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Abstract It is shown that for generic domains D in R", n > 2, every periodic billiard
trajectory in D passes only once through each of its reflection points, and any two
different periodic billiard trajectories in D have no common reflection point

1 Introduction
Given a compact domain D in U", n>2, with smooth boundary X = 3D, we consider
periodic billiard trajectories in D, and call them periodic reflecting rays on X
Generic properties of smooth compact (n-l)-dimensional submanifolds X of R"
concerning periodic reflecting rays on them were established by Lazutkin [5] and
Petkov and Stojanov [9], [10], [11] (see also [7] and [8]) In [5] Lazutkin proved
an analogue of Kupka-Smale theorem for billiards in strictly convex domains in
R2 Studying inverse spectral problems in connection with the so-called Poisson
relation for manifolds with boundary (cf [2], [4], [6]), V Petkov and the present
author proved that genencally most X in R" have the following properties

(l) every two different periodic reflecting rays on X have rationally independent
lengths ([9]),

(H) (for n = 2) there do not exist generalized periodic geodesies on X ([9], [10]),
(in) for every s > 2 there are at most a finite number of periodic reflecting rays

on X having exactly s reflection points ([11]),
(IV) there do not exist periodic reflecting rays on X having segments tangent to

X ([10], [11]),
(v) the spectrum of the Poincare map related to every periodic reflecting ray on

X does not contain roots of unity ([11])
In [9], [10] we had to overcome among others the following two difficulties
(A) in general a periodic reflecting ray could pass two or more times (in different

directions) through some of its reflection points (see figure 1),
(B) some different periodic reflecting rays could have common reflection points

(see figure 2)
In this paper we prove that for generic X in R" the phenomena (A) and (B)

cannot occur The latter means that for generic X given x e X, there exist at most
two directions v ̂  0 in R" which are symmetric with respect to the normal Nx to X
at x (and of course may coincide with JVX) such that starting from x in the direction
v and reflecting on X satisfying the usual law of reflection, we get a periodic
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598 L Stojanov

reflecting ray on X Note that, according to (m), for generic X there are at most a
countable number of such x e X for which there exist directions v with the above
properties

The proofs of our results use the technique of [9], [10] which is based on the
multi-jet transversahty theorem One of these results (see theorem A in § 2) has
been already used to prove the main theorem in [11], and both theorems A and B
established below could be used to simplify the proofs in [9], [10] and to get other
properties of generic X in R"

Thanks are due to the referee for his remarks and suggestions Especially, he
pointed out that theorem B (the proof of which in the first version of the paper was
different from the present one) can be established using the same idea as those in
the proof of theorem A

2 Definitions and main results
Let X be a smooth compact (n-l)-dimensional submanifold of Rn, n > 2 , and
C°°(X,R") be the set of all smooth maps X^U" endowed with the Whitney C°°
topology (cf ch II of [1] or 2 1 of [3]) Denote by C"mb(X,R") the subspace of
C°°(X, R") consisting of all smooth immersive embeddings X -> R" As is well known,
C°°(X, R") is a Baire space and C"mb(X, Rn) is open in it (cf loc cit), therefore
the latter is also a Baire space

By a periodic reflecting ray on X we mean a closed curve y formed by a finite
number of straighthne segments /,, l2, , lk, where /, = [x,, xI+1] = {zeR" z = px,+
(\-p)x,+u 0</>< 1}, x,eX (i = 1, 2, , k), xk+1 = xu such that any open segment
I, = (x,, x,+1) does not intersect transversally X, and for every i = 1, , k, I, and /,+1

make equal acute angles with one of the normal vectors JV1+1 to X at xl+l (for
convenience we set lk+1 = /j), and /,, ll+1 and Nl+1 he in a common two-dimensional
plane The points xux2, xk are called reflection points of y

FIGURE 1

It may happen that some segments /, of y are tangent to X at some interior point
z of /, (see figure 3) Note especially that points like zx on figure 3 are not considered
as reflection ones, while z2 is a reflection point Clearly, a periodic reflecting ray on
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X may lie 'inside X' as well as 'outside X ' (see figure 4) Moreover, some of its
reflection points may coincide (see figure 1) We mention also that X is not assumed
to be connected

FIGURE 2

If there is a segment /, = [*,, x1+1] of y which is orthogonal to X at x, or x1+u

then y is called a symmetric ray ([5]) Otherwise, y will be called a non-symmetric
ray In the first case either k = 2 or k > 2 and exactly two segments of y are orthogonal
to X at some of their end points (see figure 4)

