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Abstract

We prove that the nonvarying strata of abelian and quadratic differentials in low genus
have trivial tautological rings and are affine varieties. We also prove that strata of k-
differentials of infinite area are affine varieties for all k. Vanishing of homology in degree
higher than the complex dimension follows as a consequence for these affine strata.
Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic
differentials of finite area is extremal in the sense that merging two zeros in each stratum
leads to an extremal effective divisor in the boundary. A common feature throughout these
results is a relation of divisor classes in strata of differentials as well as its incarnation in
Teichmüller dynamics.

2020 Mathematics Subject Classification: 32G15 (Primary); 14H10 (Secondary)

1. Introduction

Forμ= (m1, . . . , mn) with
∑n

i=1 mi = k(2g − 2), let Pk
g (μ) be the projectivised stratum of

k-differentials ω on smooth and connected complex curves of genus g that have labeled zeros
and poles whose orders are specified by μ. Equivalently, Pk

g (μ) parameterises k-canonical
divisors of prescribed type μ.

The study of differentials is important in surface dynamics and moduli theory. We refer
to [C2, W, Zo] for an introduction to this subject. Despite various known results, the global
geometry of Pk

g (μ) remains quite mysterious, e.g., the full structure of the tautological

ring of Pk
g (μ) is largely unknown. Moreover, it is generally unclear whether the underly-

ing coarse moduli space of Pk
g (μ) is an affine variety. The birational geometry of Pk

g (μ)
is also less studied. Such questions are meaningful for understanding a moduli space, e.g.,
many exciting ideas and results have been discovered in the study of these questions for the
moduli space Mg of curves of genus g.

There has been some expectation among experts that the (rational) Picard group of Pk
g (μ)

should behave similarly comparing to that of Mg, which is of rank one (for g ≥ 3) gen-
erated by the tautological divisor class λ. However, our result below shows that such an
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expectation should at least exclude the strata whose Teichmüller curves have nonvarying
sums of Lyapunov exponents (as listed in [CM1, CM2] for about 30 of them). For simplic-
ity we call them nonvarying strata. Note that a stratum can be disconnected due to spin and
hyperelliptic structures ([KZ, L]). Since different connected components can have distinct
properties, when speaking of a stratum we mean a specific connected component according
to the hyperelliptic and spin parity labelings.

The tautological ring of a stratum is defined in [C4] to be generated by the tautologi-
cal classes pulled back from Mg,n together with the tautological line bundle class of the
projectivised Hodge bundle. We say that the tautological ring of a stratum is trivial if it is
isomorphic to Q generated by the fundamental class, i.e., if every tautological class of posi-
tive codimension is zero over Q. Here a cycle class on a stratum is treated in the stacky sense
when we perform intersection calculations, just like doing calculations on Mg,n as a moduli
stack. In contrast, when speaking of affine, birational, or topological properties, we refer to
the underlying coarse moduli space of a stratum.

THEOREM 1·1. The nonvarying strata of abelian and quadratic differentials listed in
[CM1, CM2] have trivial tautological rings and their coarse moduli spaces are affine
varieties.

In contrast if a stratum is varying, then the tautological classes should not be all trivial
(see Remarks 3·1 and 3·2).

Next we consider k-differentials of infinite area, i.e., when μ contains at least one entry
≤ −k (see [BCGGM2] for an introduction to k-differentials).

THEOREM 1·2. The coarse moduli spaces of strata of k-differentials of infinite area are
affine varieties.

Affine varieties are Stein spaces in analytic geometry. By [AF, N] we thus obtain the
following result about the homology of an affine stratum of differentials.

COROLLARY 1·3. Let Pk
g (μ) be one of the above affine strata of differentials. Then

Hd(Pk
g (μ), Z) = 0 if d> dimC Pk

g (μ) and Hd(Pk
g (μ), Z) is torsion free if d = dimC Pk

g (μ).

