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Inertia and slip effects on the instability
of a liquid film coated on a fibre

Chengxi Zhao1, Ran Qiao1, Kai Mu1, Ting Si1,† and Xisheng Luo1

1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026,
PR China

(Received 4 October 2023; revised 21 January 2024; accepted 30 January 2024)

To investigate the influence of inertia and slip on the instability of a liquid film on a fibre, a
theoretical framework based on the axisymmetric Navier–Stokes equations is proposed via
linear instability analysis. The model reveals that slip significantly enhances perturbation
growth in viscous film flows, whereas it exerts minimal influence on flows dominated
by inertia. Moreover, under no-slip boundary conditions, the dominant instability mode
of thin films remains unaltered by inertia, closely aligning with predictions from a
no-slip lubrication model. Conversely, when slip is introduced, the dominant wavenumber
experiences a noticeable reduction as inertia decreases. This trend is captured by
an introduced lubrication model with giant slip. Direct numerical simulations of the
Navier–Stokes equations are then performed to further confirm the theoretical findings
at the linear stage. For the nonlinear dynamics, no-slip simulations show complex vortical
structures within films, driven by fluid inertia near surfaces. Additionally, in scenarios
with weak inertia, a reduction in the volume of satellite droplets is observed due to slip,
following a power-law relationship.
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1. Introduction

The investigation of the instability of liquid jets due to surface tension has a long history,
tracing back to the pioneering work of Plateau (1873) and Rayleigh (1878, 1892). This
instability phenomenon also holds significant importance in understanding the dynamics
of liquid films coated on solid fibres, with additional complexities at the liquid–solid
interface. This field has attracted significant scientific attention (Quéré 1999), owing to its
critical relevance across various technological domains, including additive manufacturing
(Deng et al. 2011; Oliveira, Santos & Miranda 2020), droplet transport (Lee et al. 2022),
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chemical element extraction (Chen et al. 2023) and water collection through fog harvesting
(Chen et al. 2018; Zhang et al. 2022).

The instability of a film coated on a fibre has been extensively studied across various
stages. The early time behaviours can be described by the Rayleigh–Plateau instability
(Quéré 1999), showing that a film with an outer radius h0 becomes unstable to sufficiently
long-wavelength disturbances, specifically λ > λcrit = 2πh0. Here, λcrit represents the
critical wavelength beyond which the instability ceases to grow. Additionally, the dominant
(most unstable/fast growing) modes are influenced by the ratio of h0 to the fibre radius a,
validated by experiments (Goren 1964). Subsequent nonlinear evolution is modelled using
the lubrication approximation (Hammond 1983), resulting in a leading-order lubrication
equation that is applicable to films on both the inside and outside of a cylinder. Due to
its simplicity, this lubrication equation and its higher-order versions (Craster & Matar
2006; Ruyer-Quil et al. 2008) have been used in studying various interface dynamics of
annular films on fibres. Examples include the transition from absolute unstable regimes
to convective ones (Kliakhandler, Davis & Bankoff 2001; Duprat et al. 2007; Craster &
Matar 2009) and capillary drainage involving complex interactions of ‘lobes’ and ‘collars’
formed on the interfaces (Lister et al. 2006). Recently, these lubrication models have been
extended to encompass more complex scenarios by incorporating other physics, such as
electric fields (Ding et al. 2014), heat transfer (Zeng et al. 2017), thermal fluctuations
(Zhang, Sprittles & Lockerby 2021) and Van der Waals forces (Tomo, Nag & Takamatsu
2022).

One of the important physical factors is liquid–solid slip, which has recently attracted
substantial research interest (Secchi et al. 2016; Zhang, Sprittles & Lockerby 2020;
Kavokine, Netz & Bocquet 2021; Kavokine, Bocquet & Bocquet 2022) and been found
to influence the dynamics of various interfacial flows (Liao et al. 2014; Halpern, Li
& Wei 2015; Martínez-Calvo, Moreno-Boza & Sevilla 2020a; Zhao et al. 2022). For
the case of cylindrical films, Ding & Liu (2011) introduced a lubrication equation
incorporating slip conditions to investigate the instability of films descending along
porous vertical fibres. Their findings revealed that the instability is amplified by the
presence of a fluid-porous interface, which is modelled using a slip boundary condition.
Regarding annular films within slippery tubes, Liao, Li & Wei (2013) numerically solved a
lubrication equation with leading-order terms, demonstrating that even a fractional amount
of wall slip significantly exaggerates the instability, leading to considerably faster drainage
compared with the no-slip scenario (Hammond 1983). Haefner et al. (2015) conducted
experimental investigations into the influence of slip on the instability for films coated on
horizontal fibres. Similar to the observations of both Ding & Liu (2011) and Liao et al.
(2013), the wall slip was found to enhance the instability, resulting in increased growth
rates of perturbations. The experimental results were also shown to match predictions
of a slip-modified lubrication equation. Halpern & Wei (2017) subsequently illustrated
how wall slip can amplify drop formation in a film descending a vertical fibre. This
observation provides a plausible explanation for the discrepancy between experimentally
predicted and theoretically derived critical Bond numbers for drop formation. More recent
investigations delved into the dynamics of films on slippery fibres within non-isothermal
conditions (Chao, Ding & Liu 2018) and under the influence of intermolecular forces (Ji
et al. 2019), employing more intricate lubrication models. Despite the extensive use of
slip-modified lubrication models, their constraints have been exposed by Zhao, Zhang &
Si (2023a) through linear instability analysis applied to the axisymmetric Stokes equations.
The theoretical framework not only highlights an overestimation of the slip-enhanced
perturbation growth rate as compared with classical lubrication models, but also reveals
a slip-dependent dominant wavelength, deviating from the constant value posited by prior
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Figure 1. Schematic of a liquid film on a slippery fibre.

works using the lubrication method (Liao et al. 2013; Haefner et al. 2015; Halpern & Wei
2017; Chao et al. 2018).

Noticeably, in modern applications such as additive manufacturing in space (Reitz
et al. 2021; Van Ombergen et al. 2023) and three-dimensional printing with liquid metals
(Assael et al. 2010; Kondic et al. 2020), the role of inertia in governing the dynamics
of liquid film interfaces has become notably apparent, contrasting with the predominant
neglect of inertia in most preceding investigations. One exception is the work done by
Goren (1962), who introduced inertial effects by conducting instability analysis for the full
Navier–Stokes (NS) equations. The theoretical findings elucidated distinctions between
two limiting cases, i.e. the inviscid case and viscous case without inertia. However, the
impact of inertia within the intermediary regime between these two limits remained
uncharted. Ding et al. (2013) proposed two coupled equations governing the film thickness
and flow rate to study instability and dynamics of a film on a fibre, considering both
inertia and slip. Nonetheless, their focus was primarily on scenarios characterized by
small to moderate Reynolds numbers, where the influence of inertia on interface dynamics
seemed less pronounced. While recent studies have extensively investigated the influence
of inertia on the instability of planar films (González, Diez & Sellier 2016; Moreno-Boza,
Martínez-Calvo & Sevilla 2020a), its effect on the cylindrical films, especially on a fibre
with slip, remains unclear, thus motivating the present investigations.

