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A MAPPING PROBLEM AND /.-INDEX. I 

MASAMI WAKAE AND OMA HAMARA 

1. Introduction. Indices of normal spaces with countable basis for 
equivariant mappings have been investigated by Bourgin [4; 6] and by Wu 
[11; 12] in the case where the transformation groups are of prime order p. 
One of us has extended the concept to the case where the transformation 
group is a cyclic group of order pl and discussed its applications to the 
Kakutani Theorem (see [10]). In this paper we will define the /.-index of a 
normal space with countable basis in the case where the transformation group 
is a cyclic group of order n, where n is divisible by p. We will decide, by 
means of the spectral sequence technique of Borel [1; 2], the /.-index of 
SO{n) where n is an odd integer divisible by p. The method used in this paper 
can be applied to find the /.-index of a classical group G whose cohomology 
ring over / . has a system of universally transgressive generators of odd 
degrees. 

2. Preliminaries. 

2.1. Throughout this paper, n is a positive integer divisible by a prime 
number p, that is, n = p V , where (p, n") = 1, and let 5 = {1, s, . . . , s71"1} 
be a cyclic transformation group of order n acting properly dis continuously 
on a simplicial complex K. That is, for any simplex a in K, sf(a) =é a for 
i = 1, 2, . . . ,n - 1. 

Let II: K —> Kf = K/S be a natural projection of K onto its orbit space 
K'. We define ÏÏ: Cr(K, G) -> Cr(K\ G) by 

(nf)(M*) = E /V<0 
i=l 

for each fr in Cr(K, G), where G is an abelian group. It is clear that II is 
onto since S acts properly discontinuously on K. 

2.2. Definition. 
T = 1 + 5 + . . . + sn~\ 
7 = 1 - 5 , 

s(2i) = r, 

s(2i+ 1) = 7 . 

We use r for r*, r*, r#, and r# and the same holds for 7, and s(i). It is easy 
to show that Ker 7 = Im r and Ker r = Im 7. 
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3. The /p-Smith classes of a simplicial complex. 

3.1. Let Jp be the ring of integers modulo p. L e t / ' 0 be the unit 0-cocycle 
in C°(K', Jp). Since S is onto, we can find/0 in C°(K, Jp) such that n / ° = / ' ° . 

3.2. LEMMA. We can find a system of cochains p in Cl(K,Jp) such that 
of = s(i+ l)f+lfori ^ 0. 

Proof. Notice that ôf° is in Ker r. Hence there exists/1 such that ôf° = 7/1. 
Suppose that it is true for i = k — 1, that is, 8fk~2 = s(k — l ) / * - 1 . Since 
s(k - l)5f~1 = ôs(k - l ) / * - 1 = ÔÔ/*-1 = 0, there exists/* such that of-1 = 

3.3. LEMMA. / " = 11/* is a cocycle. 

Proof. Let i be an even integer; then 

8f"([ci+ils) = Ê 8/Vc«.i) = X) T / ' + 1 ( S V I ) = 0. 

Let i be an odd integer; then 

tf'iMa) = E rfi+1(s}ci+1) - E Z / < + V + " V i ) a 0 (mod/»). 

3.4. LEMMA. LetstfjiK, s) be the class of fn defined as above in H\K'', / p ) . 
Thens/p^K, s) is independent of the choice of f. 

Proof. Let ÏÏ/10 = /2° = n/ ' ° . Then 

0 = (ïïf!0 - n/2°)(W s) = rC/x» -f2°)(c0). 