Remark 1·4. For strata of holomorphic differentials with μ= (m1, . . . , mn) and mi ≥ 0 for
all i, a (strongly) (g + 1)-convex exhaustion function was constructed on P1

g (μ) by using the

area and length functions on flat surfaces (see [M, proposition 3·17]), i.e., P1
g (μ) is a (g + 1)-

complete complex space. It follows that Hd(P1
g (μ), Z) is torsion and Hd(P1

g (μ), C) = 0 for

d> dimC P1
g (μ) + g = 3g − 2 + n (see [BB, theorem 0·3]).1

In general little is known about the homology of strata of differentials (nevertheless see
[CMZ] for computing the Euler characteristics and [Zy] for the L∞-isodelaunay decom-
position). Even if one is interested in strata of holomorphic differentials in high genus,
differentials in low genus and meromorphic differentials naturally appear in the boundary of
compactified strata ([BCGGM1, BCGGM3]). Therefore, we expect that the above results
can be useful for inductively computing the homology of strata of differentials.

1 Note that the q-complete index is defined in [M] one higher than in [BB].

https://doi.org/10.1017/S0305004123000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000567


Nonvarying, affine and extremal geometry of strata of differentials 363

Finally we turn to the stratification of the (ordinary) Hodge bundle of holomorphic dif-
ferentials (up to scale) as the disjoint union of P1

g {μ}, where μ runs over all partitions of

2g − 2 and {μ} denotes the version of strata with unlabeled zeros. Note that P1
g {μ} is a finite

quotient of P1
g (μ) under the group action permuting the zeros that have the same order. We

also denote by P1
g{μ} the closure of P1

g {μ} in the extended Hodge bundle over the Deligne–

Mumford moduli space Mg of stable curves. We use similar notations for the stratification
of the (quadratic) Hodge bundle of quadratic differentials with at worst simple poles and the
extension over Mg,s, where s is a given number of simple poles to start with.

THEOREM 1·5. Let μ= (m1, . . . , mn) be a signature of abelian differentials with mi ≥
1 for all i, and let μ′ = (m1 + m2, m3, . . . , mn). Then the stratum P1

g{μ′} is an extremal

effective divisor in P1
g{μ}.

Let μ= (m1, . . . , mn) be a signature of quadratic differentials with mi ≥ −1 for all i, and
let μ′ = (m1 + m2, m3, . . . , mn), where at least one of m1, m2 is positive. Then the stratum

P2
g{μ′} is an extremal effective divisor in P2

g{μ}.
Differentials of type μ′ as degeneration of differentials of type μ can be realised geo-

metrically by merging the two zeros of order m1 and m2. Theorem 1·5 thus has an amusing
interpretation that the stratification of the Hodge bundle (for abelian and quadratic differ-
entials of finite area) is extremal, where merging two zeros leads to an extremal effective
divisor in the boundary. We remark that if a stratum of type μ is disconnected, then Theorem
1·5 holds for each connected component of type μ and the component of type μ′ obtained
by merging the zeros in the prescribed component of type μ.

Strategies of the proofs.

To prove Theorem 1·1 we show that the nonvarying property yields an extra relation
between tautological divisor classes which forces them to be trivial. To prove Theorem 1·2
we observe the sign change of mi + k for entries mi ≤ −k and mi >−k in μ, and use it to
exhibit an ample divisor class which is trivial on strata of k-differentials of infinite area.
To prove Theorem 1·5 we show that Teichmüller curves contained in Pk

g{μ′} have negative

intersection numbers with the divisor class of Pk
g{μ′} in Pk

g{μ} for k = 1, 2.

Related works.