In this work, linear instability analysis of the axisymmetric NS equations is performed
to investigate inertia and slip effects on the dynamics of a liquid film on a fibre.
Direct numerical simulations of the NS equations are also employed to confirm the
theoretical findings and provide more physical insights. The paper is laid out as follows.
Non-dimensionalised governing equations for a film on a fibre are introduced in § 2. Linear
instability analysis for the governing equations is performed in § 3, where the dispersion
relation is derived in § 3.1, followed by two limiting cases: jet flows in § 3.2 and film
flows without inertia in § 3.3, respectively. Predictions arising from the theoretical model
are presented in § 3.4. Subsequently, direct numerical simulations are performed in § 4.
These simulations are compared with the predictions of the theoretical model, specifically
concerning the influence on the dominant mode (§ 4.1) and the growth rate (§ 4.2) of
perturbations. Nonlinear dynamics extracted from the simulations is also analysed in § 4.2.

2. Model formulation

We consider a Newtonian liquid film on a fibre of the radius a with the z axis along the
centreline (figure 1). The initial radius of the film measured from the z axis is r = h0.
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Additionally, gravity is neglected, and we assume uniform external pressure and surface
tension.

The incompressible NS equations are employed to predict the dynamics of the
flow inside the liquid film. To identify the governing dimensionless parameters, we
non-dimensionalise the NS equations with the rescaling variables shown below:

(r, z, h) = (r̃, z̃, h̃)

h0
, (u, v, w) = (ũ, ṽ, w̃)

U
, t = U

h0
t̃, p = h0

γ
p̃. (2.1a–d)

Here h̃, t̃ and p̃ represents the dimensional interface height, time and pressure, respectively
(note that the dimensional material parameters are not given tildes); (r, φ, z) are the
cylindrical coordinates with the corresponding velocities (u, v, w); U represents the
characteristic velocity inside the film and γ is the surface tension of the liquid–gas
interface. After eliminating all the derivatives with respect to φ and setting v = 0 in the
cylindrical coordinates, the axisymmetric incompressible equations can be written as

∂w
∂z

+ 1
r

∂(ur)
∂r

= 0, (2.2)

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

= − 1
We

∂p
∂r

+ 1
Re

[
∂2u
∂z2 + ∂

∂r

(
1
r

∂(ur)
∂r

)]
, (2.3)

∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

= − 1
We

∂p
∂z

+ 1
Re

[
∂2w
∂z2 + 1

r
∂

∂r

(
r
∂w
∂r

)]
, (2.4)

where the non-dimensional quantity We = ρU2h0/γ is the Weber number, which relates
the inertial force to the capillary force. Here Re = ρUh0/μ is the Reynolds number,
showing the ratio between inertial force and the viscous force; μ is the liquid dynamic
viscosity and ρ is the liquid density.

Since the density of gas around the film is much smaller than that of the liquid, the
gas flow outside can be assumed to be dynamically passive to simplify the problem. The
liquid–gas interface height h(z, t) satisfies the kinematic boundary condition

∂h
∂t

+ w
∂h
∂z

− u = 0. (2.5)

The normal stress balance at the interface r = h gives

p − We
Re

n · τ · n = ∇ · n, (2.6)

where τ is the shear stress, which is proportional to the strain rate in Newtonian fluids.
Here n is the outward normal and ∇ · n represents the dimensionless Laplace pressure.
The tangential force balance is

n · τ · t = 0, (2.7)

where t is the tangential vector. With n and t expressed in terms of the unit vectors in the
z direction (êz) and r direction (êr),

n = − ∂zh√
1 + (∂zh)2

êz + 1√
1 + (∂zh)2

êr and t = 1√
1 + (∂zh)2

êz + ∂zh√
1 + (∂zh)2

êr,

(2.8a,b)
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(2.6) and (2.7) explicitly give

p − We
Re

2

1 + (∂zh)2

[
∂u
∂r

− ∂h
∂z

(
∂w
∂r

+ ∂u
∂z

)
+

(
∂h
∂z

)2
∂w
∂z

]

= 1

h
√

1 + (∂zh)2
− ∂2

z h(
1 + (∂zh)2)3/2 (2.9)

for the normal forces, and

2
∂h
∂z

(
∂u
∂r

− ∂w
∂z

)
+

[
1 −

(
∂h
∂z

)2
](

∂w
∂r

+ ∂u
∂z

)
= 0 (2.10)

for the tangential forces. Here ∂z and ∂2
z refers to the first and second axial derivatives. In

terms of the boundary conditions at the fibre surface r = α (α is the dimensionless fibre
radius, i.e. α = a/h0), we introduce the Navier slip boundary condition (Navier 1823) in
the tangential direction and the no-penetration boundary condition in the normal direction
such that

w = ls
∂w
∂r

, (2.11)

u = 0. (2.12)

Here, ls represents the dimensionless slip length rescaled by h0. The governing equations
above can be further simplified under the long-wave approximation to give lubrication
equations. Similar to the previous work on planar films (Münch, Wagner & Witelski 2005),
different rescaling for the leading orders give different forms of the lubrication model.
When inertia is neglected (Re � 1), the one-equation model, which has been widely used
in the previous works (Craster & Matar 2006; Haefner et al. 2015; Zhang et al. 2020; Zhao
et al. 2023a), can be obtained from the Stokes equations. The dimensionless format of the
no-slip lubrication model is

∂h
∂t

= 1
h

∂

∂z

[
M(h)

∂

∂z

(
1
h

− ∂2h
∂z2

)]
, (2.13)

where M(h) is the mobility term

M(h) = 1
16

[
−3h4 − α4 + 4α2h2 + 4h4 ln

(
h
α

)]
. (2.14)

When inertia is not negligible and ls � 1, we propose another lubrication model consisting
of two equations (see Appendix A for the derivation). The dimensionless format of this
giant-slip lubrication model is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h2

∂t
+ ∂

(
h2w

)
∂z

= 0,

∂w
∂t

+ w
∂w
∂z

= − 1
We

∂

∂z

(
1
h

− ∂2h
∂z2

)
+ 1

Re
3

h2 − α2

∂
(
h2∂zw

)
∂z

− 1
Re

2α2

h2 − α2

(
∂2w
∂z2 − w

α ls

)
.

(2.15a)

(2.15b)

When α = 0, the lubrication model for the jet flows (Eggers & Dupont 1994) is recovered.
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3. Instability analysis

In this section, linear instability analysis based on ((2.2)–(2.11)) is performed using the
normal mode method, which has been widely used for the instability in different fluid
configurations (Rayleigh 1878; Tomotika 1935; Craster & Matar 2006; Li, Yin & Yin
2008; Si et al. 2009; Liang et al. 2011; González et al. 2016).

3.1. Derivation for the dispersion relation
To perform instability analysis, the dimensionless perturbed quantities are set as

u(r, z, t) = û(r)eωt+ikz, w(r, z, t) = ŵ(r)eωt+ikz and p(r, z, t) = 1 + p̂(r)eωt+ikz,
(3.1a–c)

where ω is the growth rate of perturbations and k is the wavenumber. Here, we assume that
there is no base flow inside the film. The perturbed quantities are linearly decomposed into
the pressure term and the viscosity term, û = ûp + ûν and ŵ = ŵp + ŵν .

