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Abstract Tt 1s shown that for generic domains D 1n R", n =2, every periodic billiard
trajectory in D passes only once through each of 1ts reflection points, and any two
different periodic bilhard trajectories in D have no common reflection point

1 Introduction

Given a compact domain D 1n R”, n = 2, with smooth boundary X = 4D, we consider
periodic bilhard trajectories in D, and call them periodic reflecting rays on X
Generic properties of smooth compact (n —1)-dimensional submanifolds X of R”
concerning periodic reflecting rays on them were established by Lazutkin [5] and
Petkov and Stojanov [9], [10], [11] (see also [7] and [8]) In [5] Lazutkin proved
an analogue of Kupka-Smale theorem for bilhiards in strictly convex domains n
R? Studying inverse spectral problems in connection with the so-called Poisson
relation for manifolds with boundary (¢f [2], [4], [6]), V Petkov and the present
author proved that generically most X 1n R” have the following properties

(1) every two different periodic reflecting rays on X have rationally independent
lengths ([9]),

(1) (for n =2) there do not exist generalized periodic geodesics on X ([9], [10]),

(m1) for every s =2 there are at most a finite number of periodic reflecting rays
on X having exactly s reflection points ([11]),

(1v) there do not exist periodic reflecting rays on X having segments tangent to
X ([10], [11]),

(v) the spectrum of the Poincaré map related to every periodic reflecting ray on
X does not contain roots of unmity ([11])

In [9], {10] we had to overcome among others the following two difficulties

(A) 1n general a periodic reflecting ray could pass two or more times (1n different
directions) through some of 1its reflection points (see figure 1),

(B) some different periodic reflecting rays could have common reflection points
(see figure 2)

In this paper we prove that for generic X tn R" the phenomena (A) and (B)
cannot occur The latter means that for generic X given x € X, there exist at most
two directions v # 0 1n R" which are symmetric with respect to the normal N, to X
at x (and of course may coincide with N,) such that starting from x 1n the direction
v and reflecting on X satisfying the usual law of reflection, we get a penodic
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reflecting ray on X Note that, according to (1), for generic X there are at most a
countable number of such x e X for which there exist directions v with the above
properties

The proofs of our results use the techmque of [9], [10] which 1s based on the
multi-jet transversality theorem One of these results (see theorem A 1n §2) has
been already used to prove the main theorem 1n [11], and both theorems A and B
established below could be used to simplify the proofs 1n [9], [10] and to get other
properties of generic X 1n R"

Thanks are due to the referee for his remarks and suggestions Especially, he
pointed out that theorem B (the proof of which 1n the first version of the paper was
different from the present one) can be established using the same tdea as those 1n
the proof of theorem A

2 Defimtions and main results
Let X be a smooth compact (n—1)-dimensional submanifold of R", n=2, and
C™(X,R") be the set of all smooth maps X »R" endowed with the Whitney C™
topology (cf ch II of [1] or 21 of [3]) Denote by Cgp(X,R") the subspace of
C™(X, R") consisting of all smooth immersive embeddings X »R" As1s well known,
C®(X,R") 1s a Baire space and Cg,p(X,R") 1s open 1n 1t (cf loc cit ), therefore
the latter 1s also a Baire space

By a periodic reflecting ray on X we mean a closed curve y formed by a finite
number of straighthine segments I,, I,, , L, where [, =[x, x,,,]={zeR" z=px,+
(1-p)x,,,,0=p=1}, x,e X 1=1,2, , k), xxs1 =X, such that any open segment
f, =(x,, x,4,) does not intersect transversally X, and forevery 1=1, kI and /.,
make equal acute angles with one of the normal vectors N,,, to X at x,., (for
convenience we set .., =1,),and [/, [, and N,,; lie 1n a common two-dimensional
plane The points x, x,, X are called reflection points of vy