Hence, there exists c° in C°(K,J) such t h a t / i ° - / 2 ° = yc°. Let <5/i° = 7/11 

and Of20 = 7/21, then T C / I 1 - / 2 1 ) = ô(/i° - / 2 0 ) = yôc°. Hence, there exists 
c1 in Cl(K,JP) such that / 1 1 —/21 — 5c° = re1. By an inductive argument, ft1 

bcl~l + s(i+ l)c\ Notice that UT = 0 (mod £) 
- 1 

we can show that/ i* — /2* 
and that S7 = 0. Thus we have / /* - / 2 " = ï ï( / i* - /2O = OTc* 

3.5. Definition. s$p
l(K, s) is called the ith Jv-Smith class of the system (K, S). 

3.6. Given two systems {K, S) and (L, 5) , a simplicial map g of K into L 
is called aw equivariant map of the systems if gs = sg. An equivariant map 
g induces a cell map gf of i£' into U with the following commutative diagrams, 

C*(L) JL> C#(X) 

and n 
/# 

n 

C#(L') JL> C#(X') 

It is clear that g'*( J*V(L, 5)) = s/9'(K, s). 
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4. The Jp-index and the total index of a simplicial complex. 

4.1. p refers either to r or to y and then p refers either to y or to r. We will 
write PC(K,G) for Imp and p~lC(K,G) for Ker p. Since Ker p = Imp, we 
have PC(K, G) = p~lC(K, G). Since 5 is simplicial, we have, 

(A) pH* (K, G) ÊË >_1#* (K, G). 

By [8, p. 70] the following sequence is exact, 

•* * * 
(B) -> P'XH'{K, G) ^HS(K, G) ±> PHS(K, G) 4 p~lHs+\K, G) ->, 

where Pô[pf] = [of]. Since there is no fixed point in K, we have, 

(C) HS(K/S) ^ t-lHs(K) ^ 'H9(K). 

\:H*(K',G)->TH*(K,G) is defined by (X/')(c) = / ' J M O for each / ' in 
H*(Kf, G), and X is an isomorphism onto. Notice that XII = r. 

v:yH*(K,G)-**H*(K,Gp) 

is defined by nyf = &rf, where SP\ G —* Gv = G/^G is a natural surjection. 

4.2. Definition. The Smith homomorphism s(m) is defined by 

s(2m) = X-\ô . . . Tô\: H*(K', G) ->H^2m(K\ G), 

and by s(2m + 1) = X"Vr5 . . . T<5X: Hl(Kf, G) -> Hi+2m+1(K,
1 Gp). 

4.3. In (4.1) and (4.2) let G = J^, then Gv = / P and we have, 

(D) s(w) <s/9°(K, s) = s/v
m(K, s). 

Hence, our Smith homomorphism is an extension of that of [5, p. 329]. 
Simple calculation will show that [5, 134.2 (a)-(c)] holds in our case. That is, 

^ P
2 m + 1 (K, s) = J / , I (X, 5) ( J / , 2 (X, 5) )» 

where powers are in the sense of cup products, if K is a finite complex. 

4.4. Let X be a normal space with countable basis and let 5 = {1, s,. . . , s71'1} 
be a properly discontinuous group of X onto itself, that is, sl(x) 9^ x for each 
x in X and for 0 < i < n. Let T = { Ua: a £ A} be an open cover of X such 
that for each a, K i , (i) £/« 3̂  Ub if a 5̂  fe, (ii) Ua 9* 0, (hi) if Ua is in T, 
then sUa is in T, and (iv) either Ua F\ Ub = 0 or £/a P\ siUb = 0 for 
i = l , 2 , . . . , w — 1. A covering of X satisfying the above condition is 
called a P-covering of X. With the aid of [9, § 3] and the paracompactness 
of X, the existence of such covering can easily be shown. 5 will induce a 
properly discontinuous transformation group on the nerve complex of T. 
Moreover, since the system of P-coverings of X is cofinal in the system of 
all open coverings of X, we get the iih Jp-Smith class sév

l(X, s) in the Cech 
cohomology group H^X/S, Jv)m 
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4.5. We define the Jp-index of (X, S) as the least integer i such that 
sép\X, s) = 0, if it exists. We write vp(X, S) = i. If there is no such i, we 
define vp(X, S) = oo. Let n = pialp2a2 . . . pm

a™ be the prime decomposition 
of a positive integer n such that 0 < pi < . . . < pm. We can define the 
/p,.-index of (X, 5) for each i. The m-tuple v(X, S) = (vPL (X, S),. . . , vPm(X, S)) 
is called /Ae total index of the system (X, S). 

