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A CENTRAL LIMIT THEOREM
FOR NON-OVERLAPPING RETURN TIMES
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Abstract

Define the non-overlapping return time of a block of a random process to be the number
of blocks that pass by before the block in question reappears. We prove a central
limit theorem based on these return times. This result has applications to entropy
estimation, and to the problem of determining if digits have come from an independent,
equidistributed sequence. In the case of an equidistributed sequence, we use an argument
based on negative association to prove convergence under conditions weaker than those
required in the general case.

Keywords: Central limit theorem; entropy estimation; match length; negative association;
return time

2000 Mathematics Subject Classification: Primary 94A17
Secondary 60F05; 62H20

1. Introduction and main theorem

1.1. Statement of problem

Given a sample (Z1, . . . , Zn) from a random process taking values in an alphabet A, we
would like to estimate the entropy of the process. In general this is a hard problem, though if
the process is assumed to be independent or stationary some progress can be made.

In particular, given a sequence of binary bits, determining whether the bits were generated
by an independent equidistributed process has applications to problems in cryptography and
number theory, as described in Section 1.3.

Our approach is as follows. We first partition the sample of (Zi) into blocks of size �. That
is, writing Zba for (Za, Za+1, . . . , Zb), we define block random variablesXi = Zi�(i−1)�+1 such
that Xi ∈ A� for each i. Then, given the first k blocks X1, . . . , Xk , we count how long it takes
for these blocks to reappear.

Definition 1.1. (Non-overlapping return time.) For a given k, define the random variable

Sj = min{t ≥ 1 : Xj+t = Xj }, j = 1, . . . , k,

to be the return time of the jth block.

It appears that this definition dates back to Maurer [17]. The main result of this paper is that
if the number and size of blocks grow appropriately, then the Sj satisfy a central limit theorem.

Theorem 1.1. Suppose that (Zi) is an independent, identically distributed finite-alphabet
process with entropyH . Write qmax < 1 for the maximum probability of any symbol appearing

Received 14 June 2005; revision received 11 November 2005.
∗ Postal address: Statistical Laboratory, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK.
Email address: otj1000@cam.ac.uk

32

https://doi.org/10.1239/jap/1143936241 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936241
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in (Zi). If as � → ∞ the number of blocks of length l, k(�), goes to ∞ in such a way that
lim�→∞ k(�)3/2�q�max = 0, then

∑k(�)
i=1(log Si − �H log 2 + γ )√

k(�)π2/6

d−→ N(0, 1).

Here ‘
d−→’ denotes convergence in distribution and γ is Euler’s constant, γ = 0.577 216 · · · .

Remark 1.1. 1. Note that, to agree with conventions in information theory, the entropy H is
calculated using logarithms to the base 2. If entropy were calculated using natural logarithms,
the log 2 term could be omitted.

2. For equidistributed processes, in which each symbol occurs with probability q, say, Propo-
sition 3.2, below, shows that we can relax the assumption on the rate of convergence of k(�),
to only require that k(�)�q� → 0. Indeed, simulations in Section 4 suggest that a weaker
condition, namely that k(�)�2−H� → 0, may be sufficient to ensure convergence for all finite-
alphabet independent processes with entropy H . The faster rate of convergence in the case of
equidistribution is useful, since we will often test a null hypothesis of equidistribution.

3. Maurer [17] proved that lim�→∞ log S1 − �H = −γ for equidistributed binary processes.
This result was extended to the case of stationaryψ-mixing processes by Abadi and Galves [2].

Corollary 1.1. Under the conditions of Theorem 1.1, the estimator

Ĥ =
∑k(�)
i=1(log Si + γ )

� log 2
√
k(�)π2/6

satisfies Ĥ ∼ AN(H, 1/l2) and, so, is asymptotically normal and consistently estimates the
entropy.

If the process is independent and equidistributed on a finite alphabet, then each block occurs
at each time with probability p = |A|−�. Hence, each of the Sj is a geometric random variable,
with P(Sj = r) = p(1 − p)r−1 (we call this a geom(p) variable). In general, if the process is
independent and identically distributed with entropyH , it satisfies the asymptotic equipartition
property, meaning that, asymptotically, almost exactly 2H� blocks of length � appear, each with
a probability of almost exactly 2−H�. Hence, conditioned on the value ofXj , Sj is a geometric
random variable. However, even though the symbols Zi are independent, the return times Sj
are dependent, so we need to understand the dependence structure to prove Theorem 1.1.

In Section 1.2 we describe some results concerning similar return time definitions made by
other authors. In Section 1.3 we describe two possible applications of these results. In Section 2
we prove Theorem 1.1, using an argument based on asymptotic independence. We transform
our problem into a similar one, by eliminating the possibility of early matches. In Section 3 we
give a proof, under weaker conditions, for equidistributed random variables, by using negative
association. Section 4 contains the results of some simulations.