X, = X4

X6

X2

X3

Xs

FIGURE 1

It may happen that some segments [, of y are tangent to X at some interior point
z of I, (see figure 3) Note especially that points like z; on figure 3 are not considered
as reflection ones, while z, 1s a reflection point Clearly, a periodic reflecting ray on
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X may lie ‘inside X’ as well as ‘outside X’ (see figure 4) Moreover, some of 1ts
reflection points may coincide (see figure 1) We mention also that X 1s not assumed

to be connected

FIGURE 2

If there 1s a segment [, =[x, x,.,] of ¥ which 1s orthogonal to X at x, or x5,
then vy 1s called a symmetric ray ([5]) Otherwise, y will be called a non-symmetric
ray Inthe first case either k =2 or kK> 2 and exactly two segments of y are orthogonal
to X at some of their end points (see figure 4)

/\ z[\%/\

FIGURE 3

Given a periodic reflecting ray y denote by m the number of all different segments
of y (thus for symmetric y we should take only a half of the segments of y), and
let s be the number of all different reflection points of y The number d(vy), defined
by d(y)= m —s for non-symmetric y and by d(y) =m+1—s for symmetric y, will
be called the defect of y
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FIGURE 4

We are ready to state our results

THEOREM A Let X be a smooth compact (n—1)-dimensional submanifold of R",
n=2, and o be the set of those f € Cinp( X, R") such that every periodic reflecting rav
on f(X) has zero defect Then s contains a residual subset of C oy (X, R")

Using different methods Lazutkin [§] proved that for generic strictly convex X
in R? the mequality d(y) =<2 1s fulfilled for every periodic reflecting ray y on X

THEOREM B Let X be as in theorem A, and & be the set of those fe CL.(X,R")
such that any two different periodic reflecting rays on f(X) have no common reflection
point Then B contains a residual subset of Co,p (X, R™)

Roughly speaking the i1dea of the proof of theorem A 1s the following Let y be
a periodic reflecting ray on X with s different reflection points x,, x,, ,x, Then
v passes through the points x, 1n a certain pattern For fixed s the number of all
those patterns 1s finite, so we can restrict our considerations to periodic reflecting
rays y having s different reflection points (s being fixed) which are visited by y 1n
a fixed pattern Every such ray 1s determined by the points x,, that 1s by s(n—1)
unknowns since dim X =n—1 On the other hand, any two successive segments of
v determine lhines which are symmetric with respect to the normal to X at their
common end Xx,, and this gives n — 1 conditions for the points x,, , x, Therefore,
if y passes only once through each of its reflection points, then the general number
of the conditions 1s s(n—1) In the other case we have more conditions than
unknowns Applying transversality type arguments we see that for generic X this
system has no solution

The same 1dea can be exploited to prove theorem B Now for fixed s we consider
pairs (y, 8) of periodic reflecting rays on X having together exactly s different
reflection points, and such that any of the rays vy, 8 passes 1n a certain fixed pattern
through 1its reflection points Again the number of the unknowns 1s s(n—1) and, 1f
vy and & have at least one common reflection point, then we get more than s(n—1)
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conditions which are of the same type as those considered above This enables us
to use the arguments from the proof of theorem A

Throughout the paper smooth means C™, although everything 1s true replacing
C*with C* fork=1,2, Note also that our results remain true for non-compact
X, 1f we consider only such periodic reflecting rays v on X that for every reflection
point x of y all segments of y passing through x make acute angles with one and
the same normal vector to X at x

3 Preliminaries
Here we give a construction from [9] which describes analytically the periodic
reflecting rays and provides a simple classification of them

31 We use {( , ) to denote the standard inner product in R", and by || || the
induced norm 1n R" Given a map g Y—>Z and an integer s> 0, the product
g Y'>Z'isdefinedby g'(y;, ,3)=(g(n), &(r.)) Forevery set A we put