Previously in [C3] the author showed that the nonvarying strata of abelian differentials
for μ= (4)odd, (3,1), (2, 2)odd and (6)even are affine by using the geometry of canonical
curves in low genus (see also [LM] for a related discussion). This is now completed for all
known nonvarying strata (including for quadratic differentials). Moreover in [C3] the author
also showed that there is no complete curve in any stratum of k-differentials of infinite
area, which now follows from Theorem 1·2. Note that in general the implication does not
work the other way around, e.g., A2 removing a point contains no complete curves but it is
not affine. For unprojectivised strata of holomorphic differentials, nonexistence of complete
curves was shown in [Ge] and [C5]. Finally the beginning case of Theorem 1·5 for the
principal strata, i.e., for all zeros equal to one, was previously established in [Gh]. Now this
extremal behaviour is shown to hold for all zero types. Therefore, our current results can
further enhance the understanding of the tautological ring, affine geometry, topology, and
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birational geometry of the strata. We hope that the ideas employed in this paper can shed
some light on related questions.

2. Triviality criteria

Marking the zeros and poles of differentials, Pk
g (μ) can be viewed as a subvariety in the

moduli space Mg,n of curves of genus g with n marked points. We introduce the following
tautological divisor classes that will be used throughout the paper. Let η be the first Chern
class of the tautological line bundle O( − 1) on Pk

g (μ) whose fibers are spanned by the
underlying k-differentials ω. Let λ be the first Chern class of the Hodge bundle, κ be the
Miller–Morita–Mumford class, and ψi be the cotangent line bundle class associated to the
ith marked point. When mi �= −k for all i, we will often use the following quantity

κμ = 1

k
(2g − 2 + n) −

n∑
i=1

1

mi + k
.

Recall that the tautological ring of Pk
g (μ) is defined to be generated by the tautological

classes pulled back from Mg,n together with η. If μ does not contain −k as an entry, then it
was shown in [C4, theorem 1·1] that in this case η can generate the entire tautological ring
of Pk

g (μ).

PROPOSITION 2·1. Suppose mi �= −k for all the entries of μ. Let D be an effective divisor
in Mg,n with divisor class aλ+ ∑n

i=1 biψi. Then the pullback of D to Pk
g (μ) has divisor

class

1

12

( (2g − 2 + n)a

k
+

n∑
i=1

12bi − a

mi + k

)
η.

Moreover if the above coefficient of η is nonzero and if D and Pk
g (μ) are disjoint, then η is

trivial on Pk
g (μ) and the tautological ring of Pk

g (μ) is trivial.

For the nonvarying strata of abelian and quadratic differentials, the desired divisors D in
Proposition 2·1 arise from those used in [CM1, CM2] which are disjoint from the respective
strata. Occasionally we will use some variants of Mg,n by marking fewer points or lifting
to the spin moduli spaces, for which the above reasoning still works as we only consider the
interior of these moduli spaces.

Proof. The following relations hold on Pk
g (μ) (see [C4, proposition 2·1]):

η= (mi + k)ψi, 12λ= κ = κμη.

Then the claim on the pullback divisor class follows from these relations.
For the other claim, we only need to show that in this case η being trivial implies that the

tautological ring of Pk
g (μ) is trivial, which indeed follows from the fact that η generates the

tautological ring when μ contains no entries equal to −k (see [C4, theorem 1·1]).

PROPOSITION 2·2. If all tautological divisor classes are trivial onPk
g (μ), then the coarse

moduli space of Pk
g (μ) is an affine variety.
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Proof. The tautological divisor class κ + ∑n
i=1 ψi is ample on Mg,n (see [Co, theorem

(2·2)]) and is trivial on Pk
g (μ) by the assumption. Let δ be the total boundary of Mg,n

and 0< ε� 1. The divisor class κ + ∑n
i=1 ψi + εδ remains ample and its restriction to the

closure of Pk
g (μ) can be represented by a divisor fully supported on the boundary. This

proves the claim.

3. Nonvarying strata

In this section we prove Theorem 1·1. We use the effective divisors described in [CM1,
CM2] and then apply Propositions 2·1 and 2.2.

3·1. The hyperelliptic strata

Note that λ is trivial on the hyperelliptic locus (see [CH]), which implies that the
hyperelliptic strata have trivial tautological rings and are affine varieties.

3·2. P1
3 (4)odd and P1

3 (3, 1)

The divisor H parameterising hyperelliptic curves in M3 is disjoint from these strata and
has divisor class 9λ (see [CM1, section 2·5, equation (1)]).