In future work, we hope to extend these results to general stationary processes, under a
suitable mixing condition, and to prove similar results for other definitions of match length.
Notice that, as mentioned previously, Abadi and Galves [2] proved convergence of log Si − �H
for stationary ψ-mixing processes, and that exponential bounds for individual hitting times
were proved under similar conditions for random processes, by Abadi [1], and for Gibbsian
random fields, by Abadi et al. [3].
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1.2. Other, similar definitions

We briefly describe some other work concerning similar quantities. This is by no means an
exhaustive list, but merely gives a flavour of some of the alternative approaches which exist.

1.2.1. Overlapping return time.

Definition 1.2. (Overlapping return time.) Define the random variable

Tk = min{t ≥ 1 : Zk1 = Zt+kt+1}

to be the time elapsed before the block Zk1 is next seen.

Kac’s lemma [13] shows that, for any stationary ergodic process,

E[Tk | Zk1 = zk1] = 1

P(Zk1 = zk1)
.

This was developed by Kim [14], who gave the limiting behaviour of E[Tk P(Zk1)] for indepen-
dent processes, and by Wyner [25], who proved the following result.

Theorem 1.2. If (Zi) is a Markov chain then

lim
n→∞

log2 Tn − nH√
nV

∼ N(0, 1).

Here V = limn→∞ var(−log2 P(Zn1 ))/n is the information variance. For independent
processes,

V = var(−log2 P(Z1)) =
∑
i

P(Z1 = zi)(−log2 P(Z1 = zi)−H)2.

We refer the reader also to Corollary 2 of [15], where it was shown that this result holds
for general stationary processes (Zi) under explicit mixing conditions. Wyner and Ziv [24],
Ornstein and Weiss [19], and Gao [8, pp. 46–57] studied similar quantities.

1.2.2. Grassberger prefix.

Definition 1.3. (Grassberger prefix.) Given an n and an i, 1 ≤ i ≤ n, define

Ri,n(Z
n
1 ) = inf{t : Zi+t−1

i 	= Z
j+t−1
j for all j 	= i}.

In words, Ri,n(Zn1 ) is the length of the shortest string starting at position i that is different
from all the others of equal length starting at position j, 1 ≤ j ≤ n. This quantity was
introduced by Grassberger [9], and studied by Kontoyiannis and Suhov [16], Quas [21] and
Shields [22], [23], partly because it allows good entropy estimation for an ergodic process with
a suitable degree of mixing. For example, Theorem 1 of [16] is as follows.

Theorem 1.3. If the finite-alphabet process (Zi) is ergodic with entropy H and satisfies a
Doeblin condition, then

lim
n→∞

1

n

n∑
i=1

log n

Ri,n(Z
n
1 )

= H almost surely.
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1.2.3. Lempel–Ziv coding. Another problem with similar features is that of finding the asymp-
totic behaviour of the number of codewords in the Lempel–Ziv parsing (see Section 12.10
of [7]). Ziv [26] made a conjecture concerning the number of codewords. However, Aldous and
Shields [4] were only able to resolve the problem for independent, identically equidistributed
processes, and it took careful analysis by Jacquet and Szpankowski [11] to extend their results to
independent, identically distributed asymmetric processes. For example, Theorem 1A of [11]
is as follows.

Theorem 1.4. Given a binary asymmetric (P(Z1 = 0) 	= 1
2 ), independent, identically

distributed process, the total length, Lm, of the m words in a Lempel–Ziv tree satisfies

lim
m→∞

Lm − E[Lm]√
var(Lm)

∼ N(0, 1),

where

E[Lm] = m log2m

H
+O(m) and var(Lm) = Vm log2m

H 3 +O(m).

1.2.4. Comparison of approaches. Notice that Theorems 1.2, 1.3, and 1.4 differ in character
from our Theorem 1.1. For example, Theorem 1.3 proves a law of large numbers for the
Grassberger prefixes, showing that a statistic based on them acts as an entropy estimator.
However, it does not tell us the rate of convergence of the estimator. Similarly, although
Theorems 1.2 and 1.4 give asymptotic normality, they both refer to statistics calculated with
respect to one fixed point. It is possible that this fixed point could be unrepresentative; hence,
our result is stronger, in the sense that it averages over a number of different starting points.

1.3. Applications

We briefly describe two applications of these results.