4.6. We may define the J(p)-index of X by using the coefficient group J, 
the ring of integers, for even dimensions in (3.1) and (3.2). That is, define 
p(i): J —>J(i) to be the natural map where J{2i) = J and J(2i + 1 ) = Jp. 
Thus Lemma 3.3 reads: " / " = p(i)TLf", Lemma 3.4 reads: u Let stfl (p) (K, s) 
be the class of fH defined as above in Hl{Kf, J(i)). Then sé\p){K, s) . . . ," 
and so on in the case of /(£)-indices. Therefore, the <ï>(&)-index of R^ defined 
in [10, § III] is equal to the J(^)-index of R** - F*, where k = p\ S is of 
period k, and F^ is the set of fixed points. On the other hand, as noted in 
[7], the indices considered in [10, § IV] are Jp-indices. The justification for 
this is that the proof in [10, § III, Lemma 3.4] implies that 

forj ^ N(k - 1) as well ass/ j(p) (RNlc - Fhl s) = 0 for j ^ N(k - 1). 

5. The Jp'index of SO(n). 

5.1. In this section we calculate the Jp-index of SO(n), where n = 2m + 1 
is an odd integer. Hence, throughout this section, the coefficient group is Jp. 
Let n = pln" such that (p, n") = 1. We also denote n/p by nr. Let 

5 = |1 ,5 , . . . , ^ " M 

be the transformation group acting on SO(n) as follows: 

s(wi, w2, . . . , wn) = (w2y . . . , wn, wi), 

where (w\, . . . , wn) = w is an arbitrary point of SO(n); that is, w is an 
orthonormal w-tuple. Let Q= \[SO(n) X Es]s, Bs, n } , where Es is the 
iV-universal space of 5 for a sufficiently large N and Bs = Es/S. We may 
assume that Es is compact [3, Chapter IV]. The bracket notation indicates 
cosets with respect to S. II: [SO(w) X ES]S—>BS is the projection. Then Q 
is a principal bundle. We also have the projection 

n i : [sow ->ES]S->SO(»)/S. 

By the Vietoris-Begle theorem we have: 

(F) H*(SO(n)/S) = H*([SO(n) X Es]s). 

Moreover, there is a spectral sequence of II such that 
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Eœ^H*(SO(n)/S), 

and that, 

E2
l>i ̂  H*(BS, W(SO(»))) 

^ - f f ' ( 5 f l ) ® ^ ( S 0 ( n ) ) f 

where the coefficient group is Jp. For the sake of convenience we write 
H*(BL, Jp) as BL*. Let T be the maximal torus in SO(n) [1] and let G be 
the subgroup of elements of order n in T. The following results are known 
[1;2]: 

i7*(SO(», •/*) == A(«3i «7, . . . , «4i»-i), dim ut = i, 

BtoM = ^0>4, »s, . . • , »4m), dim », = i, 

£ r * ^ /„(*!, /2, . . . , O , dim tt = 2, 

£<?* = A O i , a2, . . . , O 0 /P(6i, 62, . . . , bm), 

dim a* = 1, dim bt = 2, 

£s* = A ( a ) ® 7,(6), dim a = 1, dim & = 2, 

where Jv( ) and A ( ) refer to the polynomial and to the exterior algebra, 
respectively. Also, {uu-i- i = 1, 2, . . . , m} is the set of universally trans-
gressive generators of H*(SO(n),Jp) and vAi is the image of u^-i by the 
transgression. Let M be a compact connected group and let L be a subgroup 
of M. 