A®={(a,, ,a,)eA® a,#a, wheneveri#}

32 Let k=s=2 be integers and

w {1,2, ,k}->{1,2, ,s} 31)
be a map with
o) #w(i+1) (r=1,2, k) 32)
We set for convenience w(p)=w(1) for p=1+mk, 1=1,2, |k, m an integer If
we have
{w(), 01+ 1)} #{()), 0(G+1)} (33)

whenever 1 =1<j<k, then w will be called a non-symmetric map If k=2m and
there1s 1,=1,2, , k such that (3 3) holds for ip,<:1<j=<1y+m, and

w(lp+tm+))=w(ly2+m—j) (y=1,2, ,m-1), (34)

then the map w will be called symmetric By admissible map we mean a map (3 1)
with (3 2) which 1s either symmetric or non-symmetric
(33) Let (3 1) be an admissible map Define

IL=I(w)={y therexst=1, ,kwith{s,j}={w(t), o(t+1)}} (35
for 1€ Im w, and

U,={(, ,y)e@®)" y&convexhull{y, jel},1€Im w} (36)
Clearly, U, 1s an open subset of (R")") Define the map F (R™))>R by

k
F(J’n ’ys)= gl ”yw(l)_yw(H-l)” (3 7)

Suppose Y 1s a smooth compact (n —1)-dimensional submanifold of R" A periodic
reflecting ray y on Y will be said to be of #ype w 1if there exist s different points
Vi, s of Y so that

Yo(1)s Yo(2)s s Yurtk)s Yo (k+1) = Yu(1)
are all successive reflection points of y In this case we have y=(y,, ,y,)€ U,
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and the length of y 1s equal to F(y) Note also that I,(w) 1s just the set of those j
such that there 1s a segment of y joining y, and y,

If Y=f(X)forsome fe CZ,,(X,R"), then there exists an element x = (x,, , Xx,)
of X" with f(x,)=y, (1=1, ,s) Clearly y=f*(x)e U, and x 1s a critical point
of Fof®
34 Lemma ([9]) Forevery ye U, and every 1€ Im w thereexists t=1,2, , nwith
(@F/ay)(»)#0 (=", ,»")eR")

(35) Fix an admussible map (3 1) and consider the s-fold bundle of the 1-jets
JUX,R") (cf [1, p 57]) For every fe C*(X,R") the map jif X' >J(X,R")1s
givenby jof(xi, ,x)=0'f(x), ,1f(x), where j'f(x) e J'(X,R") 1s the 1-jet
generated by f and xe X Denote by V,, the set of those

T=(Jl.fl(xl), ,Jl.fs(xs))e‘,;(X,R")
such that for every 1€ Im w, rank df,(x,) = n—1 and the vector f(x,) - f,(x,) 1s not
tangent to f,(X) at the pont f,(x,) for all € I,(w) Consider the open submanifold
M of JX(X,R") given by

M =(a*) (X)) n(B*) (U,)NV,, (38)
where a JY(X,R")»> X, 8 J'(X,R")>R" are defined by

a(J f(x)=x  BUf(x)=1(x)
(3 6) Given 7€ M there are coordinate neighbourhoods V, of elements of X such
that V.V, = for 1#; and 7 belongs to

Q=Mn(f[ J‘(V,,R")) (39)

Take arbitrary charts 8, V,>R""', and consider the chart
6 Q- (R"HI (RSO xR (310)
defined by
0(]1f(x1), ,]lfs(xs)) =(uy, s Us, Uiy s Usy (at;[}))
I=t=nl=i1=s51=j=n-1, (311)
where for all 1=1, ,s,j=1, ,n-1,t=1, ,n we have
u,=0,(x,), v, =f(x) (312)
and
a(,)_a(ff"° 6.

y = aufj)
Here f,=(f", ,f\")and u,=(u", ,ui"")eRr""
We shall write the elements ¢ of #()) in the form

¢&=(u,v,a), (314)

(u,) (313)

where

u:(u19 > us)e(anl)(S)’ U‘:(Ul, ) US)E(R")(S), az(a(ul))eR"s("il)
(315)
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4 Proof of theorem A
We shall consider 1n detail the case of non-symmetric rays