For the pressure term, the velocity potential φ (i.e. ∂rφ = ûp and ∂zφ = ŵp) is introduce
to simplify the problem. The mass equation (2.2) becomes a zero-order Bessel equation

d
dr

(
r

dφ

dr

)
− k2rφ = 0, (3.2)

whose solution can be expressed in terms of Bessel functions

φ = A1I0(kr) + B1K0(kr). (3.3)

Here I0 and K0 are zero-order modified Bessel functions of the first and second kinds;
A1 and B1 are arbitrary constants awaiting determination. Calculating the derivatives of φ

gives the solution of ûp and ŵp,

ûp = k [A1I1(kr) − B1K1(kr)] , (3.4)

ŵp = ik [A1I0(kr) + B1K0(kr)] . (3.5)

Here I1 and K1 are first-order modified Bessel functions of the first and second kinds.
Substituting (3.3) into momentum equation (2.4) yields the solution of p̂, expressed as

p̂ = −Weω [A1I0(kr) + B1K0(kr)] . (3.6)

Considering the viscosity term of perturbed quantities, we simplify the momentum
equation (2.3) as a first-order Bessel equation,

d2ûν

dr2 + 1
r

dûν

dr
−

(
Reω + k2 + 1

r2

)
ûν = 0. (3.7)

So the solution of ûν is

ûν = A2I1(lr) + B2K1(lr), (3.8)

where l2 = k2 + Re ω; A2 and B2 are another two arbitrary constants. According to (2.2),

ŵν = il
k

[A2I0(lr) − B2K0(lr)] . (3.9)
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Combining the pressure parts and viscosity parts gives us the general solution of
perturbed variables, namely⎧⎪⎪⎨

⎪⎪⎩
û = A1kI1(kr) + A2I1(lr) − B1kK1(kr) + B2K1(lr),

ŵ = i
[
A1kI0(kr) + A2lI0(lr)/k + B1kK0(kr) − B2lK0(lr)/k

]
,

p̂ = −We ω [A1I0(kr) + B1K0(kr)] .

(3.10)

(3.11)

(3.12)

The dimensionless perturbed quantities for û, v̂, p̂, combined with h(x, t) = 1 +
ĥeωt+ikx, are then substituted into the boundary equations (2.5)–(2.11). For the boundary
conditions at the interface (r = 1), their linearisation gives

dŵ
dr

+ ikû = 0, (3.13)

p̂ − 2
We
Re

dû
dr

= ĥ
(

k2 − 1
)

, (3.14)

ωĥ = û. (3.15)

Furthermore, for the boundary conditions on the fibre surface (r = α), their linearised
forms are

ŵ = ls
dŵ
dr̂

, (3.16)

û = 0. (3.17)

According to (3.15), ĥ in (3.14) can be eliminated to give the final four equations of the
boundary conditions, i.e. (3.13), (3.14), (3.16) and (3.17). Substituting the Bessel functions
((3.10)–(3.12)) into these perturbed equations leads to a homogeneous system of linear
equations for A1, A2, B1 and B2, which has a non-trivial solution only if the determinant
of the coefficients vanishes. In this way, we have the final equation∣∣∣∣∣∣∣∣∣

kI1(kα) I1(lα) −kK1(kα) K1(lα)

F21 F22 F23 F24

2k3I1(k) (k2 + l2)I1(l) −2k3K1(k) (k2 + l2)K1(l)
F41 F42 F43 F44

∣∣∣∣∣∣∣∣∣
= 0, (3.18)

where
F21 = k2I0(kα) − lsk3I1(kα),

F22 = lI0(lα) − lsl2I1(lα),

F23 = k2K0(kα) + lsk3K1(kα),

F24 = −lK0(lα) − lsl2K1(lα),

F41 = I0(k)ω2 + 2Re−1k2I′1(k)ω + We−1(k2 − 1)kI1(k),

F42 = 2Re−1lI′1(l)ω + We−1(k2 − 1)I1(l),

F43 = K0(k)ω2 − 2Re−1k2K′
1(k)ω − We−1(k2 − 1)kK1(k),

F44 = 2Re−1lK′
1(l)ω + We−1(k2 − 1)K1(l).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)
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As ω occurs in the argument of some Bessel functions, such as I1(lα), (3.18) cannot be
solved explicitly for ω, except in two limiting cases, which are presented in the following
subsections.

3.2. Limiting case of jet flows
When the viscosity of the liquid is neglected (Re → ∞), the viscosity terms governing the
instability become zero, i.e. uν = wν = 0. As a result, the dispersion relation is simplified
to ∣∣∣∣∣ kI1(kα) −kK1(kα)

I0(k)ω2 + We−1(k2 − 1)kI1(k) K0(k)ω2 − We−1(k2 − 1)kK1(k)

∣∣∣∣∣ = 0. (3.20)

Here ω can be expressed explicitly as

ω =
√

(1 − k2)k
We

[K1(kα)I1(k) − I1(kα)K1(k)]
I1(kα)K0(k) + K1(kα)I0(k)

. (3.21)

As the fibre radius approaches infinitesimally small values, the flows inside the film are
expected to resemble jet flows. Consequently, substituting α = 0 into (3.21) yields the
dispersion relation for the instability of inviscid jets, originally proposed by Rayleigh
(1878), which is expressed as

ω =
√

(1 − k2)k
We

I1(k)
I0(k)

. (3.22)

When viscosity is taken into account, relying solely on the condition α = 0 is no longer
adequate to simplify (3.18) into the dispersion relation of jet flows. Hence, it becomes
imperative to introduce ultra-slip boundary conditions (ls → ∞), resulting in∣∣∣∣∣2k3I1(k) (k2 + l2)I1(l)

F41 F42

∣∣∣∣∣ = 0. (3.23)

This relation can be rearranged as

ω2 + 2
Re

k2

I0(k)

[
I′1(k) − 2klI1(k)I′1(l)

(l2 + k2)I1(l)

]
ω = 1

We
(1 − k2)k

I1(k)
I0(k)

l2 − k2

l2 + k2 , (3.24)

which is presented by Goldin et al. (1969). Using (l2 + k2)/(l2 − k2) = 1 + 2k2/(Reω)

and I′1(k) = I0(k) − I1(k)/k, we obtain the equivalent representation of (3.24),

ω2 + 2k2

Re

[
2 − I1(k)

kI0(k)
+ 2k2

l2 − k2

(
1 − l I1(k)I0(l)

k I0(k)I1(l)

)]
ω = 1

We
(1 − k2)k

I1(k)
I0(k)

, (3.25)

which is a widely used form of the dispersion relation for the temporal instability of a
viscous Newtonian jet, first proposed by Weber (1931). When Re → ∞, (3.22) is also
recovered.

These findings are further confirmed through numerical solutions of (3.18) using the
FindRoot function of MATHEMATICA. In the analysis, the capillary velocity is adopted
as the characteristic velocity for non-dimensionalisation, namely U = γ /μ. Consequently,
we arrive at Re = We = Oh−2, where the non-dimensional quantity Oh = μ/

√
ργ h0
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Figure 2. The dispersion relation between the growth rate ω and the wavenumber k for the limiting cases
of inviscid and viscous fluids. (a) The inviscid liquid film (Oh = 10−3) on fibres with different radii:
α = 0.8 (green dash-dotted line), 0.5 (blue dashed line), 0.2 (red dotted line), 0.01 (black solid line).
(b) The viscous liquid film (Oh = 0.5) on extremely thin fibres (α = 0.01) with different slip lengths: ls = 0.0
(green dash-dotted line), 0.1 (blue dashed line), 1.0 (red dotted line), 10 (black solid line). The circles are
the predictions of Rayleigh (1878) and Goldin et al. (1969). The lines are predictions from the NS dispersion
relation (3.18).

represents the Ohnesorge number, serving as a linkage between viscous forces, inertial
forces and surface-tension forces. For inviscid flows, we set Oh = 10−3. As depicted in
figure 2(a), the results from the NS dispersion relation (3.18) gradually converge towards
the predictions of Rayleigh’s model as the fibre radius diminishes. This outcome is
consistent with the theoretical analysis, thus further validating the numerical solutions
of (3.18). Although the asymptotic behaviours of inviscid cases are realised on the no-slip
boundary condition, for the viscous cases, they only manifest when an ultra-slippery fibre
is considered, as elucidated in figure 2(b). Here, the solutions of (3.18) converge towards
Goldin’s model (3.24) as ls increases. This divergence can be attributed to the differential
impacts of shear stresses from the fibre surfaces, influenced by the slip length.