1. Cryptography. The problem of deciding whether binary bits (Zi) were generated by an
independent, identically equidistributed process arises in cryptography. Bits generated in this
way can be used as a perfectly secure one-time pad to transmit a message (Yi). This system is
secure, in the sense that the transmitted bits Yi ⊕ Zi are independent of the message, meaning
that no inference about Yi can be made from them. Equivalently, Shannon’s second coding
theorem (see, for example, Theorem 8.7.1 of [7]) implies that the binary symmetric channel
with error probability p = 1

2 has capacity C = 0. If the (Zi) were not independent and
equidistributed, then, given large enough n, it may be possible to infer properties of the (Zi)
and perhaps read the message (Yi).

2. Number theory. Recall that a number is said to be normal to base b if the limiting proportion
of each digit in its base-b expansion is 1/b. A number which is normal to all bases b is
simply referred to as being normal. Ergodic theory shows that almost all numbers are normal,
but it is hard to prove that any particular number has this property. For example, Bailey and
Crandall [5] proved that a particular class of numbers (including the so-called Stoneham and
Korobov numbers) has the normal property. On the other hand, in the same paper, [5], the
authors discussed the fact that constants including π , e, ln 2, and ζ(3) are not known to be
normal. Weisstein gives a review of results concerning normal numbers that is available online
at http://mathworld.wolfram.com/NormalNumber.html. An informal statement of the property
of normality to base b is that the digits of the number ‘look as if they were generated by an
independent, identically equidistributed process’, which we hope to be able to test.
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Kim [14] gave computational results concerning the speed of convergence of estimators based
on overlapping matches, hoping to detect processes which are not Bernoulli. Similarly, Bradley
and Suhov [6] used theoretical results concerning the Grassberger prefixes (see Definition 1.3)
to consider the normality of constants such as π , e, and γ . We give some computational results
in Section 4.

2. Proof of main theorem

2.1. Avoiding early matches

The difficulty in analysing the dependence structure of the random variables Si introduced
in Definition 1.1 is that ‘early matches’ can occur at i. That is, it may be that Si ≤ k − i.
The possibility of early matches leads to a complicated situation of case splitting according to
where such early matches occur. To avoid this, we introduce a very similar sequence of random
variables, (Rj ), in Definition 2.1 below. We use two main ideas to prove Theorem 1.1, the
central limit theorem for the Si .

First, we let Si = Ri + (k − i), unless there has been an early match. By controlling the
probability of an early match, we show that a suitably scaled version of

∑
i log Si − ∑

i logRi
tends to 0 in probability; thus, a limit law for the Ri passes over to a limit law for the Si . The
formal statement is given in Lemma 2.1, below. Then, in Proposition 2.1, we establish a central
limit theorem for the Ri using explicit bounds on conditional probabilities, which show that
the variables are asymptotically independent.

Definition 2.1. Given a realisation of X1, . . . , Xk , we define D to be the set of positions that
do not see an early match, i.e. D = {i : Xi 	= Xj , j = i + 1, . . . , k}. For each i ∈ D, we let
bi = Xi . For each i /∈ D, we let bi be a random element chosen uniformly from the set of
elements not yet seen, namely A� \ ⋃

i bi .
Define the random variable Rj to be the time elapsed between time k and the time of first

appearance of value bj , i.e. Rj = min{t ≥ 1 : Xk+t = bj }, j = 1, . . . , k.

Lemma 2.1. Suppose that (Zi) is an independent, identically distributed finite-alphabet pro-
cess with entropy H . If, as � → ∞, k(�) → ∞ in such a way that lim�→∞ k(�)3/2�q�max = 0,
then the difference term ∑k

i=1(logRi − logSi)√
k

tends to 0 in probability.

Proof. The key observation is that Si = Ri + (k − i) unless i ∈ Dc. Furthermore, 1 ≤
Si ≤ Ri + (k − i). This means that we can decompose as follows, since R ∼ geom(p) with
E[1/R] = −p logp/(1 − p) = O(q�max�):

P

(∑k
i=1(log Si − logRi)√

k
≥ δ

)
≤ P

(∑k
i=1 log(1 + (k − i)/Ri)√

k
≥ δ

)

≤ P

( k∑
i=1

√
k

1

Ri
≥ δ

)

≤
√
k

δ

k∑
i=1

E[1/Ri] = O(k(�)3/2�q�max).
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Similarly, we know that

P

(∑k
i=1(logRi − logSi)√

k
≥ δ

)
≤ P

(∑k
i=1 logRi1(i ∈ Dc)√

k
≥ δ

)

≤ 1

δ
√
k

( k∑
i=1

E[logRi] P(i ∈ Dc)

)

= O(k(�)3/2�q�max),

since
P(i ∈ Dc) = 1 − P(i ∈ D) ≤ (1 − (1 − q�max)

k) ≤ kq�max,

independently of Ri , and E[logRi] = O(�).

2.2. Moments of log Ri

We first find the leading-order terms in E[logRi] and var(logRi) for all i. The values γ and
π2/6, which appear in Lemma 2.3, were first recognised by Maurer [17]; in addition to these,
we need to know the order of the error term as well. We use the following lemma, the simplest
form of the Euler–Maclaurin sum formula.