FIGURE 3

Given a periodic reflecting ray y denote by m the number of all different segments
of y (thus for symmetric y we should take only a half of the segments of y), and
let s be the number of all different reflection points of y The number d(y), defined
by d(y) = m — s for non-symmetric y and by d(y) = m + l— s for symmetric y, will
be called the defect of y
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FIGURE 4

We are ready to state our results

THEOREM A Let X be a smooth compact (n — 1)-dimensional submamfold of W,
n > 2, and si be the set of those f e C^mh(X, R") such that every periodic reflecting rav
onf(X) has zero defect Then si contains a residual subset of C^mb(X,M")

Using different methods Lazutkin [5] proved that for generic strictly convex X
in R2 the inequality d ( y ) < 2 is fulfilled for every periodic reflecting ray y on X

THEOREM B Let X be as in theorem A, and <3i be the set of those fe C^mb(X, W)
such that any two different periodic reflecting rays onf(X) have no common reflection
point Then S3 contains a residual subset of Cfmb(X, R")

Roughly speaking the idea of the proof of theorem A is the following Let y be
a periodic reflecting ray on X with 5 different reflection points x,, x2, , x, Then
y passes through the points x, in a certain pattern For fixed s the number of all
those patterns is finite, so we can restrict our considerations to periodic reflecting
rays y having s different reflection points (5 being fixed) which are visited by y in
a fixed pattern Every such ray is determined by the points x,, that is by s(n — 1)
unknowns since dim X = n — 1 On the other hand, any two successive segments of
y determine lines which are symmetric with respect to the normal to X at their
common end x,, and this gives n - 1 conditions for the points xu , x, Therefore,
if y passes only once through each of its reflection points, then the general number
of the conditions is s ( n - l ) In the other case we have more conditions than
unknowns Applying transversahty type arguments we see that for generic X this
system has no solution

The same idea can be exploited to prove theorem B Now for fixed 5 we consider
pairs (y,S) of periodic reflecting rays on X having together exactly 5 different
reflection points, and such that any of the rays y, S passes in a certain fixed pattern
through its reflection points Again the number of the unknowns is s(n — 1) and, if
y and 5 have at least one common reflection point, then we get more than s(n — 1)
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conditions which are of the same type as those considered above This enables us
to use the arguments from the proof of theorem A

Throughout the paper smooth means C°°, although everything is true replacing
Cx with Ck for k = 1, 2, Note also that our results remain true for non-compact
X, if we consider only such periodic reflecting rays y o n X that for every reflection
point x of y all segments of y passing through x make acute angles with one and
the same normal vector to X at x

3 Preliminaries
Here we give a construction from [9] which describes analytically the periodic
reflecting rays and provides a simple classification of them

3 1 We use ( , ) to denote the standard inner product in R", and by || || the
induced norm in U" Given a map g Y^>Z and an integer *>0 , the product

gS Y
S^ZS is defined by gs(yu ,ys) = {g(yi), , g(ys)) For every set A we put

AU) = {(au ,as)<=As a,^ a} whenever i ^j)

3 2 Let k > s > 2 be integers and

to {1,2, ,*}-»{l,2, ,5} (3 1)
be a map with

<B(I)*(W(! + 1) (I = 1,2, ,k) (32)

We set for convenience <o(p) = cu(i) for p = i + mk, i = 1,2, , k, m an integer If
we have

Mi),a>(! + l ) } * { « 0 ) , « 0 + l)} (33)

whenever \<i<j<k, then u> will be called a non-symmetric map If k = 2m and
there is io= 1, 2, , k such that (3 3) holds for i o

s i<J^ h+m, and

co(io+m+j) = a>(io+m-j) 0 = 1,2, , m - l ) , (3 4)

then the map w will be called symmetric By admissible map we mean a map (3 1)
with (3 2) which is either symmetric or non-symmetric

(3 3) Let (3 1) be an admissible map Define

/, = /,(o)) = 0 there is f = l , , k with {*,;} = {«(<), <o(t + 1)}} (3 5)

for i e Im OJ, and

Ua,={(yu ,ys)e(UnYs) yti convex hull {y, j el,},i e l m co} (3 6)