3·3. P1
3 (2, 2)odd

For (X, p1, p2) ∈P1
3 (2, 2)odd, by definition p1 + p2 is an odd theta characteristic, which

maps P1
3 (2, 2)odd to the odd spin moduli space S−

3 . The divisor Z3 in S−
3 parameterises odd

theta characteristics with a double zero. It is disjoint from P1
3 (2, 2)odd and has divisor class

11λ (see [CM1, section 5·3]).

3·4. P1
3 (2, 1, 1)

Marking the first two zeros maps P1
3 (2, 1, 1) to M3,2. The Brill–Noether divisor BN1

3,(1,2)

in M3,2 parameterises curves that admit a g1
3 given by p1 + 2p2. It is disjoint from

P1
3 (2, 1, 1) and has divisor class −λ+ψ1 + 3ψ2 (see [CM1, section 2·5, equation (5)]).

3·5. P1
4 (6)even

For (X, p) ∈P1
4 (6)even, by definition 3p is an even theta characteristic. The theta-null divi-

sor 	4 in M4,1 parameterises curves that admit an odd theta characteristic whose support
contains the marked point. It is disjoint from P1

4 (6)even and has divisor class 30λ+ 60ψ1

(see [CM1, section 2·5, equation (3)]).

3·6. P1
4 (6)odd and P1

4 (5, 1)

Marking the zero of the largest order, these strata map to M4,1. The Brill–Noether divisor
BN1

3,(2) in M4,1 parameterises curves that admit a g1
3 ramified at the marked point. It is

disjoint from both strata and has divisor class 8λ+ 4ψ1 (see [CM1, section 2·5, equation
(7)]).

3·7. P1
4 (3, 3)nonhyp

The divisor Lin1
3 in M3,2 parameterises curves that admit a g1

3 with a fiber containing
both marked points. It is disjoint from P1

4 (3, 3)nonhyp and has divisor class 8λ−ψ1 −ψ2

(see [CM1, section 2·5, equation (8)]).
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3·8. P1
4 (2, 2, 2)odd

For (X, p1, p2, p3) ∈P1
4 (2, 2, 2)odd, by definition p1 + p2 + p3 is an odd theta characteris-

tic. The divisor Z4 in the odd spin moduli space S−
4 parameterises odd theta characteristics

with a double zero. It is disjoint from P1
4 (2, 2, 2)odd and has divisor class 12λ (see [CM1,

section 5·3]).

3·9. P1
4 (3, 2, 1)

The Brill–Noether divisor BN1
4,(1,1,2) in M4,3 parameterises curves that admit a g1

4 given

by p1 + p2 + 2p3. It is disjoint from P1
4 (3, 2, 1) and has divisor class −λ+ψ1 +ψ2 + 3ψ3

(see [CM1, section 2·5, equation (6)]).

3·10. P1
5 (8)even

The Brill–Noether divisor BN1
3 in M5,1 parameterises curves with a g1

3. It is disjoint from
P1

5 (8)even and has divisor class 8λ (see [CM1, section 2·5, equation (4)]).

3·11. P1
5 (8)odd

The divisor Nfold1
5,4 (1) in M5,1 parameterises curves that admit a g1

4 with a fiber con-

taining 3p. It is disjoint from P1
5 (8)odd and has divisor class 7λ+ 15ψ1 (see [CM1, section

2·5, equation (9)]).

3·12. P1
5 (5, 3)

The Brill–Noether divisor BN1
4,(1,2) in M5,2 parameterises curves that admit a g1

4 with a

fiber containing p1 + 2p2. It is disjoint from P1
5 (5, 3) and has divisor class 7λ+ 7ψ1 + 2ψ2

(see [CM1, section 2·5, equation (10)]).