Lemma 2.2. For any differentiable function f such that f (x) → 0 as x → ∞, we have

∣∣∣∣
∞∑
i=1

f (i)−
∫ ∞

1
f (x) dx

∣∣∣∣ ≤ 1

2
|f (1)| + 1

2

∫ ∞

1
|f ′(x)| dx. (2.1)

Proof. Note that (by integrating by parts), for all differentiable functions f and all a,

∫ a+1

a

f (x) dx = 1

2
(f (a)+ f (a + 1))−

∫ a+1

a

f ′(x)
(
x − a − 1

2

)
dx,

which implies that ∫ a+1

a

f (x) dx − 1

2
(f (a)+ f (a + 1)) = R,

where |R| ≤ (
∫ a+1
a

|f ′(x)| dx)/2. By summing such results from a = 1 to a = ∞, we deduce
that (2.1) holds.

Lemma 2.3. For R ∼ geom(p),

µ(p) := E[logR] = −γ − logp +O(p), (2.2)

σ 2(p) := var(logR) = π2

6
+O(p logp), (2.3)

E[|logR − µ(p)|3] ≤ K, (2.4)

where γ is Euler’s constant as before, and K is a finite constant.

Proof. Let c = −log(1 − p) and f (x) = e−cx log x, and use the fact that

|f ′(x)| =
∣∣∣∣e−cx

x
− ce−cx log x

∣∣∣∣ ≤
∣∣∣∣e−cx

x

∣∣∣∣ + c|e−cx log x|.
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We deduce, by (2.1), that the difference between the following integral I and sum S is

|S − I | :=
∣∣∣∣

∞∑
i=1

e−ci log i −
∫ ∞

1
e−cx log x dx

∣∣∣∣
≤ 1

2

∫ ∞

1

e−cx

x
dx + c

2

∫ ∞

1
e−cx log x dx

=
[

1

2
e−cx log x

]∞

1
+ c

∫ ∞

1
e−cx log x dx

= cI.

Using the fact that

I = �(0, c)

c
= −γ − log c + c +O(c2),

where we write �(0, ·) for the incomplete gamma function, we deduce that

E[logR] =
∞∑
x=1

p(1 − p)x−1 log x = p

1 − p

�(0, c)

c
(1 + ε) = −γ − logp +O(p),

where |ε| < c. For f (x) = e−cx(log x)2, we have

|f ′(x)| =
∣∣∣∣2e−cx log x

x
− ce−cx(log x)2

∣∣∣∣ ≤
∣∣∣∣2e−cx log x

x

∣∣∣∣ + c|e−cx(log x)2|.
As above, we find that

|S − I | :=
∣∣∣∣

∞∑
i=1

e−ci log i −
∫ ∞

1
e−cx log x dx

∣∣∣∣ ≤ cI.

Using the fact that I = π2/(6c)+ (−γ + log c)2/c + 1 −O(c), we deduce that

E[logR2] − µ(p)2 = π2

6
+O(p logp).

Finally, we bound the centred absolute third moment, E[|logR − µ(p)|3]. We partition the
real line into three intervals: the setsA1 = {x : |log x−µ(p)|≤1},A2 ={x : log x−µ(p)≥1},
and A3 = {x : log x − µ(p) ≤ −1}. We also define the integrals

Ki = E[|logR − µ(p)|31(R ∈ Ai)], i = 1, 2, 3.

Clearly K1 ≤ 1. By Chernoff’s bound, for t ≥ 1, we have

P(logR − µ(p) ≥ t) ≤ E[Rs]
exp(s(t + µ(p)))

≤ e−2t (2 − p)/p2

exp(−2γ +O(p))/p2

≤ 2e2γ e−2t ,

taking s = 2. Hence, K2 = ∫ ∞
1 3t2 P(logR − µ(p) ≥ t) dt ≤ 4. Similarly, we have

P(logR − µ(p) ≤ −t) = P(R ≤ e−γ−t ) ≤ 1 − exp(−e−γ−t ),

meaning that K3 ≤ 4. Thus, we can take K = 9.
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2.3. Asymptotic independence

Next we prove a lemma that shows that theRi are approximately independent, giving explicit
bounds on the difference between the joint probability distribution and the product of the
marginals.

Lemma 2.4. Suppose that (Zi) is an independent, identically distributed finite-alphabet
process with entropy H . For (Ri) as defined in Definition 2.1, and for any s,m, and a =
(a1, . . . , am−1), with R = (R1, . . . , Rm−1) we have

(
1 − pm

1 −W ∗

)s−1

≤ P(Rm ≥ s | R = a) ≤ (1 − pm)
s−m,

where W ∗ = p1 + · · · + pm−1 and pi = P(bi).