Clearly, £/„ is an open subset of (R")(s) Define the map F (R")<s)->|R by
k

F(yi, ,ys)= X lbu(,)-^a.(.+i)ll (37)
1 = 1

Suppose y is a smooth compact (n -1)-dimensional submanifold of R" A periodic
reflecting ray y on Y will be said to be of type w if there exist s different points
y\, , ys of Y so that

y<o(\), JV>(2)> ' y<o(k), y<o(k+\) — y^a)

are all successive reflection points of y In this case we have y = (y\, , ys)£ Ua,
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and the length of y is equal to F(y) Note also that I,((o) is just the set of those j
such that there is a segment of y joining y, and y}

If Y =f(X) forsome/e C^mb(X, R"), then there exists an element x = (x,, , x,)
of X(s) with f(x,) = y, (i = 1, , s) Clearly y =f(x) e Ua and x is a critical point
o f F » f

3 4 L E M M A ( [ 9 ] ) For every y e Um and every i e l m w there exists t = 1,2, , n w i t h

(3 5) Fix an admissible map (3 1) and consider the s-fold bundle of the l-jets
/ '(X,R")(cf [1, p 57]) For every/eC°°(X,R") the map;]f X(s>^ J\{X,U") is
given by^/(x1 ; ,xJ) = (//(x,)> , / / (* , ) ) , wherejlf(x)eJl(X, R") is the 1-jet
generated by / and x e X Denote by Va the set of those

such that for every i e Im w, rank df,(x,) = n -1 and the vector f,(Xj)-f,(x,) is not
tangent to f,(X) at the point/(x,) for all7 e /,(«) Consider the open submanifold
M of /J(X, R") given by

M = (aT ' (X ( s ) ) n (/3sr'( E/J n VB, (3 8)

where a J1(X, R")^X, /8 Jl(X, Rn)^R" are defined by
a\J J\x)) — x> P\J J\X)) —J\x)

(3 6) Given T € M there are coordinate neighbourhoods V, of elements of X such
that V,n V}=0 for 1 ^ j and T belongs to

Take arbitrary charts 6, V.^R""1, and consider the chart

6 n^(R"-1)(s )x(Rn)(5)xR(n-1)"\ (3 10)

denned by

0(//(*.) , ,/ / ,(*,)) = («„ ,«,,wi, , « „ « ) )

I<(<n,l<!<s,ls;<«-1, (311)

where for all 1 = 1, , s,7 = 1, , n - 1 , f = l, , n we have

W, — (7, i ,X , j , U, —Ji\Xi) \j IZj

and

= ( / i 1 ) , ,f\n)) and u, = (ui1), , M i -
We shall wnte the elements ^ of 0(ft) in the form

€ = (u,v,a), (3 14)

where

(3 15)
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4 Proof of theorem A
We shall consider in detail the case of non-symmetnc rays

Suppose Y=f(X),fe C™mh(X, R"), and 7 is a non-symmetric periodic reflecting
ray on Y with d(y)>0 Then (cf 3 3) there exists an admissible surjection w of
type (3 1) and an element x = (xu , xs) e X

(s) such that yu(1), , y^k), y^k+i) =
j^d) are all successive reflection points of y We may assume

a>U) = l, (41)
and

r = cardw"'( l )>l (4 2)

Let i, < i2< < ir be all the elements of eo~\l) It is clear that / s (x)e [/„, and

gradx-F°/s(x) = 0 (4 3)
for

x' = (x2, ,x,)eX<'-» (4 4)
Moreover, for every / = 1 , , r, if 1 = <u(i, -1 ) and j = w{i, + 1), then the vectors
wi = (y.-yi)/\\y,-yi\\ and w2 = (yJ-^1)/ | |^->'i | | lie in a common (two-
dimensional) plane with a unit normal vector N, to Y=f(X) at the point yt, and
w, and vv2 make equal angles with JVj This is equivalent to

fix,)-/(x,) _//(x,)/(x1) /(x,)/(x.) \

i I I M ) / ( * ) I I \n / (x ) / ( * ) i i n / ( * ) / ( * ) i r v '
(4 5)

Now fix a non-symmetric surjection (3 1) with (4 1) and (4 2), and denote by Tw

the set of all fe C?mh(X, R") such that for every x e X<s) with f(x) e U^ and (4 3),
there exists at least one / = 1,2, , r for which (4 5) is not satisfied for 1 = w(i, -1 ) ,
7 = 10(1, +1), N, being a unit normal vector to / (X) at7(jc,) We are going to prove
Tw contains a residual subset of C™mb(X, R") To this end we shall use the open
submanifold M of /J(X, R"), denned by (3 8)