3.3. Limiting case of film flows without inertia
In the regime where inertia of the liquid film is disregarded, i.e. Re � 1 (or Oh � 1),
l approximates k. This leads to the first column in (3.18) coinciding with the second
column, and the third with the fourth, resulting in an indeterminate form. To address this
issue, we employ the method proposed by Tomotika (1935), which involves expanding the
Bessel functions in a Taylor series with respect to l. For instance, I1(l) = I1(k) + I′1(k)(l −
k) + O[(l − k)2]. By eliminating the zero-order terms and neglecting higher-order terms
(greater than the second order), we arrive at a determinant form, expressed as∣∣∣∣∣∣∣∣∣

kI1(kα) kαI′1(kα) −kK1(kα) kαK′
1(kα)

G21 G22 G23 G24

2k3I1(k) 2k2 [
I1(k) + kI′1(k)

] −2k3K1(k) 2k2 [
K1(k) + kK′

1(k)
]

G41 G42 G43 G44

∣∣∣∣∣∣∣∣∣
= 0. (3.26)

The definitions of the functions Gij can be found in Appendix C. Note that ω appears
only linearly in the fourth line of the determinant, the dispersion relation between ω and k
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Figure 3. The dispersion relation between the growth rate ω and the wavenumber k for the limiting cases of
thin-film flows (α = 0.8). (a) No-slip cases with different inertial effects, Oh = 2 × 10−3 (green dash-dotted
line), 8 × 10−3 (blue dashed line), 3.2 × 10−2 (red dotted line), 0.128 (black solid line). (b) Slip cases (ls = 10)
with different inertial effects, Oh = 0.01 (green dash-dotted line), 0.1 (blue dashed line), 1 (red dotted line), 10
(black solid line). The circles are the predictions from the slip-modified Stokes model (Zhao et al. 2023a) and
the lines are predictions from the NS dispersion relation (3.18).

can be expressed explicitly. After replacing the differentiation of the Bessel functions by
I′1(k) = I0(k) − I1(k)/k and K′

1(k) = −K0(k) − K1(k)/k, we have

ω = k2 − 1
2

−I1(k)Δ1 + I0(k)Δ2 − K1(k)Δ3 + K0(k)Δ4

[kI0(k) − I1(k)] Δ1 − kI1(k)Δ2 − [kK0(k) + K1(k)] Δ3 + kK1(k)Δ4
,

(3.27)

where details of Δij are shown in Appendix C. This dispersion relation (3.27) is identical
to the slip-modified Stokes model proposed by Zhao et al. (2023a), which was derived
directly from the Stokes equations (neglecting inertia in the NS equations). Numerical
investigations are also performed to further support the theoretical analysis, illustrated
in figure 3, where the predictions generated by (3.18) tend to converge towards the
Stokes model as Oh increases (inertia declines). Remarkably, the rate of convergence
for the no-slip cases surpasses that of the slip cases significantly. Specifically, when
Oh = 3.2 × 10−2 (as indicated by the red dotted lines in figure 3a), predictions from the
NS dispersion relation closely align with the results of the no-slip Stokes model. However,
for the slip cases, Oh ≥ 1 is required for a similar convergence. One plausible explanation
for this observation, considering the omission of the base flow, is that the no-slip boundary
conditions constrain the fluid motion within the liquid film more effectively than the slip
boundary conditions, thereby mitigating the influence of inertia.

3.4. Predictions of the dispersion relation
Based on the insights gained from our analysis of limiting cases, we turn to the examination
of inertia and slip effects in more general scenarios in this subsection.

In figure 4 we present dispersion relations from (3.18) for various slip lengths, while
holding specific values of Oh (columns) and α (rows). The inertial effects are shown
along a given row (fixed α), with the first column being inertia-dominated flows and the
third column corresponding to viscosity-dominated cases. The deviations observed across
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Figure 4. The dispersion relation between the growth rate ω and the wavenumber k on different boundary
conditions of various fibre radii: (a–c) α = 0.8, (d– f ) α = 0.5, (g–i) α = 0.2. For the inertial effects: (a,d,g)
Oh = 10−3, (b,e,h) Oh = 0.1, (c, f,i) Oh = 10. Line types represent different values of the slip length: ls = 0
(green dash-dotted line), 0.1 (blue dashed line), 1 (red dotted line), 10 (black solid line).

different ls values indicate that slip predominantly governs the dynamics in viscous flows
within the film but has a comparatively minor impact on inertia-dominated cases. This
observation is consistent with the outcomes obtained from the limiting case analysis of
jet flows (figure 2a). We also investigate the influence of fibre radii (film thickness) on
the instability within each column. As film thickness (1 − α) increases, the deviations
diminish, suggesting that slip effects become less pronounced in thicker films.

These two observations can be explained qualitatively by considering variations in
velocity profiles within the liquid films, influenced by both slip and inertia. As the slip
length increases, the flow field near the solid wall undergoes a transition from parabolic
flow with a non-uniform velocity profile to plug flow with a uniform velocity profile
(Münch et al. 2005). The parabolic flow field decreases and constitutes only a small
fraction of the film thickness with an increase in inertia (Schlichting & Kestin 1961),
leading to more uniform velocity profiles. This explains why slip does not significantly
impact the instability with Oh = 10−3 (figure 4a,d,g). However, when Oh = 10, most
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Figure 5. Influence of inertia (different values of Oh) on the dominant wavenumber kmax on fibres of two radii:
(a) α = 0.8, (b) α = 0.2. The solid lines are the predictions of the NS dispersion relation (3.18) for different
slip lengths: ls = 0 (green), 0.1 (purple), 1.0 (blue), 10 (black), 100 (red). The dotted lines and dashed lines
represent the predictions from the no-slip lubrication model (2.13) and the giant-slip one (2.15).

of the flow fields within the films are expected to resemble parabolic profiles, making
them more susceptible to the effects of slip. Moreover, as the film thickness increases,
the proportion of the parabolic flow field in the films diminishes, and the velocity profiles
become more uniform, resulting in weaker influences of slip on the instability.

The critical wavenumbers shown in figure 4 align with the findings of Plateau (1873),
i.e. kcrit = 2πh0/λcrit = 1, indicating that slip conditions do not impact these values.
These values are determined by the interplay between two curvature terms governing
the Laplace pressure on the right-hand side of (2.9). The circumferential curvature
term, 1/(h

√
1 + (∂xh)2), acts as the driving force, while the tangential curvature term,

∂2
x h/(1 + (∂xh)2)3/2, acts as the resisting force. The balance of forces outlined in (2.9)

yields the term k2 − 1 in F4j of the final dispersion relation (3.18), ultimately determining
the critical wavenumber as kcrit = 1.