Proof. Given the values of R1, . . . , Rm−1, we can write down an explicit expression for the
distribution of Rm:

P(Rm ≥ s | R = a) =
s−1∏
i=1

P(Xk+i 	= bm | R = a). (2.5)

We consider this product term by term, for each value of i. If aj = i for some j ≤ m− 1, then
Xk+i = bj and, automatically, Xk+i 	= bm; hence, the contribution to (2.5) from that i-value
is 1. Otherwise, if aj 	= i for all j ≤ m− 1, then

P(Xk+i 	= bm | R = a) = 1 − P(Xk+i = bm | R = a) = 1 − pm

1 −Wi

,

where Wi = ∑m−1
j=1 pj1(aj > i). This is a decreasing function of Wi .

It is clear that the product in (2.5) is maximised when the first (m − 1) values of ai occur
in the first m − 1 places, that is, when {a1, . . . , am−1} = {1, . . . , m − 1}. In this case, the
product in (2.5) equals (1 − pm)

s−m. Similarly, the product in (2.5) is minimised when Wi is
maximised for each i, that is, when aj ≥ s for each j . In this case, Wi = ∑m−1

j=1 pj = W ∗ for
each i, and the product equals (1 − pm/(1 −W ∗))s−1.

Proposition 2.1. Suppose that (Zi) is an independent, identically distributed finite-alphabet
process with entropy H . For (Ri) as defined in Definition 2.1, we find that, for any θ ,

∣∣∣∣E
[

exp

(
iθ√
k

m∑
j=1

logRj

)]
− E

[
exp

(
iθ√
k

m−1∑
j=1

logRj

)]
E

[
exp

(
iθ√
k

logRm

)]∣∣∣∣
is O(�k(�)1/2q�max).

Proof. By adapting Equation (22) of [18], for any complex, continuously differentiable
functions f and g, and for random variables U and V , we have

cov(f (U), g(V )) =
∫ ∞

−∞

∫ ∞

−∞
f ′(u)g′(v)HU,V (u, v) du dv, (2.6)

where
HU,V (u, v) = P(U ≥ u, V ≥ v)− P(U ≥ u)P(V ≥ v)

= − P(U ≥ u, V < v)+ P(U ≥ u)P(V < v).
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LetU = logRm andV = ∑m−1
i=1 logRi . We will find nonnegative functions h− and h+ such

that −h−(u, v) ≤ HU,V (u, v) ≤ h+(u, v) for all u and v. Since U and V take nonnegative
values only, if u < 0 or v < 0 thenHU,V (u, v) = 0. Hence, with f (t) = g(t) = exp(iθt/

√
k),

(2.6) simplifies to
∣∣∣∣cov

(
exp

(
iθU√
k

)
, exp

(
iθV√
k

))∣∣∣∣
=

∣∣∣∣−θ
2

k

∫ ∞

0

∫ ∞

0
exp

(
iθu√
k

)
exp

(
iθv√
k

)
HU,V (u, v) du dv

∣∣∣∣
≤

∣∣∣∣θ
2

k

∣∣∣∣
∫ ∞

0

∫ ∞

0
|HU,V (u, v)| dv du

≤
∣∣∣∣θ

2

k

∣∣∣∣
(∫ ∞

0

∫ ∞

0
h−(u, v) dv du+

∫ ∞

0

∫ ∞

0
h+(u, v) dv du

)
. (2.7)

We know that
∫ ∞

0 P(U ≥ u) du = E[U ], ∫ ∞
0 P(V ≥ v) dv = E[V ], and

∫ µ

0
P(V < v) dv +

∫ ∞

µ

P(V ≥ v) dv = E[|V − µ|].

Furthermore, we can evaluate

f (p) =
∫ ∞

0
(1 − p)e

u−1 du = �(0,−log(1 − p))

1 − p
.

Since f (p) has an increasing, but negative, gradient, with

−f ′(p) ≤ 1

−(1 − p) log(1 − p)
≤ 1

p(1 − p)
,

we know that f (p)− f (q) ≤ (q − p)/(p(1 − p)) for p ≤ q. This means that

∫ ∞

0
(1 − pm)

eu−1 −
(

1 − pm

1 −W ∗

)eu−1

du = O(k(�)q�max). (2.8)

Let us rearrange the result of Lemma 2.4 and sum over values of a such that
∑
j log aj ≥ v

or
∑
j log aj < v. For v ≥ E[V ], we find that

h−(u, v) ≤
(
(1 − pm)

eu−1 −
(

1 − pm

1 −W ∗

)eu−1)
P(V ≥ v),

and similarly can take h+(u, v) ≤ (1 − pm)
1−m P(U ≥ u)P(V ≥ v). Thus, by (2.8), over this

region,
∫
h−(u, v) du dv ≤ O(k(�)q�max)E[|V − µ|] = O(k(�)3/2q�max),∫
h+(u, v) du dv ≤ (1 − pm)