The projection p(L, M) of 2?£, onto 5 ¥ induces p*(L, M): BM* —> BL*. 
By [1, p. 200] we have: 

P*{T,SQ(nMBloM) = / , ( f t (1 + *<*)) • 

The passage from BT* to ^ G * is a monomorphism which replaces tt by 6*. 
The passage from BG* to -Bs* is obtained by replacing bt by ib [6; 7; 10]. 
Let A be the constant number in [6, Lemma 1]. Let k = pl and let kr = k/p. 
Also let p = 2h + 1. 

5.2. LEMMA. II7.1 (1 + (jb)2) = [1 + Aft2**']»" (™odp). 

Proof. Notice that there are n'h numbers of integers which are not divisible 
by p between 1 and m. Also notice that (h — i)2 = (h + i + l ) 2 (vaoAp). 
Hence, 

m h 

n (i + a&)2)-n a + (jb?)Y 
r h Ira" 

•Lfl (i+^')J 
s [1 + Aft***']"" (mod/»). 

5.3. According to [2, Proposition 10.3] we have: 

Em = fl*(SO(»)/S) = A(a) ® Jp{b)/J{b™') <g> P ' , 
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where J\b2hk') is the ideal generated by b2hk' and 

P' = A (Uz, UT, . . . , Ûihk'-if UAM'+Z, . . . , U4m-i)j 

since p*(S, SO(n))vu = 0 for i < A*' = n"Ab2hk' for i = A*'. 

5.4. Since r = Y ( 1 + 2s + . . . + (n — l)sn~2) (mod p), the inclusion map 
of *C(X, Jp) to tC(X,Jp) induces the map rj: THm{X,Jp) - * ^ £ P ( X , / P ) . In 
fact, we have the following commutative diagram (cf. [5, p. 328]): 

yHm{Xy Jp) -Z*+ Ï T + 1 ( X , / , ) -£> yHm+\X1 Jv) 

Tir{x, jv) -£> 7ir+1(x, JV) -^ 7r+ 2(z, JV) 
Assume that 

s/p\SO{n),s) = X-Vr5Xj//(SO(w),5) = 0. 

Then fxTô\ <$/p°(SO(n), s) = 0 since X-1 is an isomorphism. By the 
commutativity of the above diagram, we have 0 = y8r)\ J^/p°(SO(n), s). Let 
p = 7 and s = 0 in (4.1) (B); we then have 

->7Z°(S0(rc)) 4 7 " 1 H 1 ( S 0 ( » ) ) ->H\SO(n)) = 0. 

Since *Z°(SO(w)) ^ ' ' " ^ ( S O f a ) ) ^ /„ and the exactness of the above 
sequence, y8 is an isomorphism. Hence rj\ s/p° (SO (n) 9 s) = 0, which is a 
contradiction. 

Assume that s/p
2(SO(n), s) = X-%5 Tô X J / P ° ( S O ( W ) , 5) = 0. Because of the 

following exact sequence (4.1) (B), 

->H\SO(n)) -*yH\SO(»)) 4 7_1#2(SO(?0) ->, 

75 is an isomorphism onto. Hence, TôXs/p°(SO(n), s) = 0. Hence 

J / , 1 (SO (»),*) = 0, 

which is a contradiction. Hence we may consider s/p
l(SO(n), s) — a and 

s/p
2(SO(n), s) = fr. Hence, according to (4.3) and (4.5) we have: 

vp(SO (n),S) = Ihk' = vp(SO(k), W), 

where (SO(&), W) is a system of period k = p* (cf. [7, Theorem 7]). 
Therefore, we have the following theorem. 

5.5. THEOREM. If n — pialp2
a2. . . pq

aq is an odd integer and 

pi = 2ht + 1 < pi = 2hj + 1 
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for i < j , then, 

v(SO(n), S) = (4Ai*i', 4*2*2', . . . , 4ft«*/)» 

where k/ — pft/pi. 