Figure 5 further elucidates the relationship between the dominant wavenumber kmax
and Oh. Remarkably, inertia appears to exert minimal influence on kmax in no-slip cases.
Specifically, for a thin film with α = 0.8 (figure 5a), kmax for small ls remains unchanged
as Oh increases. This value is close to the analytical expression kmax = √

1/2 derived
from (B4) for no-slip cases. This finding offers a plausible explanation for why the
no-slip lubrication model (2.13), which neglects inertia, has demonstrated remarkable
capabilities in predicting the wavelengths observed in numerous experimental studies
(Quéré 1990; Craster & Matar 2006; Duprat et al. 2007; Craster & Matar 2009; Ji et al.
2019). Conversely, in slip cases, kmax exhibits a decline with increasing Oh. This trend
holds across different values of slip length (ls), with more pronounced decreases in kmax
for larger slip lengths. Encouragingly, the predictions of the giant-slip lubrication model
(B3) closely align with the results of cases with substantial slip (ls > 10). As Oh becomes
sufficiently large for all ls, kmax predicted by the NS dispersion relation converges to a
constant, whereas in the giant-slip lubrication model, kmax consistently decreases rapidly.
For a thick film with α = 0.2 (figure 5b), though kmax for the no-slip case decline from
0.7 to 0.61, which cannot be predicted by the no-slip lubrication model (B4), the variation
trend of kmax with Oh is similar to that observed in thin films (α = 0.8). Furthermore, slip
is found not to significantly impact kmax in film flows dominated by inertia (Oh < 10−2),
consistent with the findings in figure 4. However, in viscous cases (Oh > 1), kmax decreases
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Figure 6. Numerical settings: (a) quadrilateral computational domains with different boundary conditions
(BCs), (b) non-uniform triangular mesh.

significantly as ls increases, corroborating the conclusions drawn in the work of Zhao et al.
(2023a).

4. Direct numerical simulations

In this section, direct numerical simulations are performed to corroborate the theoretical
findings in § 3 and gain deeper physical understanding of how inertia and slip impact the
instability of films on fibres.

The numerical solution of the NS equations is achieved through the finite element
method within a computational framework facilitated by COMSOL Multiphysics 6.1.
The simulations for the film flows are conducted using the arbitrary Lagrangian–Eulerian
(ALE) approach. In this method, free-surface nodes are moved in a Lagrangian manner,
deforming the computational domain, while nodes inside the film follow a predefined
evolution. This approach offers a distinct advantage over other techniques, such as level
set or phase field methods. Unlike these alternatives, the ALE approach ensures an
exact capture of the free surface, akin to the Lagrangian approach, while retaining the
primary advantage of Eulerian methods that mesh elements are less prone to distortion.
Consequently, it has gained widespread use in predicting the dynamics of free-surface
flows across various phenomena such as droplet dynamics (Chubynsky et al. 2020;
Chakraborty, Chubynsky & Sprittles 2022), dynamics of a ligament (Wei et al. 2021), jet
breakup (Martínez-Calvo et al. 2020b) and the instability of planar films (González et al.
2016; Moreno-Boza, Martínez-Calvo & Sevilla 2020b). However, it is worth noting that
this method is not suitable for scenarios where the topology of the domain might change,
such as in cases involving fluids inside the film after rupture. This limitation arises from
the necessity to maintain consistent mesh connectivity throughout the simulation, and the
only workaround is to manually change the mesh topology.

The computational domain is a quadrilateral (the section of a hollow fibre in cylindrical
coordinates) with a size [α, h0 + ĥ] × [0, L], illustrated in figure 6(a). Here L is the
length of the film/fibre. we assign a value of α = 0.5 to the radius of the fibre, and
the initial radius of the film is h0 = 1. Small perturbations (ĥ) are introduced at the
liquid–gas interface. The left and right boundary conditions of the computational domain
are considered periodic. The top represents the free surface, following (2.5)–(2.7). The
bottom is treated as the slip-wall boundary modelled by (2.11) and (2.12), where the slip
length ls serves as an input parameter for this boundary condition. The axial velocity
on the boundary wb = ls∂rwb. When ls = 0, the no-slip boundary condition (wb = 0) is
recovered. The computational mesh for the liquid domain utilises non-uniform triangular
Lagrange elements, shown in figure 6(b). Special attention is given to placing finer
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grid elements near the solid boundary to accurately capture the fluid behaviours in the
non-uniform velocity profiles. The minimum grid size employed is 10−3. Additionally,
the variable-order backward differentiation formula is utilised for the temporal integration
of the NS equations. All simulations are conducted using dimensionless units, which are
established through rescaling variables as described in (2.1a–d).

We explore two different configurations in this study, each varying in film length and
initial perturbations, allowing us to investigate the combined effects of inertia and slip on
the dominant wavelength (§ 4.1) and the evolution of perturbation growth (§ 4.2)

4.1. Dominant wavelengths of perturbations
To investigate the influence of inertia and slip effects on the dominant wavelengths of
perturbations, we perform simulations involving long films with a length of L = 200 on
various slippery fibres. We explore twenty different cases by considering five values of the
Ohnesorge number, specifically Oh = 10−3, 10−2, 0.1, 1 and 10, on fibres characterized by
four slip lengths, namely ls = 0, 1, 10 and 100. In these simulations, the system is initiated
with random initial perturbations described as h(z, 0) = 1 + εN(z), where ε = 10−3 and
N(z) is a random variable following a normal distribution with a mean of zero and a unit
variance. These initial perturbations are designed to replicate the arbitrary disturbances
commonly encountered in reality.

Driven by surface tension, small random perturbations gradually evolve over time,
giving rise to significant capillary waves, as illustrated in figure 7, which shows the
evolution of interface profiles h(z, t) for six different cases. To assess the impact
of inertial effects, identical initial conditions are assigned for all six cases. For the
inertia-dominated cases (Oh = 10−3), the evolution of capillary waves in slip cases is
nearly indistinguishable from that in no-slip cases, except for the slightly faster growth
of perturbations in the slip case compared with the no-slip case (figure 7a). Conversely,
when viscosity becomes significant (figure 7b,c), slip noticeably affects h(z, t), resulting
in faster perturbation growth and longer capillary waves. Furthermore, the wavelengths
of the no-slip cases do not appear to be significantly influenced by inertia (see the six
waves in figure 7a i,b i,c i), despite the presence of deviations in local interface profiles.
All these findings align qualitatively with the theoretical predictions outlined in § 3.4.
Additionally, we conduct a comparison between the interface profiles obtained through
simulations for the NS equations and those calculated numerically from the lubrication
models. The details are presented in Appendix D.

To quantitatively compare the numerical observations with the theoretical predictions
derived from (3.18), we conduct multiple independent simulations (10 for each case) with
different initial conditions to collect statistical data of the dominant modes. This statistical
approach was proposed by Zhao, Sprittles & Lockerby (2019) and has been employed
in evaluating dominant modes of instability in various films (Zhao et al. 2021; Zhao,
Zhang & Si 2023b; Zhao et al. 2023a). For each simulation, a discrete Fourier transform
is applied to the interface position h(z, t) to obtain the power spectral density (PSD) of
the perturbations. The square root of the ensemble-averaged PSD (Hrms) at each time
step is depicted in figure 8, with a Gaussian function used to fit the modal distribution
(spectrum). The peak of this fitted spectrum corresponds to the dominant wavenumber
kmax, as indicated by the black dash-dotted lines. Extracting kmax from the fitted spectrum
at each time instant yields the insets in figure 8. Promisingly, kmax converges to a constant
rapidly in all the cases. Consistent with the findings in figure 7, the two spectra in
figure 8(a,c) are nearly identical, suggesting that slip does not significantly impact the
instability in the inertia-dominated regime. However, in figure 8(d) the spectrum for the
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Figure 7. Interface profiles at four time instants, illustrated in different colours, on the fibres of the radius
α = 0.5. The inertial effects are presented by different values of Oh: (a) Oh = 10−3, (b) Oh = 0.1, (c) Oh = 10.
Panels (a i,b i,c i) are the predictions of no-slip cases (ls = 0) and (a ii,b ii,c ii) are the results of slip cases
(ls = 10).

slip case exhibits a smaller dominant wavenumber compared with the no-slip case in
figure 8(c). This discrepancy indicates that, in the viscous regime, slip leads to an increase
in the wavelength.