1−m E[U ] E[|V − µ|] = O(�k(�)3/2q�max).
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For v ≤ E[V ], we find that

h+(u, v) ≤
(
(1 − pm)

eu−1 −
(

1 − pm

1 − S

)eu−1)
P(V ≤ v),

and similarly can take h−(u, v) ≤ (1 − pm)
1−m P(U ≥ u)P(V ≥ v). As before, the integrals

satisfy

∫
h+(u, v) du dv = O(k(�)3/2q�max) and

∫
h−(u, v) du dv = O(�k(�)3/2q�max).

Substitution of these expressions into (2.7) yields the result.

2.4. Completing the proof of Theorem 1.1

The Lyapunov central limit theorem (see, for example, Theorem 4.9 of [20]) implies that,
for independent random variables Y1, . . . , Yk , where Yi has mean µi , variance σ 2

i , and finite
centred absolute third moment mi = E[|Yi − µi |3], if

∑k
i=1mi

(
∑k
i=1 σ

2)3/2
→ 0, (2.9)

then ∑k
i=1(Yi − µi)√

var(
∑k
i=1 Yi)

d−→ N(0, 1). (2.10)

Proof of Theorem 1.1. Define a sequence of independent random variables (Ti) with Ti ∼
Ri . Then Lemma 2.3 (in particular (2.3) and (2.4)) shows that the Lyapunov condition (2.9)
holds if Yi = log Ti . Thus, given values p1, . . . , pk , we have

∑k
i=1(log Tj − µ(pj ))√

k

d−→ N(0, v), (2.11)

where

v = 1

k

( k∑
i=1

var(logRi)
2
)

= π2

6
+O(p logp),

and (by the law of large numbers)
∑k
i=1 µ(pi) → k(−γ +H� log 2).

By repeated use of Proposition 2.1, we then find that

∣∣∣∣E
[

exp

(
iθ√
k

k∑
j=1

(logRj − µ(pj ))

)]
−

k∏
j=1

E

[
exp

(
iθ√
k
(logRj − µ(pj ))

)]∣∣∣∣

isO(�k(�)3/2q�max), so if this quantity tends to 0 then the central limit theorem for log Ti , (2.11),
carries over to give a central limit theorem for logRi .
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3. Equidistribution and negative association

In the case of equidistributed random variables, we can establish a central limit theorem
under conditions on k(�) weaker than those required to prove Theorem 1.1, using negative
association. This property captures the sense of dependence whereby one random variable
being large forces the others to be smaller. Formally, we make the following definition.

Definition 3.1. A collection of real-valued random variables (Uk) is negatively associated if

cov(f1(Ui, i ∈ A1), f2(Uj , j ∈ A2)) ≤ 0 (3.1)

for all increasing functions f1 and f2 that take arguments in disjoint sets of indices A1 and A2.

The negative association property proves useful in many situations, not least since New-
man [18] showed that the central limit theorem holds for negatively associated sequences of
random variables. Furthermore, if (Uk) forms a negatively associated sequence then, for any
increasing function f , (f (Uk)) also forms a negatively associated sequence.

Proposition 3.1. Suppose that (Zi) is an independent, equidistributed process with finite
alphabet A. The (Ri) introduced in Definition 2.1 are then negatively associated.

Proof. Given the orderingRτ(1) < Rτ(2) < · · · < Rτ(k) (for an appropriate permutation, τ ),
the actual values satisfy Rτ(1) ∼ geom(kp), Rτ(2)−Rτ(1) ∼ geom((k− 1)p) (independently),
and so on. That is, if we define independent random variables Wi, i = 1, . . . , k, with Wi ∼
geom((k+1−i)p), and defineUj = ∑j

i=1Wi , thenRτ(i) = Ui or, equivalently,Ri = Uτ−1(i).
As in the proof of Theorem 3.4 of [10], it suffices to show that (3.1) holds for symmetric

functions f1 and f2 with A1 = {1, . . . , p} and A2 = {p + 1, . . . , k}. Given such functions,
define

f ∗
1 (i1, . . . , ip) = E[f1(Ui1 , . . . , Uip )],

f ∗
2 (ip+1, . . . , ik) = E[f2(Uip+1 , . . . , Uik )].

If any index il, l ∈ {1, . . . , p}, increases then (since U1 < U2 < · · · < Uk) so does Uil , and,
hence (since f1 is increasing), so does f ∗

1 . That is, f ∗
1 is an increasing function of {i1, . . . , ip}.

Similarly, f ∗
2 is increasing.