Introduce the set 1 of those T = (j'/i(x,), . j ' / ^ x j ) e M so that

gradx.F°(./ix x/J(x) = 0, (4 6)

and for any / = 1, , r we have

i i w ( ) / ( ) i i \ n / u ) / ( ) i i i i 5 ( ) / ( ) i r / '
(4 7)

for 1 = w(i, -1) , ; = w(i,+ 1), N being a unit normal vector to f{X) a t /^x , ) It
follows from the definitions of Ta and 1 that

)nl = 0} (4 8)

The most important result of this section is the following

LEMMA 4 1 There exist smooth submamfolds Wm (m = l,2, ) of M with

codim Wm = s(n-\) + (r-l)(n-\), (m = l,2, ) (49)
and

2 c U Wm (4 10)
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Proof Consider a coordinate neighbourhood il of the type (3 9) of an element of
2 and a chart (3 10) on Q denned by (3 11), (3 12) and (3 13) It is sufficient to
show that d(£l n 2) is contained in a smooth submanifold of 6(Cl) with codimension

T a k e / = 1 , , rand set i = (o(i,-l),j = w(i,+ l) For m < n define d\m) 0(fl)
by

(m) _ Am) , , ( ' " ) _ (m)
vy"'-v\

IID.-W.H | |« , -0 i | | \ | | « , - « i | | \\Vj-V-

where £ed(Q.) is given by (3 14) and (3 15), and N({) = N'/\\N'\\,

(4 11)

Cl

a12

Cln-l

e2
«(2)

l2

(«)

ep = (0, , 0,1,0, , 0) being the pth standard basis vector in U" Consider also
the maps bp, 0(ft)-»R (p = 2, ,s,q = l, , n - l ) , defined by

(4 12)

Finally, for every m = 1, , n set

(4 13)

Clearly, Om are open subsets of 6(0.) and U L i Om = d{fl) So it is sufficient to
prove that for every m, d(O. n1)nOm is contained in a smooth submanifold of Om

with codimension s ( n - l ) + ( r - l ) ( n - l )
Fix mo= 1, , n and consider the map K O^-» (R"~1)s"1+r, given by

It follows from (4 6), (4 7), (4 11), (4 12) and the definition of K that O^n
0(fln2)<= K~\0) Therefore the proof will be complete if we show that K is a
submersion at any point of O ^ Take £e O ^ , £ being given by (3 14) and (3 15),
and suppose

Bp<IgradbM(f)+I I (4 14)
= 2 q=l 1=1 m = \

for some real numbers Bpq and D, ' For fixed p and g by 3 3 there is t = 1, , n
with (3F/3>'p))(u)5^0 By (4 14), taking into account the derivatives with respect
to a(

p'l, we get Bpq(dF/dyp'
))(v) = 0, and therefore Bpq =0 Thus the first double sum

in (4 14) is trivial Now fix / = 1, , r and m = \,
For convenience put

m0, and set i = a)(i, — 1),

(4 15)
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Then by (4 14) for t = \, , n, ti^ m, we have

H-L_(f)=- -[AT(mV')<w,N>-N(lI l )Ar(l )-w("1V0] ( f*m)
at;;' Ik,-Dill

(4 16)
Similarly, we get

aJ(') 1

H ) ^ = ii ir[l + N(')w(l)<W,N>-(N(l))2-(w('))2] (4 17)
f ||!; « ||

Note that (dd\m')/dv<,m))(^) = 0 if (VI, so considenng in (4 14) the derivatives with
respect to i//' we obtain

For convenience set

D^o^O, D, = (D\l\ ,D\n))eW (4 18)

Then we have

and (4 16) and (4 17) imply

D(<)+ £ D\m)[Nim)wU){w, N)-
m = l

that is

,, N)(w, N)w(t)-(Dh N)N(I)-(D,, w)wu) = 0

(t = l, , «), and equivalently

D, + (Dh N)(w, N)w-(D,, N)N-(Dh w)w = 0 (4 19)

Taking the inner product of the left hand side of (4 19) with N we find

(Dh N)(w, N)2-(Dh w)(w, N) = 0

It is not difficult to see that (w, N)^0 Indeed, since £e 0(Cl), Cla M, we have
f = 6(T) for some element x of M, r = (j1f1(xi), ,J*fs{xs)) Then w, v and a have
the form (3 15) with (3 12) and (3 13) By (3 8), M e y^, and the definition of Va

implies JV'(?)*O and N($) = N'($)/\\N'(i;)\\ is a unit normal vector to / , (X) at
"i=/i(*i) On the other hand, by ie/1(w) and the definition of Vw we have
<u,-u,, JV(f)>^0 Thus, by (4 15) we get (w,N)*0 Now (4 20) implies
(D,, N) (w, N) = (Dh w), and combining this with (4 19) we find D, = (D,, N)N
On the other hand, by (4 18)