This statistical analysis is applied for all the cases to generate the symbols (λmax =
2π/kmax) in figure 9, which exhibit a good agreement with theoretical predictions.
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Figure 9. Inertial effects on the dominant wavelengths: a comparison between the theoretical predictions of
(3.18) and numerical solutions with different slip lengths.
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Figure 10. Film thinning of one perturbation wave in an axially symmetric domain. For this case, L = 10,
α = 0.5, Oh = 0.1 and ls = 0. Contours of the axial velocity w(r, z, t) (a i,b i,c i) and radial velocity u(r, z, t)
(a ii,b ii,c ii) inside the film are shown at three time instants: (a) t1 = 158, (b) t2 = 264, (c) t3 = 370. Here hmin
represents the minimum radius of the film.

Consequently, we can draw the conclusion that the dominant modes of the thin-film
instability remain largely unaffected by inertia in no-slip cases. However, they become
significantly influenced by inertia on slippery surfaces, leading to the formation of longer
perturbation waves.

4.2. Evolutions of perturbation growth
To investigate the impact of inertia and slip on perturbation growth, we conduct
simulations of a relatively short film with L = 10 on slippery fibres. The film is initially
perturbed with h(z, t) = 1 + ε cos[2π(z/L − 1/2)], where ε = 0.01.

Figure 10 presents the time evolution of the film interface on a no-slip fibre with a
radius of α = 0.5, with the corresponding fluid structure. The contour in the lower panel
of figure 10 depicts the radial velocity u. The upper half displays the axial velocity w,
showing that opposite fluxes occur, directed towards the left and right boundaries, as the
perturbation at the free surface grows due to instability. Notably, while the magnitudes
of both u and w increase during the process, the fluid structure remains similar at the
linear stage (the amplitude of disturbances is typically less than 20 % of initial radius,
i.e. ĥ < 0.2), as evident from the contour distribution in figure 10.

In figure 11 we present more velocity fields for four distinct cases, considering two
different values of Oh: 10−3 for the inertia-dominated cases and 0.1 for the viscous cases,
on both no-slip (left panel) and slip (right panel) fibres. According to the variations of the
contours in the upper half of figure 11(b), slip not only alters the velocity distribution near
the surface of the fibres but also accelerates instability in the viscous cases, as evidenced
by the larger axial velocity component w. However, in the case of inertia-dominated flow,
slip has a negligible impact on instability, corroborating our previous findings. The lower
half of figure 11 illustrates the velocity vectors near z = ±0.9 for different cases. It is
apparent that slip reduces the velocity gradient ∂rw near the surface. Furthermore, the
parabolic flow field in the no-slip case with Oh = 10−3 is observed to be considerably
smaller than that in the case with Oh = 0.1. This finding lends additional support to the
explanation provided following figure 4. In essence, the more uniform velocity profile in
the inertia-dominated case serves to limit the impact of slip, resulting in nearly identical
dynamics of the instability.
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Figure 11. Inertia and slip effects on axial velocity fields: (a) Oh = 10−3 at t = 2027, (b) Oh = 0.1 at t = 106.
Here, the fibre radius α = 0.5. Panels (a i,a iii) and (b i,b iii) illustrate the contours of the entire configuration
(a i,b i) and velocity vectors of the local field near |z| = 0.9 (a iii,b iii) of the no-slip cases. Panels (a ii,a iv)
and (b ii,b iv) show the results of the slip case (ls = 10).

Figure 12 illustrates the growth rates of perturbations in the twenty simulated cases.
Based on the instability analysis (§ 3.1) that employs the expression h(z, t) = 1 + ĥeikz+ωt,
the initial perturbation, modelled by a cosine function with a fixed wavenumber k = 2π/L,
experiences exponential growth. So ln(1 − hmin) is utilised as the y coordinate in figure 12
to present the linear growth of perturbations. The numerical results closely align with the
theoretical predictions, demonstrating the effectiveness of the NS dispersion relation (3.18)
in describing the inertial effects on the instability of films on slippery fibres. Furthermore,
it becomes evident that deviations due to slip become more pronounced as inertial effects
diminish, thus providing quantitative confirmation of previous findings.

In addition to examining the evolution of perturbation growth at the linear stage, we
also delve into the nonlinear dynamics, illustrated in figure 13. Due to the dramatic
changes in the interface profile at the nonlinear stage, the initial dense mesh experiences
significant deformation, resulting in poor grid quality and potential numerical errors. To
address this challenge, we implement an approach of remeshing, regenerating the mesh
(reducing nodes) in the vicinity near the point of hmin when hmin < 0.55. The simulations
encompass both inertia-dominated and viscosity-dominated cases on the no-slip (left
panel) and slip (right panel) boundary conditions. Notably, the nonlinear evolution reveals
substantial distinctions from the dynamics at the linear stage. The interface shapes are
found to deviate from their initial cosine, forming plateau structures at their lowest points.
Ultimately, satellite droplets emerge between the two main drops. Additionally, fluid
structure within the film no longer exhibits ‘similarity’ at different time instants owing
to the drastic changes in interface profiles. In scenarios dominated by inertia, although
slip has a minimal effect on the interface shape, it substantially alters the flow structure.
Figure 13(c,d) illustrates the evolution of vortical structures within the liquid film on a
no-slip wall, resulting in significant oscillations of the interface before rupture. Conversely,
no vortices appear within the film on the slippery fibre due to the weak shear forces acting
on the fluid near the surface. In viscosity-dominated scenarios, slip not only accelerates
perturbation growth significantly, as observed at the linear stage, but also affects the
interface profiles near rupture. This alteration results in the formation of filaments, rather
than satellite droplets, between the two main drops. One plausible explanation is that the
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Figure 12. Linear time evolution of the minimum radii of films hmin(t) with four Oh values: (a) Oh = 10−3,
(b) Oh = 10−2, (c) Oh = 0.1, (d) Oh = 10. The numerical solutions (dotted lines with symbols) are compared
with the predictions of the NS dispersion relation (solid lines) for four lengths: ls = 0 (green), 0.1 (blue), 1 (red)
and 10 (black). The theoretical values of ω are (a) 2.81 × 10−4 (green), 2.91 × 10−4 (blue), 2.94 × 10−4 (red),
2.95 × 10−4 (black); (b) 2.41 × 10−3 (green), 2.61 × 10−3 (blue), 2.84 × 10−3 (red), 2.89 × 10−3 (black);
(c) 8.12 × 10−3 (green), 1.10 × 10−2 (blue), 1.99 × 10−2 (red), 2.34 × 10−2 (black); (d) 8.90 × 10−3 (green),
1.35 × 10−2 (blue), 3.62 × 10−2 (red), 6.32 × 10−2 (black).

dominant perturbation wavelength of the instability in the slip case (λmax = 15.32) is
notably larger than that in the no-slip case (λmax = 9.38), resulting in the flatter profile
in figure 13(h). The observation also suggests that the volume of satellite droplets is
influenced by both inertia and slip.