Suppose Y =f(X), fe Conp(X,R"), and vy 1s a non-symmetric periodic reflecting
ray on Y with d(y)>0 Then (cf 3 3) there exists an admussible surjection w of
type (3 1) and an element x=(x,, ,x,)e X" such that Vo) s Yotk)s York+1) =
Yo(1) are all successive reflection points of y We may assume

w(l)=1, (41)
and
r=card w '(1)>1 (42)
Let y,<i,< <1, be all the elements of w '(1) It 1s clear that f*(x)e U,, and
grad, Fo f*(x)=0 (43)
for
x’=(x2, ,x:)EX(S*U (44)

Moreover, for every I=1, ,r if i=w(y—1) and j=w(y+1), then the vectors
wi= =)/ ly.—yll and wy=(,-y)/lly,—»nl he 1n a common (two-
dimensional) plane with a unit normal vector N, to Y =f(X) at the point y;, and
w, and w, make equal angles with N; This 1s equivalent to

JO) =fln) | fl)=flxa) =<f(x,)—f(x1) + S = fx)
LA = DIl 1£Ge) =f el NIFG) =FGDll - [1£(x) =fx))”

NN,
(45)
Now fix a non-symmetric surjection (3 1) with (4 1) and (4 2), and denote by T,
the set of all fe CZ,, (X, R") such that for every x € X with f*(x) e U, and (4 3),
there exists at leastone I=1,2, , r for which (4 5) 1s not satisfied for 1= w(y,— 1),
J=w(y+1), N, being a unit normal vector to f(X) at f(x,) We are going to prove
T, contains a residual subset of Cgp(X, R") To this end we shall use the open

submanifold M of J}(X,R"), defined by (3 8)
Introduce the set = of those 7=(7'f1(x;), ,J'f.(x,))e M so that

grad, Fo(fix  Xf)(x)=0, (46)
and for any I=1, ,r we have
Fx) =), fx)=filn) _ < AEAES AN (AR AR
1A =AGD] 16Ge)=AGD] \IAC) =ACD 14 (x) —AGDI ’
(47)

for i=w(y,—1), yj=w(y+1), N being a unit normal vector to f,(X) at fi(x;) It
follows from the defimtions of T, and X that

T.={fe Cou(X,R") i fIX)nE=0} (48)

The most important result of this section is the following

LEMMA 41 There exist smooth submanifolds W,, (im=1,2, ) of M with

codim W,,=s(n—1)+(r—1)(n—1), (m=1,2, ) (49)
and
sc U w, (4 10)
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Proof Consider a coordinate neighbourhood Q of the type (3 9) of an element of
3 and a chart (3 10) on Q defined by (3 11), (3 12) and (3 13) It 1s sufficient to
show that 8(€) » X) 1s contained 1n a smooth submanifold of 6({}) with codimension
s(n—-1)+(r—1)(n-1)

Takel=1, ,randseti=w(y—1),)j=w(y+1) Form=ndefined{™ 6(Q)->R
by

di™(g)=

o™ —pi™ ™ — ™ <Ux_vl v, —

|| ol gy —oll oo Ilv— l|

N(§)> N(g),
(411)
where £€ 6(€1) 1s given by (3 14) and (3 15), and N(¢)= N'/|N'|,

e, e, e,
(1) (2) (n)
a ayy ay,
— (1) (2) (n)
N'(¢)=det | aj; ai; ay s
(1) (2) (n})
Aip-1 Ain—1 ain—

e,=(0, ,0,1,0, ,0) being the pth standard basis vector in R” Consider also
the maps b,, 0(Q)->R (p=2, ,s,q=1, ,n—1), defined by

bpe(§) = z (v)a‘” (412)

ay(‘)

Finally, for every m=1, ,n set
O, ={£€6(Q) N™(&)#0} (413)