For any permutation τ , we define the increasing functions

g∗
1(τ ) = f ∗

1 (τ
−1(1), . . . , τ−1(p)),

g∗
2(τ ) = f ∗

2 (τ
−1(p + 1), . . . , τ−1(k)).

Theorem 2.11 of [12] implies that the uniform distribution on the set of permutations is
negatively associated, whence

E[g∗
1(τ )g

∗
2(τ )] ≤ E[g∗

1(τ )] E[g∗
2(τ )]. (3.2)

Now,
E[g∗

1(τ )] = E[f ∗
1 (τ

−1(1), . . . , τ−1(p))] = E[f1(Uτ−1(1), . . . , Uτ−1(p))]
= E[f1(R1, . . . , Rp)].

Similarly, E[g∗
2(τ )] = E[f2(Rp+1, . . . , Rk)] and

E[g∗
1(τ )g

∗
2(τ )] = E[f1(R1, . . . , Rp)f2(Rp+1, . . . , Rk)];

thus, (3.2) implies (3.1), as required.
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Lemma 3.1. Suppose that (Zi) is an independent, equidistributed process on a finite alphabet
A. If, as � → ∞, k(�) → ∞ in such a way that k(�)�|A|−� → 0, then the difference term

∑k
i=1(logRi − log Si)√

k

tends to 0 in probability.

Proof. As before, Si = Ri + (k − i) unless i ∈ Dc. Furthermore, 1 ≤ Si ≤ Ri + (k − i).
This means that we can decompose as follows:

|logRi − logSi | ≤ |logRi − log(Ri + (k − i))| + |log(Ri + (k − i))− logSi |
≤ k

Ri
+ log(Ri + k)1(i ∈ Dc).

Since the Ri are negatively associated, so are the −k/Ri . Thus, by the Cauchy–Schwarz
inequality, recalling that p = |A|−�, we have

E

[( k∑
i=1

(logRi − logSi)

)2]
≤ 2

k∑
i=1

k2 E[1/R2
i ] + 2

∑
i∈Dc

(E[log(Ri)
2] + k2 E[1/R2

i ])

≤ 2k3(p2 +O(p3))+ 2kp(O((−logp)2)

+ k2(p2 +O(p3))). (3.3)

This follows both because E[1/R2
i ] = pLi2(p)/(1 − p) = p2 + O(p3), where Li2(·) is the

dilogarithm function, and because, for any i,

P(i ∈ Dc) ≤ P(1 ∈ Dc) = 1 − P(1 ∈ D) = 1 − (1 − p)k ≤ pk,

independently of Ri . The lemma follows on dividing (3.3) by k.

Lemma 3.2. Suppose that (Zi) is an independent, equidistributed process on a finite alphabet
A. For any i and j , i 	= j , the Ri defined in Definition 2.1 satisfy

|cov(Ri, Rj )| = O(�|A|−�).

Proof. From the negative association proved in Proposition 3.1, we know that the covariance
is negative, so we need only bound it from below. For any x, we know that

P(Rj = y | Ri = x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p

1 − p

(
1 − 2p

1 − p

)y−1

for y < x,

(
1 − 2p

1 − p

)x−1

(1 − p)y−x−1p for y > x.
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This means that

E[logRj | Ri = x]

=
x−1∑
y=1

p

1 − p

(
1 − 2p

1 − p

)y−1

log y +
∞∑

y=x+1

p

(
1 − 2p

1 − p

)x−1

(1 − p)y−x−1 log y

=
∞∑
y=1

p

1 − p

(
1 − 2p

1 − p

)y−1

log y − p

1 − p

(
1 − 2p

1 − p

)x−1

log x

+
∞∑

y=x+1

(
p

(
1 − 2p

1 − p

)x−1

(1 − p)y−x−1 − p

1 − p

(
1 − 2p

1 − p

)y−1)
log y. (3.4)

In (3.4) each summand is positive, so we can replace log y by log(y− x), which is smaller, and
write z = y − x, to find that (3.4) is greater than

∞∑
z=1

(
p

(
1 − 2p

1 − p

)x−1

(1 − p)z−1 − p

1 − p

(
1 − 2p

1 − p

)z+x−1)
log z

=
(

1 − 2p

1 − p

)x−1( ∞∑
z=1

(
p(1 − p)z−1 − p

1 − p

(
1 − 2p

1 − p

)z)
log z

)

=
(

1 − 2p

1 − p

)x−1(
µ(p)− 1 − 2p

1 − p
µ

p

1 − p

)
.