3·13. P1
4 (4, 2)even, P1

4 (4, 2)odd, and P1
5 (6, 2)odd

The nonvarying property of these strata was proved in [YZ] by using the Harder–
Narasimhan filtration of the Hodge bundle (see also [CM2, appendix A]). Note that the
filtration holds not only on a Teichmüller curve but also on (the interior of) each stratum.
Let Lμ be the sum of (nonnegative) Lyapunov exponents which satisfies that λ= Lμη from
the Harder–Narasimhan filtration on these strata. In these cases we know that Lμ �= κμ/12.
Then the triviality of η on these strata follows from the two distinct relations λ= (κμ/12)η
and λ= Lμη.

3·14. Nonvarying strata of quadratic differentials in genus one and two

Strata in genus ≤ 2 can be generally dealt with as in Sections 4·2 and 4·3 below.

3·15. P2
3 (9, −1)irr

This stratum is disjoint from the hyperelliptic divisor H in M3 whose divisor class is 9λ
(see [CM2, section 3·1, equation (6)]).

3·16. P2
3 (8), P2

3 (7, 1), P2
3 (8, 1, −1), P2

3 (10, −1, −1)nonhyp and P2
3 (9, −1)reg

Marking the zero of the largest order, these strata map to M3,1. The divisor W of
Weierstrass points in M3,1 is disjoint from these strata and has divisor class −λ+ 6ψ1

(see [CM2, section 3, equation (5)]).
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3·17. P2
3 (6, 2)nonhyp, P2

3 (6, 1, 1)nonhyp, P2
3 (5, 3), P2

3 (5, 2, 1), P2
3 (4, 4), P2

3 (4, 3, 1), P2
3 (5, 4, −1),

P2
3 (5, 3, 1, −1), P2

3 (7, 2, −1), P2
3 (7, 3, −1, −1) and P2

3 (6, 3, −1)reg

Marking the first two zeros, these strata map to M3,2. The Brill–Noether divisor BN1
3,(2,1)

in M3,2 parameterises curves that admit a g1
3 given by 2p1 + p2. It is disjoint from these

strata and has divisor class −λ+ 3ψ1 +ψ2 (see [CM2, section 3·1, equation (8)]).

3·18. P2
3 (4, 2, 2), P2

3 (3, 3, 2)nonhyp, P2
3 (4, 3, 2, −1), P2

3 (3, 2, 2, 1), P2
3 (3, 3, 1, 1)nonhyp and

P2
3 (3, 3, 3, −1)reg

Marking the first three zeros, these strata map to M3,3. The Brill–Noether divisor
BN1

3,(1,1,1) in M3,3 parameterises curves that admit a g1
3 given by p1 + p2 + p3. It is dis-

joint from these strata and has divisor class −λ+ψ1 +ψ2 +ψ3 (see [CM2, section 3·1,
equation (7)]).

3·19. P2
4 (13, −1), P2

4 (11, 1) and P2
4 (12)reg

Marking the zero of the largest order, these strata map to M4,1. The divisor W of
Weierstrass points in M4,1 is disjoint from these strata and has divisor class −λ+ 10ψ1

(see [CM2, lemma 3·2]).

3·20. P2
4 (10, 2)nonhyp, P2

4 (8, 4), P2
4 (8, 3, 1) and P2

4 (9, 3)reg

Marking the first two zeros, these strata map to M4,2. The Brill–Noether divisor BN1
4,(3,1)

in M4,2 parameterises curves that admit a g1
4 given by 3p1 + p2. It is disjoint from these

strata and has divisor class −λ+ 6ψ1 +ψ2 (see [CM2, lemma 3·2]).

3·21. P2
4 (7, 5) and P2

4 (6, 6)reg

The Brill–Noether divisor BN1
4,(2,2) in M4,2 parameterises curves that admit a g1

4 given by
2p1 + 2p2. It is disjoint from these strata and has divisor class −λ+ 3ψ1 + 3ψ2 (see [CM2,
lemma 3·2]).

3·22. P2
4 (7, 3, 2), P2

4 (5, 4, 3) and P2
4 (6, 3, 3)reg

The Brill–Noether divisor BN1
4,(2,1,1) in M4,3 parameterises curves that admit a g1

4 given
by 2p1 + p2 + p3. It is disjoint from these strata and has divisor class −λ+ 3ψ1 +ψ2 +ψ3

(see [CM2, lemma 3·2]).