Clearly, O,, are open subsets of 6(Q) and | _, O, =0(Q) So 1t 1s sufficient to
prove that for every m, 0( ~2)n O,, 1s contained 1n a smooth submanifold of O,,
with codimension s(n—1)+(r—1){(n—1)

Fix my=1, ,n and consider the map K O, ~> (R

K(&) = ((byg (&)IZy 271, (@™ (O} omrmo)

It follows from (46), (47), (411), (412) and the defimition of K that O, n
6(QNZ)<= K7'(0) Therefore the proof will be complete 1f we show that K 1s a
submersion at any point of O, Take £€ O,,, £ being given by (3 14) and (3 15),
and suppose

n—l)s—1+r

, given by

) Z qgradbpq(§>+l>: Y D™ graddi™(£)=0 (414)
p=2 gq=1 =1 m=1
m#mg

for some real numbers B,, and D{™ For fixed pand g by33thereist=1, ,n
with (8F/ay”)(v)#0 By (4 14), taking nto account the dervatives with respect
to ai,‘q), we get B, (aF/ay('))(v) =0, and therefore B,, =0 Thus the first double sum
in (4 14)1strivial NowfixI=1, ,randm=1, ,n m# my,andseti=w(y—1),
J=w(y+1), N=N(¢) For convenience put

w=(v,—v,)/||v,~ vl (415)
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Then by (4 14) for t=1, ,n, t# m, we have

ad{™ 1 " "
70 O =T o INTW s Ny = NONO =™ O] - (1 m)
1 T 1
(4 16)
Similarly, we get
ad%l) 1 (0 ,,,(1) (12 (y2
(&)= [1+ N¥ww, N) = (N")"= (w'")] (417)
av;" o=l

Note that (3d{™7/3v™)(£€)=01f I’ I, so considering 1n (4 14) the derivatives with

respect to v'"” we obtain

(m)
(’m) adl

av"’ (§)=0 (t=1, ,n)

Y D
m=1
m>mg

For convenience set

Di™=0, D=(D{", ,D{")eR" (418)

Then we have
, od ™
305')

L DG ©=0 (=1, ,m),

and (4 16) and (4 17) imply

Dgl)+ i ng)[N(m)w(')<w N)_N(M)N(f)_w(m)w(f)]=0

m=1
that 1s
Di"+(D;, NXw, Nyw® —(D;, NN’ ~(D;, w)w” =0

(t=1, ,n), and equivalently

D, +(D,, NXw, Nyw—(D,, N)N ~(D,;, w)w =0 (419)
Taking the inner product of the left hand side of (4 19) with N we find

<DI’ N)(W, N)2_<Dla W)(W, N> =0
It 1s not difficult to see that (w, N)# 0 Indeed, since £¢ 6(Q0), Q< M, we have
£=0(7) for some element 7 of M, 7=(;'f,(x;), ,7'fi(x,)) Then u, v and a have
the form (3 15) with (3 12) and (3 13) By (38), M c V,, and the definition of V,
implies N'(¢) #0 and N(£€) = N'(¢)/|N'(¢)|| 1s a umt normal vector to f;(X) at
v, =fi(x;) On the other hand, by i€ I,{(w) and the defimtion of V, we have
(v,—v,, N(£))#0 Thus, by (415) we get (w, N)#0 Now (420) imphes
(D, N) (w, N)=(D,, w), and combining this with (4 19) we find D,=(D;,, N)N
On the other hand, by (4 18)
0= D{™=(D,, NYN™ (4 20)

then (D, N)=0, because N‘™ > 0 by (4 13) and ¢ € O,,, Hence D, =0 which means
by (418), D{™ =0 for every m=1, ,n Thus we have proved the second double
sum 1n (4 14) 1s tnvial which shows K 1s a submersion 1n O,,, Therefore K70)

1s a smooth submanmifold of O, with codimension (n—1)(s—1)+r(n—1)=
stin=D+{r—1){n-1) a
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COROLLARY 42 T, contains a residual subset of C (X, R")