Overall then, using the notation of Lemma 2.3, we have

E[logRi logRj ]

≥
∞∑
x=1

p(1 − p)x−1µ

(
p

1 − p

)
log x − p

2(1 − p)

∞∑
x=1

2p(1 − 2p)x−1(log x)2

+ 1

2

( ∞∑
x=1

2p(1 − 2p)x−1 log x

)(
µ(p)− 1 − 2p

1 − p
µ

(
p

1 − p

))

= µ(p)µ
p

1 − p
− p

2(1 − p)
(σ 2(2p)+ µ(2p)2)

+ µ(2p)

2

(
µ(p)− 1 − 2p

1 − p
µ

p

1 − p

)
.

By expanding this using Lemma 2.3, we deduce that cov(logRi, logRj ) ≥ −p logp. Indeed,
asymptotically, cov(logRi, logRj ) ≥ p((−logp)/2 + γ ).

We can now deduce the central limit theorem for log Si .

Proposition 3.2. Suppose that (Zi) is an independent, equidistributed finite-alphabet process
with entropy H . If, as � → ∞, k(�) → ∞ in such a way that k(�)�|A|−� → 0, then

∑k(�)
i=1(log Si − �H log 2 + γ )√

k(�)π2/6

d−→ N(0, 1).
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Proof. By Lemma 3.1, we need only prove the corresponding result for logRi . By Propo-
sition 3.1, the Ri are negatively associated and, hence, so are the logRi . Since H(u, v) ≤ 0
for all u and v, by adapting (2.7) as in [18, cf. Equation (22)], we obtain the following result:
if U1, . . . , Uk are negatively associated then

∣∣∣∣E
[

exp

(
iθ√
k

k∑
j=1

Uj

)]
−

k∏
j=1

E

[
exp

(
iθUj√
k

)]∣∣∣∣ ≤ θ2

k

∑
i 	=j

|cov(Ui, Uj )|. (3.5)

This means that, with µ = �H log 2 − γ , and taking ϕ to be the characteristic function of the
distribution N(0, v), we have

∣∣∣∣E
[

exp

(
iθ√
k

k∑
i=1

(logRi − µ)

)]
− ϕ(θ)

∣∣∣∣

≤
∣∣∣∣E

[
exp

(
iθ√
k

k∑
j=1

(logRj − µ)

)]
−

k∏
j=1

E

[
exp

(
iθ√
k
(logRj − µ)

)]∣∣∣∣

+
∣∣∣∣
k∏
j=1

E

[
exp

(
iθ√
k
(logRj − µ)

)]
− ϕ(θ)

∣∣∣∣.

Equation (3.5) bounds the first term by kθ2|cov(Ri, Rj )| = O(k(�)�A−�), so we can control
that term. We control the second term by using the Lyapunov central limit theorem, (2.10).

4. Computational results

We now present the results of some calculations based both on simulations with random
number generators and on the decimal digits of well-known constants. In each case, we calculate
the value of the statistic ∑k(�)

i=1(log Si − �H log 2 + γ )√
k(�)π2/6

.

We present the results as quantile–quantile plots produced using the statistical computing
environment R. In each plot, the upper and lower quartiles are connected by a straight line.
If the distribution of the statistic were exactly N(0, 1), we would see the majority of the points
lying very close to the line y = x.

To produce Figures 1 and 2, we performed 500 trials on simulated data. Figure 3 is based
on breaking the first 20 million decimal digits of π and e into 50 blocks of 400 000 dig-
its. We used the program PiFast, version 4.3, by X. Gourdon (freely available online at
http://numbers.computation.free.fr/Constants/PiProgram/pifast.html), which can easily calcu-
late tens of million of digits of constants such as π and e. In each case, the points do appear
to lie on a straight line, although the sample variance is slightly smaller than expected. This
could be remedied by dividing by the square root of the true variance,

var

(k(�)∑
i=1

log Si

)
= k(�)π2

6
+ k(�)(k(�)− 1) cov(Si, Sj ) ≤ k(�)π2

6
.

In order to do this we would require an expansion, rather than simply an approximation, for
the covariance in Lemma 3.2 (since the proof of Lemma 3.1 shows that the sums of logRi
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Figure 1: Quantile–quantile plots of equidistributed binary data: k = 250 and � = 10 (left); k = 1000
and � = 13 (right).
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Figure 2: Quantile–quantile plots of asymmetric (P(Z1 = 0) = 0.75) binary data: k = 250 and � = 10
(left); k = 1000 and � = 13 (right).
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Figure 3: Quantile–quantile plots of decimal data with k = 1000 and � = 4: digits of π (left); digits
of e (right).
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and log Si each have the same variance, asymptotically). Numerical calculation suggests that
cov(Ri, Rj ) ∼ p logp/4. Of course, Lemma 3.2 only holds for equidistributed processes.
However, in general, the asymptotic equipartition property suggests that we can assume that
cov(Ri, Rj ) ∼ 2−H�H� log 2/4.
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