6. A comment on ^((R^)**). 

6.1. Le t* = £< and let S = {1,5, . . . , s*-1} acton (R*)** as in [10, p. 411]. 
Then, as indicated in (4.6), I(k)(RN)=vp((R

N)*k), where (R^)** = R^*-F* . 
In [10, Theorem 3.2] we have vp((R

N)*k) ^ N(k - 1). As a matter of fact, 
we have a better upper bound. 

6.2. THEOREM. VP((RN)**) ^ N(p - l)pl-\ 

Proof. Let Sp = {1, 5*', . . . , s*-»*'}, where £' = pl-\ Let J* be the N-cube. 
Then we may assume that (R*)* = int INk so that ( R * V C (IN)*k. The 
inclusion is equivariant. Hence we have ^((R^)**) g vp((I

N)*k). (Indeed 
we have ^((R*)**) = vp((I

N)*k) since i: (IN)*k C (R^)*fc is equivariant.) 
(IN)*k = {INh')f = INk - (the set of the fixed points under Sp). Let K be the 
cell complex of INk', i.e., \K\ = INk'. Let KP = X X . . . X K (p factors) be 
the £-fold product complex of K. Let K*v be the subcomplex of Kp which 
consists of all cells 0-1 X . . . X <rp (cr* £ K) with no vertex of K common to 
all these <rim Then by [11, Theorem 1] or the method in [10, § II, Theorem 2.1] 
we may show that \K*V\ is a deformation retract of (INk')*p. Since K*v is of 
a dimension NV(p - 1), H\\K^\) = 0 = H\(IN*')J>) for i ^ NV(p - 1). 
On the other hand, we have 

( / V _ ({IN)*k/Sv) _ {{lNk\v/Sv) 
S {S/Sp) (S/Sp) • 

Applying [3, p. 44, Theorem 5.2] twice to the above equation, we have 
j f f ' ( ( I*V/S) = 0 for i ^ Nk'(p - 1). A fortiori, s/v\(I

N)f,s) = 0 for 
i ^ NV{p - 1). Hence vp((I

N)*k) ^ Nk'ip - 1). 

Remark 1. The results in [10, § IV] can be strengthened accordingly. For 
example, [10, § IV, Corollary 2.9] can be replaced by 

"dim!? ^ hPl-l(PtJrl -3P + 2)". 

Remark 2. It may be shown that a deformation retraction in question can 
be taken to be equivariant. However, this is not required for the proof of 
Theorem 6.2 by virtue of [3, p. 44]. 

For applications to mapping problems of the above type, Theorem 6.2 is 
sufficient. However, it may be of interest to find the exact value of the index 
of (RN)*k. 

6.3. LEMMA. If S acts on Sg, a q-sphere, without fixed points, then 
s/p^S^s) j* Ofori S q. 
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Proof. This is immediate from (4.1) (B) and the commutative diagram 
in (5.4). 

6.4. THEOREM. pp((R
N)*k) = N(p - l ) ^ " 1 . 

Proof. Because of Theorem 6.2, it suffices to show t h a t ^ / ( ( R ^ ) * * , s) ^ 0 
for i ^ N{p — l)pl~l — 1. Since R^ can be considered as a vector space, 
(R^)** is the space of ordered k vectors, (vi, . . . , vk) of KN with the set of all 
the points of the type (vi, . . . , vk>, . . . , V\, . . . , vk') deleted, where, of course, 
kf = pl~l = k/p. In (R^)** we define a subspace X by the following relations: 

(I) £ vi+jk> = 0 for* = 1 , 2 , . . . , * ' , 

and 

(ii) E hi2 = i. 

Since X is an (Nkf (p — 1) — l)-sphere invariant under S,s$v
l(X, s) ^ 0 for 

i ^ iM'(/> - 1) - 1. Since X C (R^)*fc, j / / ( X , s) ^ 0 induces 

J / / ( ( R * V , S ) ^ 0 

for i ^ iWfe'(p - 1) - 1. 
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