Figure 14 presents variations of satellite droplets, extracted from more than seventy
simulations with varying values of Oh and ls. In figure 14(a) we depict the interface
profiles of satellite droplets. These profiles clearly demonstrate that in viscosity-dominated
scenarios, slip significantly reduces the volumes of satellite droplets. However, in the case
of inertia-dominated scenarios where ls > 1, slip has no discernible effect on the droplet
volumes. Note that these profiles were obtained when hmin ≤ 0.01 h0. Furthermore, the
volume of the satellite droplets is quantified by calculating the area between the two
lowest points of the profiles, as shown in figure 14(b). It is evident that in viscous cases the
volume of satellite droplets decreases as ls increases, and higher viscosity (larger Oh) leads
to a more rapid rate of decrease. When viscosity dominates the fluids (Oh >= 10), the
relationship between volume (Vsat) and slip length (ls) approximately follows Vsat ∼ l−5

s .
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Figure 13. Evolutions of perturbation growth at the nonlinear stage with two Oh values: (a–d)
Oh = 10−3, (e–h) Oh = 10. The contours represent the velocity magnitude |U| = √

u2 + w2 .
Panels (a i,b i,c i,d i,e i, f i,g i,h i) illustrate the contours and streamlines of no-slip cases. Panels
(a ii,b ii,c ii,d ii,e ii, f ii,g ii,h ii) show the results of the slip cases (ls = 10).

5. Conclusions

In this study a theoretical model is developed based on the linear instability analysis
of the axisymmetric NS equations to investigate the influence of inertia and slip on
dynamics of liquid films on fibres. The model is verified theoretically by the limiting
cases for jet flows and film flows without inertia. The resulting dispersion relation (3.18)
reveals some intriguing insights. Firstly, it shows that slip has a relatively minor impact
on the instability of flows dominated by inertia, whereas it significantly accelerates the
growth of perturbations in viscous film flows. Moreover, the influence of slip appears
to be contingent on the thickness of the liquid film, with thinner films exhibiting more
pronounced slip effects. We also extract the dominant perturbation modes, denoted as
kmax, from the dispersion relation. In cases with no-slip boundary conditions, kmax remains
largely unaffected by inertia. Remarkably, for thin films characterized by α = 0.8, kmax
maintains a nearly constant value, closely aligning with the predictions of the no-slip
lubrication model (2.13), even as Oh varies. Conversely, when slip is introduced, kmax
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Figure 14. (a) The interface profiles of satellite droplets on different boundary conditions with: ls = 0 (black
dash-dotted lines), 1 (green solid lines), 10 (blue dashed lines) and 100 (red dotted lines). Panels (a i) and (a ii)
show the results with Oh = 10−3 and Oh = 10, respectively. (b) Variations of the satellite droplets with slip
lengths. The inset provides a schematic of the volume of satellite droplets.

exhibits a noticeable decrease as inertia decreases. In the limiting case where ls → ∞, the
giant-slip lubrication model (2.15) offers an approximate prediction for kmax.

To substantiate our theoretical findings, direct numerical simulations of the NS
equations are conducted via two distinct fluid configurations: (i) a long film with random
initial perturbations to investigate the dominant modes of perturbations, and (ii) a short
film with a fixed wavelength to examine the evolution of perturbation growth. The velocity
fields extracted from these simulations yield valuable insights. Notably, the parabolic
field of the velocity profiles in inertia-dominated cases are observed to be significantly
smaller than those in cases governed by viscosity. Given that slip primarily influences
non-uniform velocity profiles, this observation provides an explanation for why the impact
of slip is dampened by inertia. Furthermore, we delve into the realm of nonlinear dynamics
in perturbation growth. We found that nonlinear dynamics, in contrast to the linear
stage, leads to the generation of intricate vortical structures near no-slip surfaces in
inertia-dominated cases. Interestingly, slip was found to mitigate the impact of these shear
stresses, resulting in smoother flows without the presence of vortices. In the context of
viscous cases, slip was identified to reduce the volume of satellite droplets (Vsat) at the
final stages before rupture. When viscosity dominates the fluid dynamics, this reduction in
volume followed an approximate power-law relationship, specifically Vsat ∼ l−5

s .
Given that experimental evidence has already confirmed the existence of wall slip in

films on fibres, as demonstrated in previous studies (Haefner et al. 2015; Ji et al. 2019),
and that slip length can be directly quantified through methods such as those described in
Huang, Guasto & Breuer (2006), Maali & Bhushan (2012) and Maali, Colin & Bhushan
(2016), it is our hope that the wall slip can be controlled experimentally to validate our
predictions, especially regarding the impact of inertia on wavelengths (drop size) for
various liquids. For instance, experiments involving water can be conducted to examine
inertia-dominated scenarios, while experiments with silicone oil can be carried out to
investigate viscosity-dominated cases. There are numerous potential extensions to this
framework. One avenue is to incorporate the influence of other physical factors, such as
electric fields (Ding et al. 2014) and intermolecular forces (Ji et al. 2019; Tomo et al. 2022),
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both of which are known to affect critical wavenumbers (kcrit) and dominant modes (kmax)
in the instability. Additionally, exploring related flow configurations, such as a liquid film
flowing down a fibre driven by a body force, as discussed in Liu & Ding (2021), presents
intriguing opportunities. An open problem in this context is to comprehend the impact of
inertial effects on the dynamics of travelling waves in various flow regimes.
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Appendix A. Derivation for the giant-slip lubrication model

In this appendix we follow the approach employed by Münch et al. (2005) to derive the
giant-slip lubrication model. To get this lubrication equation from the axisymmetric NS
equations, we need to establish the leading-order terms by their asymptotic expansion in
ε, for which we use the rescaling shown below:

x̃ = λ̃x, r̃ = ελ̃r, w̃ = Ũw, ũ = εŨu, t̃ = λ̃
Ũ

t, p̃ = μU
λ

p. (A1a–f )

Here, λ̃ = h0/ε. Substituting all these scalings into the dimensional NS equations yields

∂w
∂z

+ 1
r

∂(ur)
∂r

= 0, (A2)

ε2Re
(

∂u
∂t

+ w
∂u
∂z

+ u
∂u
∂r

)
= −∂p

∂r
+ ε2 ∂2u

∂z2 + ∂

∂r

[
1
r

∂(ur)
∂r

]
, (A3)

ε2Re
(

∂w
∂t

+ w
∂w
∂z

+ u
∂w
∂r

)
= −ε2 ∂p

∂z
+ ε2 ∂2w

∂z2 + 1
r

∂

∂r

(
r
∂w
∂r

)
. (A4)
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The equations at the liquid–gas interface (r = h) are scaled as

∂h
∂t

+ w
∂h
∂z

− u = 0,

p − 2

1 + ε2 (∂zh)2

[
∂u
∂r

− ∂h
∂z

(
∂w
∂r

+ ε2 ∂u
∂z

)
+ ε2

(
∂h
∂z

)2
∂w
∂z

]
(A5)

= Re
We

⎡
⎣ 1

ε2h
√

1 + ε2 (∂zh)2
− ∂2

z h(
1 + ε2 (∂zh)2)3/2

⎤
⎦ , (A6)

2ε2 ∂h
∂z

(
∂u
∂r

− ∂w
∂z

)
+

[
1 − ε2

(
∂h
∂z

)2
] (

∂w
∂r

+ ε2 ∂u
∂z

)
= 0. (A7)

For the boundary conditions at the liquid–solid interface (r = α), the scaled forms are

w = ls
ε2

∂w
∂r

, (A8)

u = 0. (A9)

The rescaled equations can be approximately solved by the perturbation expansion,
expressed as

(w, u, p, h) = (w0, u0, p0, h0) + ε2 (w1, u1, p1, h1) + · · · . (A10)

After eliminating all the high-order terms of ε and only keeping the terms of the leading
order, we obtain