Proof Since M 1s open in Ji(X,R"), any W,, 1s a smooth submanifold of J;(X, R")
with the same codimension By the multiyjet transversality theorem ([1, ch I1]) for
every m the set

Sm={fe CX,R") jif A W,} 0 Con(X, R")
1s restdual 1n Copp( X, R") On the other hand, (4 2) and (4 9) imply
codim W,,=s(n—1)+(n—1)>s(n—1)=dim X'’
Since jif X' JX(X,R"), we obtain
Sn={fe Can(X,R") NAX)A W, =0}
Combining this with (4 8) and (4 10) we get ﬂf::, S,.< T, which proves the
corollary O

COROLLARY 43 The set T’ of those fe€ Cono(X, R") such that every non-symmetric
periodic reflecing ray on f(X) has zero defect, contains a residual subset of

Com(X,R")
Proof The assertion follows from T' = (), T,,, where w runs over the non-symmetric
surjections (3 1) with (4 1) and (4 2) O

In a similar way one can deal with the symmetric rays We shall point out only a
few differences Suppose vy 1s a symmetric periodic reflecting ray on Y = f(X) Then
we can find a symmetric surjection (3 1) such that y is of type w By the definition
of symmetric map we have k =2m, moreover we can choose w in such a way that
(3 3) 1s fulfilled for ;;=1 Suppose d(y)>0 Then for some j,=1, ,s we have
r=card (0 '(Jo)n{1,2, ,m+1}H>1 (421)

Let n<n< <1 be the elements of @ '(jo)n{l, ,m+1} Given x=
(x,, ,x)€X", define x' by x'=(x,, , X,_1, X,+1, %) Further, we go on
as 1n the non-symmetric case, proving that for every symmetric surjection @ with
the properties listed above (including (4 21) forsome job=1, , s) theset T,, contains
a residual subset of Co,,(X,R") Thus we establish the set T" of those fe
Ceomp (X, R") so that every symmetric periodic reflecting ray on f(X) has zero defect,
contains a residual subset of Conp (X, R")

To conclude the proof of theorem A, we mention that T'~ T"< o Therefore o
also contains a resitdual subset of Coop (X, R")

5 Proof of theorem B

Suppose vy, and ¥y, are two different non-symmetric periodic reflecting rays on
Y=f(X), fe Cihn(X,R") Lety,, ,y,be all different reflection points of y, and
v, taken together, y,=f(x,), x,€ X, 1=1, ,s Then there exist admissible non-
symmetric maps

w {1, Lk}=>{1, s}, &{1, ,B->{1, ,s}
with
Imowulmdé={1, ,s} (51)
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and
{w(1), (1 +1)}#{8(), 8(;+1)} (1=i1=k1=y=l) (52)

such that vy, 1s of type w and v, 1s of type & (cf 33) Note especially that (52)
expresses the fact that y, and vy,, being different, have no common segments

As 1n [9], the symbol I'=(k, I, 5, w, §) with the above properties will be called a
configuration, and the pair of rays (y,, v,) will be said to be of type I' In this case
we have y=(y,, ,»,)€ U,n U, and the periods (lengths) of y; and v, coincide
with F(y) and G(y), respectively, where F, G (R")*” >R are given by

k
F(Zla ,Zs)= Z ”Zw(t)_zw(l-H)”, (5 3)
1=1

1
G(Zl; ’Zs)z z “25(')_28(!+1)” (5 4)
1=1

As for o, set 6(p)=60) 1If p=1+ml 1<1=<I m an integer

Suppose vy, and 7y, have at least one common reflection point Without loss of
generality we may assume y, 1s a reflection point for both vy, and y,, that 1s
leIm w nIm & Moreover, we may assume

o(l)=686(1)=1 (55)
Set
'=w(k), j'=w(2), "=8(), ;"=6(2) (56)
Then (4 5)1ssatisfied for1 =1/, j=j'and for 1 =1",7 =", where x = (x,, ,x,)e X"
and Nj 1s a unit normal vector to Y =f(X) at y, Introduce the function
H (R >R
defined by H(z)= F(z)+ G(z) Since x 1s a critical point for both Fo f° and G f°,
1t 1s a cnitical point for H o f* too In particular,
grad, Ho f*(x)=0, 57
where x' 1s defined by (4 4)