0 = D^ = (Dh N)^"1^ (4 20)

then (D,, N) = 0, because N(m»} # 0 by (4 13) and f e O^ Hence D, = 0 which means
by (4 18), D\m) = 0 for every m = 1, , n Thus we have proved the second double
sum in (4 14) is trivial which shows K is a submersion in O^ Therefore K~\0)
is a smooth submanifold of O^ with codimension ( « - l ) ( s - l ) + r ( n - l ) =

D
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COROLLARY 42 T. contains a residual subset of C™mb(X, R")

Proof Since M is open in J\(X, R"), any Wm is a smooth submanifold of J\(X, R")
with the same codimension By the multijet transversahty theorem ([1, ch II]) for
every m the set

Sm ={/€ C°°(X,R") j\fK Wm}nC7mb(X, R")

is residual in C^mb(X,R") On the other hand, (4 2) and (4 9) imply

codim Wm > s(n -1 ) + (n - 1 ) > s ( n - l ) = dim Xls)

S ince ; ' / X ( s ) ^ J'(X,R"), we obtain

5m = {/e Crmb(X, R") j l / (X ( l ) ) n Wm = 0}

Combining this with (4 8) and (4 10) we get Plm = i •^mc: 7^ which proves the
corollary •

COROLLARY 4 3 77ie sef T' of those/e C^b(X, R") swdi tfiaf euery non-symmetric
periodic reflecting ray on f(X) has zero defect, contains a residual subset of

Proof The assertion follows from T => Ho, Tm, where OJ runs over the non-symmetric
surjections (3 1) with (4 1) and (4 2) •

In a similar way one can deal with the symmetric rays We shall point out only a
few differences Suppose y is a symmetric periodic reflecting ray on Y = / (X) Then
we can find a symmetric surjection (3 1) such that y is of type w By the definition
of symmetric map we have k = 2m, moreover we can choose w in such a way that
(3 3) is fulfilled for i0 = 1 Suppose d(y) > 0 Then for some j0 = 1, , 5 we have

r = card (a>~\jo)n {1,2, ,m + l})>l (4 21)

Let J i < ' 2 < <lr be the elements of (ti~l{)0)n{\, ,m + \} Given x =
(x,, , xs)e X(s), define x' by x' = (x,, , X^-L X]0+U ,XS) Further, we go on
as in the non-symmetric case, proving that for every symmetric surjection o> with
the properties listed above (including (4 21) for some jo= 1, , s) the set Tw contains
a residual subset of C^nb(X, W) Thus we establish the set T" of those / e
C^,b(X, R") so that every symmetric periodic reflecting ray on/(X) has zero defect,
contains a residual subset of C™b(X, R")

To conclude the proof of theorem A, we mention that V n T"<^ si Therefore si
also contains a residual subset of Ce°^b(X, U")

5 Proof of theorem B
Suppose y, and y2 are two different non-symmetric periodic reflecting rays on
Y = / ( X ) , / e C;?mb(X, U") Let yx, , ys be all different reflection points of y, and
y2 taken together, y, =/(x,), x, eX, i = l, ,s Then there exist admissible non-
symmetric maps

to {1, ,fc}-»{l, ,5}, 5 {1, ,/}-»{l, ,5}

with

I m w u l m 5 = { l , , s} (5 1)
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and

(52)

such that y, is of type cu and y2 is of type 8 (cf 3 3) Note especially that (5 2)
expresses the fact that y, and y2, being different, have no common segments

As in [9], the symbol T= (k, I, s, w, 8) with the above properties will be called a
configuration, and the pair of rays (y^ y2) will be said to be of type F In this case
we have y = (yu ,ys)eUmr\Us and the penods (lengths) of ji and y2 coincide
with F(y) and G(y), respectively, where F, G (R")(s)->IR are given by

F(zu , z j = X ||zM(O-zw(l+1)||, (53)

i

G(zu ,zs)= £ | |zs ( l ) -z5 ( l + 1 ) | | (54)
1 = 1

As for w, set 8(p) = 5(i) if p = i + m/, 1 < i < /, m an integer
Suppose y, and y2 have at least one common reflection point Without loss of

generality we may assume y^ is a reflection point for both y, and y2, that is
1 e Im ay n Im 5 Moreover, we may assume

oi(l) = «(l) = l (55)
Set

i'=oj(k), j ' = <o(2), i"=8(l), j"=S(2) (5 6)