3·23. P2
4 (3, 3, 3, 3)reg

It is disjoint from the Brill–Noether divisor BN1
4,(1,1,1,1) in M4,4 whose divisor class is

−λ+ψ1 +ψ2 +ψ3 +ψ4 (see [CM2, lemma 3·2]).

3·24. P2
3 (6, 3, −1)irr, P2

4 (12)irr and P2
4 (9, 3)irr

We can use the Harder–Narasimhan filtration of the quadratic Hodge bundle for these
strata (see [CM2, appendix A] and [CY, section 4·2]) and argue as in Section 3·13.

Remark 3·1. We say that a stratum of abelian differentials P1
g (μ) is varying, if it contains

two Teichmüller curves that have distinct sums of Lyapunov exponents. In this case we claim
that η is nontrivial on P1

g (μ).

To see this, let 
0 be the locus of stable differentials of type μ on curves with separating
nodes only, where the differentials have simple poles with opposite residues at the nodes.
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If P1
g (μ) is irreducible, then 
0 is also irreducible and modeled on P1

g−1(μ, {−1, −1}).
Moreover, every Teichmüller curve in P1

g (μ) only intersects
0 in the boundary (see [CM1,
corollary 3·2]).

Suppose that η is trivial on P1
g (μ). Then η= eδ0 on the partial compactification P1

g (μ) ∪

0 for some constant e. Since λ= (κμ/12)η on P1

g (μ), we have λ= �δ0 on P1
g (μ) ∪
0 for

some constant �. Then the sum of Lyapunov exponents of a Teichmüller curve C is given
by (λ · C)/(η · C) = �/e which is independent of C, contradicting that P1

g (μ) is a varying
stratum.

Note that the above criterion is practically checkable for arithmetic Teichmüller curves
generated by square-tiled surfaces by using the combinatorial description of area Siegel–
Veech constants and sums of Lyapunov exponents (see [EKZ, section 2·5·1] and also [C1,
theorem 1·8] for the relation with slopes of Teichmüller curves).

The same conclusion would hold for a varying stratum of quadratic differentials, assuming
that all Teichmüller curves contained in the stratum intersect only one irreducible boundary
divisor (see [CM2, remark 4·7] for this assumption).

Remark 3·2. We speculate that the rational Picard group (and the rational second cohomol-
ogy group) of any varying stratum of holomorphic differentials P1

g (μ) should be of rank one
generated by η.

4. Differentials of infinite area

In this section we prove Theorem 1·2 for strata of k-differentials of infinite area. For
completeness we also include the discussion for some strata in low genus.

4·1. Strata in genus zero

Every stratum in genus zero is isomorphic to the corresponding moduli space of pointed
smooth rational curves, which has a trivial Chow ring and is affine.

4·2. Strata in genus one

Since ψi = 0 on M1,n for all i (see [AC, theorem 2·2 (c)]), every stratum Pk
1(μ) in genus

one (including the case of some mi = −k in μ) has a trivial tautological ring and is affine by
Proposition 2·2. The affinity also follows from the fact that the ambient space M1,n is affine
(see [C3, theorem 3·1]).

4·3. Strata in genus two

Since λ is trivial on M2, every stratum Pk
2(μ) in genus two with mi �= −k for all i has a

trivial tautological ring and is affine by Proposition 2·2.

4·4. Strata with poles of order ≤ −k

Suppose m1 ≤ −k. By the relations η= (mi + k)ψi for all i and (2g − 2)η= kκ −∑n
i=1 miψi, we obtain that

k
(
κ +

n∑
i=1

ψi

)
= (2g − 2 + n)η

= (2g − 2 + n)(m1 + k)ψ1.
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It implies that κ + ∑n
i=1 ψi + aψ1 is trivial onPk

g (μ) where a = −(2g − 2 + n)(m1 + k)/k ≥
0. Since κ + ∑n

i=1 ψi + aψ1 (as ample plus nef) remains ample on Mg,n, it follows that
Pk

g (μ) is affine and Theorem 1·2 is justified.