We are going to use the argument from the proof of theorem A, replacing F by
H To do this we need a property of H similar to 34 In fact, what we need 1s
equivalent to

Y=y Y=Y
y 4
seidar IV=y 1l setio Iy =l
fori=2, ,s,ielmwnIméandy=(y,, ,y)eU,n Us; However, this is not
true 1n general (see for example figure 2) That 1s why we have to make a httle
modification of the argument from § 4

Denote by % the set of those fe Co (X, R") such that if xe X 1s a critical
point of Fo f* with f*(x)e U, n Us and (5 7), then (4 5) 1s not satisfied either for
1=1"and y=)' or for 1=1" and y =" It follows from above that

m %FC %a
r

where % 1s the set defined in theorem B, and I'=(k, I s, w, 8) runs over those
configurations with (5 5)
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Fix a configuration ['=(k, /, 5, w, §) with (5 5) and non-symmetric @ and 8, and
define F, G, H,1', ', 1", j" as above We have to show @B contains a residual subset
of Co(X,R") Fori=1, s define

U ,={ye U,n Us grad, H(y)# 0}
and set 4l = ()., %, All %, are open subsets of U, n Us (therefore 9 1s also open),
and U, =U,nUs if 1€lmwnImé (cf 34)

Denote by T the set of those fe Coo, (X, R™)y such that for every x € X with
[ (x)eU and (57), (45) 1s not fulfilled erther for 1=1', j=7 or for 1=1", ="

LEMMA 51 Tt contains a residual subset of Co (X, R")

The proof uses the same argument as those used in §4 to show T, contains a
residual subset of Ceopnp(X, R")

Further, for i€ Im w nIm & let T, be the set of those f 1n C, (X, R") such that
if xe X 1s a critical pomnt of Fof* and f(x)e U,n Us, then ff(x)e U, We
mention that

M TN Tr= Br (58)

telm wnim &

Indeed, suppose f belongs to the left hand side of (58) and xe X 1s a critical
pomnt of Fo f* with f*(x)e U, n Us and (57) Then forevery icImwnIm 3§, fe T,
implies f*(x)e U Thus f*(x) e 0&, and now by f € T we see that (4 5) 1s not satisfied
etther for 1=1', y=j' or for 1=1", j=j" Therefore fe B

Fix tieImwnImd To prove that T, contains a residual subset of Cop(X,R")
we shall use the following result which 1s a part of theorem 3 1 1n [9]

THEOREM 52 ([9]) Letn=2, s=2, q=1 be integers, U be an open subset of (R")*,
H U->R and L U-R? be smooth maps Suppose L has no critical points in U and
grad, H(y)#0 forall1=1, ,sandyeU Let X be a smooth (n—1)-dimensional
submanifold of R" and T be the set of those f € C oy (X, R™) such that for every xe X’
with f*(x) € U which 1s a crnitical point of H © f°, we have L(f*(x)) #0 Then T contains
a residual subset of Cop(X,R")

To apply the theorem define L (R")”>R" by
. oF oG
L )()’)=W(y)+w(y) (t=1, ,n),

and L= (L™, L") The following property of L (established 1n [9]) can easily
be proved by direct computations

LEmMA 53 ([9]) DL(y)#0 for every y e (R")

Now, applying theorem 5 2 for H, U = U, n U; and L, we deduce that T, contains
a residual subset of Cop(X,R") Hence Br also contains a residual subset of
Comp(X,R")

In case both w and § are symmetric or one of them 1s symmetric and the other
1s non-symmetric, we use the same arguments with minor changes to see that %
contains a residual subset of Co,p(X, R") We omut the details
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