Then (4 5) is satisfied for i = i',j =j' and for J = i",j =j", where x = (xu , xs) e X(s)

and Nl is a unit normal vector to Y =f(X) at >>, Introduce the function

H (r)(i)^R
defined by H(z) = F(z)+ G(z) Since x is a critical point for both F °fs and G °f\
it is a critical point for H °fs too In particular,

g rad ; c Hc / s (x ) = 0, (5 7)

where x' is defined by (4 4)
We are going to use the argument from the proof of theorem A, replacing F by

H To do this we need a property of H similar to 3 4 In fact, what we need is
equivalent to

;E;,(») \\v,-y,\

for i = 2, , s, i e Im co n Im 5 and j> = (>>,, , ys) e U^, r\ Us However, this is not
true in general (see for example figure 2) That is why we have to make a little
modification of the argument from § 4

Denote by S8r the set of those fe C^mb(X, W) such that if xe X( s ) is a critical
point o f F » f with f(x)eUwnUs and (5 7), then (4 5) is not satisfied either for
i = T and j =f or for i = i" and j = / ' It follows from above that

r

where 58 is the set defined in theorem B, and T = (k, I, s, a>, 8) runs over those
configurations with (5 5)
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Fix a configuration F = (k, I, s, m, 8) with (5 5) and non-symmetric to and 8, and
define F, G, H, i',j', i",j" as above We have to show S8r contains a residual subset
of CSnb(X,Rn) For i = l, ,s define

% = {yeUwn Us grady, H(y) * 0}

and set $ = P)*=i %. A11 % . a r e ° P e n subsets of Uw n Us (therefore $ is also open),
and <&,= £/„ n [/« if / £ Im « n Im S (cf 3 4)

Denote by Tr the set of those fe C"mb(X, R")y such that for every x e X<s) with
f(x) £ <% and (5 7), (4 5) is not fulfilled either for t = i',j = / or for i = i",; =7"

LEMMA 5 1 Tr contains a residual subset ofC™mb(X, U")

The proof uses the same argument as those used in § 4 to show Tw contains a
residual subset of Cfmb(X, R")

Further, for 1 e Im w n Im 8 let T, be the set of those / in C*mb(X, R") such that
if JCGX< S ) is a critical point of F ° / s and f(x)e U^nUg, then f(x)e% We
mention that

Pi T,nTrcS8r (5 8)
lelm unlm S

Indeed, suppose / belongs to the left hand side of (5 8) and xeX < s ) is a critical
point of F °f with f(x) eUwnUs and (5 7) Then for every 1 e Im w n Im 5, fe T,
implies f(x) e °U Thus/S(jc) e % and now b y / e Tr we see that (4 5) is not satisfied
either for 1 = i, j -f or for 1 = 1", j =j" Therefore fe S8r

Fix 1 e Im a> n Im 5 To prove that T, contains a residual subset of C"mb(X, R")
we shall use the following result which is a part of theorem 3 1 in [9]

THEOREM 5 2 ([9]) Let n s 2, s > 2, q > 1 be integers, Ube an open subset of (R")(s),
H U^*U and L U ->W be smooth maps Suppose L has no critical points in U and
grad^ H(y) ^ 0 for all 1 = 1, , s and yeU Let X be a smooth (n -I)-dimensional
submanifold ofW and Tbe the set of those fe C?mb(X, W) such that for every x e X(s )

withf{x) G U which is a critical point ofH °fs, we have L(fs(x)) # 0 Then T contains
a residual subset o/C7mb(X, R")

To apply the theorem define L (Rn)(l)->Rn by

^ ^ r ) ( y ) U = i , , n ) ,

and L = (L(1), , L(n)) The following property of L (established in [9]) can easily
be proved by direct computations

LEMMA 5 3 ([9]) DL(y) * 0 for every y e (R")(s)

Now, applying theorem 5 2 for H, U = Uun Us and L, we deduce that T, contains
a residual subset of C^nb(X, R") Hence S3r also contains a residual subset of
C°° (v \n>"\

In case both a> and 5 are symmetnc or one of them is symmetnc and the other
is non-symmetnc, we use the same arguments with minor changes to see that S8r

contains a residual subset of C^nb(X, R") We omit the details
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