5. Extremal stratification of the Hodge bundle

In this section we prove Theorem 1·5. Recall the notation μ= (m1, . . . , mn), μ′ = (m1 +
m2, m3, . . . , mn), and we work with unordered zeros. The idea is to show that Teichmüller

curves in Pk
g{μ′} has negative intersection numbers with the divisor class of Pk

g{μ′} in

Pk
g{μ} for k = 1, 2. In order to verify that, we make use of the aforementioned fact that

degenerate differentials in the boundary of a Teichmüller curve can have only simple polar
nodes (after taking a local square root in the case of quadratic differentials).

Proof of Theorem 1·5. First consider the case of abelian differentials. The following

relation of divisor classes holds on P1
g{μ}:

12λ− Dh − κμη= (m1 + m2 + 1)
(

1 − 1

m1 + 1
− 1

m2 + 1
+ 1

m1 + m2 + 1

)
P1

g{μ′}

modulo the other boundary divisors, where Dh is the boundary divisor generically param-
eterising stable differentials with simple polar nodes. This relation follows from [CCM,

proposition 6·3], where P1
g{μ} can be identified with the boundary divisor D� having �⊥ as

a rational vertex containing the two merged zeros and �� = m1 + m2 + 1 therein. Note that
the coefficient on the right of the above equality is positive for m1, m2 ≥ 1.

Let C be the closure of a Teichmüller curve in P1
g {μ′}. Since C does not intersect the part

of the boundary of P1
g{μ} away from Dh and P1

g{μ′}, we obtain

(12λ− Dh − κμη) · C

η · C
= κ

μ
′ − κμ

= −1 + 1

m1 + 1
+ 1

m2 + 1
− 1

m1 + m2 + 1
,

where 12λ− Dh = κ
μ

′η holds on the stratum P1
g{μ′} (modulo the other irrelevant boundary

divisors of P1
g{μ′} which do not meet C). Consequently, this implies

C ·P1
g{μ′}

C · η = − 1

m1 + m2 + 1
< 0.

Since η has positive degree on every Teichmüller curve (e.g., from the positive sign of the

area Siegel–Veech constant), it follows that C ·P1
g{μ′}< 0 in P1

g{μ}. Since Teichmüller

curves are dense in P1
g{μ′} and the negative ratio above is independent of each individual

Teichmüller curve, the desired claim follows by using the same argument as in [Gh,
section 4].

The case of quadratic differentials is similar. The following relation of divisor classes

holds on P2
g{μ}:
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12λ− Dh − κμη= (m1 + m2 + 2)
(1

2
− 1

m1 + 2
− 1

m2 + 2
+ 1

m1 + m2 + 2

)
P2

g{μ′}

modulo the other boundary divisors, where the coefficient on the right is nonzero by the
assumption that m1, m2 ≥ −1 and at least one of them is positive. Let C be the closure of a

Teichmüller curve in P2
g {μ′}. Since C does not intersect the part of the boundary of P2

g{μ}
away from Dh and P2

g{μ′}, we obtain

(12λ− Dh − κμη) · C

η · C
= −1

2
+ 1

m1 + 2
+ 1

m2 + 2
− 1

m1 + m2 + 2
.

It follows that

C ·P2
g{μ′}

C · η = − 1

m1 + m2 + 2
< 0.

The rest of the argument is the same as before.

Remark 5·1. If a stratum in Theorem 1·5 is disconnected, since each of its connected com-
ponents contains a dense collection of Teichmüller curves, the conclusion of Theorem 1·5
still holds for each connected component.

Remark 5·2. For k-differentials with k> 2, since there is no meaningful way to define
Teichmüller curves in this case, our method cannot be directly adapted. We leave it as
an interesting question to determine whether the stratification of the kth Hodge bundle is
extremal for k> 2.
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