continuous on {T{E), a{F, F') | T(E))
such that, for b e T{E)', b o T e E'P implies b e T{E)'Q We now show this.
Since P is continuous on {E,a{E,E')), it determines a <j(.E,.E'')-equicontin-
uous subset S c E'. By Lemma 14, S c conv 52, where S\ is a finite subset
of E'. Hence, for every b e T{E)' such that b o T e E' and b o T < P,
b o T c conv Si. From this, it is straightforward to verify, using the linearity
of the map b H-» b o T, that there exists a finite set 52 C T{E)' such that
b e conv52(c T{E)'). From Lemma 14 again, conv52 is a{T{E),T{E)')-
equicontinuous and hence b < Q, where Q is the a{T{E), r(£')/)-continuous
seminorm which determines conv 52. Since F is locally convex, Q is contin-
uous in the topology on T{E) induced by a{F, F'); that is, Q is continuous
on {T{E),a{F,F')\T{E)).

REMARKS. Theorem 14 parallels [5, Section 9(9), page 324], [7, Section
37.4(6), page 102]. Under the conditions in Theorem 14, T is a weak homo-
morphism if, in addition, T is weakly continuous.

To complete our discussion, we now briefly examine the notion of nearly-
continuous maps (see [5, Section 10, page 324], [7, Section 34.6, page 36]). To
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extend this concept to the non-locally-convex case in the context of the duality
theory as developed in Section 3, we say that T is nearly semi-continuous if

for every continuous seminorm Q on T(E), there exists a
(16) continuous seminorm P on E such that, for b e T(E)' and

boTeE',be T(E)'Q implies boTeE'P.

From this definition we find that (i) if T is injective then T is nearly semi-
continuous if and only if T~l is nearly semi-open, and (ii) If E is semi-
barrelled, then every linear map from E into any topological vector space is
nearly semi-continuous. Both (i) and (ii) are easily verified. We give a proof
only for (ii): let E be semi-barrelled and Q be a continuous seminorm on
T(E). The conclusion in (16) is then obtained by choosing P to be the lower-
semicontinuous seminorm defined by P := sup{boT: boT eE',b G T{E)'Q}
(cf. [5, Section 10, page 324], [7, Section 34.6, page 36]).

In this case E and F are locally convex, Kothe has shown [5, Section
10(2), page 325] that for T arbitrary, T is nearly continuous if and only if
T'(D n WIF) C ME. Using this fact and arguments similar to those given in
Lemma 7, we can easily verify that, in the case both E and F are locally
convex, nearly semi-continuous and nearly continuous are equivalent.

EXAMPLE. The inverse to the injection map Z1/2 <-> / ' is nearly semi-
continuous by (ii) above since / '/2 under the norm topology induced from /'
is semi-barrelled. This is also related, via (i), to the fact that we already know
that the injection map itself is nearly semi-open (see the example following
Corollary 11).

5. Concluding remarks

Although we have touched on some of the fundamental notions in Ptak
theory, other concepts connected with the theory can be extended along sim-
ilar lines to the non-locally-convex situation. For example, it is clear how we
can extend the definitions for infra-barrelled and Z?r-complete spaces to give
ones for "infra-semi-barrelled" and "semi-5r-complete" respectively. This
suggests the possibility that the many other results of the theory can be ex-
tended while proofs can be simplified.

In conclusion, however, we ask some questions of interest that arise from
this note.

QUESTION 1. Is it possible to give an equivalent definition (similar to
that given for semi-open maps) of a nearly semi-open map using quotient
seminorms?
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QUESTION 2. The "Remark (on the Banach-Steinhaus theorem)" suggests
the following: is every simply bounded set H c S?{E, F) equicontinuous if E
is semi-barrelled and F an arbitrary topological vector space? (It is already
known that H is equicontinuous if E is ultrabarrelled and F an arbitrary
topological vector space [9, Section 5, page 250]).

QUESTION 3. In Theorem 15, can we drop the assumption that F is locally
convex?

QUESTION 4. In connection with obtaining a "closed-graph" theorem (see
[10, IV.8.5, page 166]), is every closed subspace of a semkB-complete ("semi-
5r-complete") space, semi-5-complete ("semi-5r-complete")?
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