∂zw0 + ∂r(u0r)/r = 0, (A11)

∂rp0 = ∂r
[
∂r (u0r) /r

]
, (A12)

∂r (r∂rw0) = 0, (A13)

∂th0 + w0∂zh0 − u0 = 0, (A14)

p0 − 2 (∂ru0 − ∂zh0∂rw0) = Re
We

(
1/h0 − ∂2

z h0

)
, (r = h), (A15)

∂rw0 = 0, (r = h), (A16)

∂rw0 = 0, (r = α), (A17)

u0 = 0, (r = α). (A18)

According to (A13), (A17) and (A18), w is independent of the r, i.e. w0 = w0(z, t). So
(A11) is rearranged as

u0 = −r∂zw0/2. (A19)

Substituting (A19) into (A14) and (A15) yields

∂th0 + w0∂zh0 + h0∂zw0/2 = 0, (A20)

p0 + ∂zw0 = Re
We

(
1/h0 − ∂2

z h0

)
. (A21)
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For the terms of the next order, (A4) becomes

Re
(

∂w0

∂t
+ w0

∂w0

∂z

)
= −∂p0

∂z
+ ∂2w0

∂z2 + 1
r

∂

∂r

(
r
∂w1

∂r

)
, (A22)

and (A7) and (A8) are applied for the boundary conditions

−3
∂h0

∂z
∂w0

∂z
+ ∂w1

∂r
− r

2
∂2w0

∂z2 = 0, (r = h), (A23)

w0 − ls
∂w1

∂r
= 0, (r = α). (A24)

Integrating (A22) from α to h and using boundary conditions (A23) and (A24) leads to

Re
(

∂w0

∂t
+ w0

∂w0

∂z

)∫ h

α

r dr =
(

−∂p0

∂z
+ ∂2w0

∂z2

)∫ h

α

r dr + r
∂w1

∂r

∣∣∣∣
r=h

r=α

. (A25)

Rearranging (A25) yields

Re
(

∂w0

∂t
+ w0

∂w0

∂z

)
= −∂p0

∂z
+ ∂2w0

∂z2 + h0

h2
0 − α2

(
6
∂h0

∂z
∂w0

∂z
+ h0

∂2w0

∂z2

)
− 2α

h2
0 − α2

w0

ls
.

(A26)

Combining (A20), (A21) and (A26) gives the final lubrication model for the film on a
fibre with a giant-slip length, written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h2

∂t
+ ∂

(
h2w

)
∂z

= 0,

∂w
∂t

+ w
∂w
∂z

= − 1
We

∂

∂z

(
1
h

− ∂2h
∂z2

)
+ 1

Re
3

h2 − α2

∂
(
h2∂zw

)
∂z

− 1
Re

2α2

h2 − α2

(
∂2w
∂z2 − w

α ls

)
.

(A27a)

(A27b)

If U = γ /μ, Re = We = Oh−2, the momentum equation (A27b) becomes

∂w
∂t

+ w
∂w
∂z

= −Oh2 ∂

∂z

(
1
h

− ∂2h
∂z2

)
+ Oh2 3

h2 − α2

∂
(
h2∂zw

)
∂z

− Oh2 2α2

h2 − α2

(
∂2w
∂z2 − w

αls

)
.

(A28)

It is worth noting that h2 − α2 introduces a singularity as h → α. A similar singularity is
also observed in other lubrication equations describing free-surface flows with significant
inertial effects, such as liquid jets (Eggers & Dupont 1994), liquid sheets (Erneux & Davis
1993) and planar films on ultra-slip walls (Münch et al. 2005). However, this singularity
disappears in lubrication models that describe inertialess flows of bounded thin films
(Oron, Davis & Bankoff 1997; Kang, Nadim & Chugunova 2017). The absence is primarily
attributed to the distinct scaling used in the lubrication approximation.

Appendix B. Linear instability analysis for lubrication equations

In this appendix the instability analysis is performed for the lubrication equations (2.15)
and (2.13) using the normal mode method.
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Inertia and slip effects on the instability of a liquid film

For the giant-slip model (2.15), substituting h(z, t) = 1 + ĥeωt+ikz and w(z, t) =
ŵeωt+ikz into the linearised lubrication equation gives

ωĥ = −ikŵ/2, (B1)

Oh−2ωŵ = ik(1 − k2)ĥ − 3k2ŵ
1 − α2 + 2α2

1 − α2

(
k2 + 1

α ls

)
ŵ. (B2)

Eliminating the ĥ in (B2) yields the dispersion relation

ω2 + Oh2
[

3 − 2α2

1 − α2 k2 − 2α

(1 − α2)ls

]
ω + Oh2 k2(k2 − 1)

2
= 0. (B3)

With a similar approach, we can have the dispersion relation from the no-slip lubrication
model (2.13), namely

ω = (k2 − 1)k2(3 + α4 − 4α2 + 4 ln α)/16. (B4)

Appendix C. Auxiliary functions for the dispersion relations

In this appendix we present the definitions of the auxiliary functions for the dispersion
relations (3.26) and (3.27).

The Gij in (3.26) are

G21 = k2I0(kα) − lsk3I1(kα),

G22 = kI0(kα) + k2αI′0(kα) − 2lsk2I1(kα) − lsk3αI′1(kα),

G23 = k2K0(kα) + lsk3K1(kα),

G24 = −kK0(kα) − k2αK′
0(kα) − 2lsk2K1(kα) − lsk3αK′

1(kα),

G41 = 2k2I′1(k)ω + (k2 − 1)kI1(k),

G42 = 2
[
k2I′0(k) − kI′1(k)

]
ω + (k2 − 1)kI′1(k),

G43 = −2k2K′
1(k)ω − (k2 − 1)kK1(k),

G44 = −2
[
k2K′

0(k) + kK′
1(k)

]
ω + (k2 − 1)kK′

1(k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)

For (3.27), we have

Δ1 =
∣∣∣∣∣∣

αI0(kα) K1(kα) αK0(kα)

H22 H23 H24
kI0(k) + I1(k) kK1(k) kK0(k) − K1(k)

∣∣∣∣∣∣ , (C2)

Δ2 =
∣∣∣∣∣∣

I1(kα) K1(kα) αK0(kα)

H21 H23 H24
kI1(k) kK1(k) kK0(k) − K1(k)

∣∣∣∣∣∣ , (C3)
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Figure 15. Interface profiles of inertialess flows on two fibres of different radii at three time instants:
(a) α = 0.8, t1 = 0, t2 = 5700, t3 = 8400; (b) α = 0.5, t1 = 0, t2 = 400, t3 = 600. The blue dotted lines and
red dashed lines represent the results predicted by (D1) and (2.13), respectively. The solid lines are obtained
from direct numerical simulations for the NS equations.

Δ3 =
∣∣∣∣∣∣

I1(kα) αI0(kα) αK0(kα)

H21 H22 H24
kI1(k) kI0(k) + I1(k) kK0(k) − K1(k)

∣∣∣∣∣∣ , (C4)

Δ4 =
∣∣∣∣∣∣

I1(kα) αI0(kα) K1(kα)

H21 H22 H23
kI1(k) kI0(k) + I1(k) kK1(k)

∣∣∣∣∣∣ , (C5)

where
H21 = kI0(kα) − lsk2I1(kα),

H22 = (2 − lsk2α)I0(kα) + (α − 2ls)kI1(kα),

H23 = −kK0(kα) − lsk2K1(kα),

H24 = (2 − lsk2α)K0(kα) + (2ls − α)kK1(kα).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C6)

Appendix D. Comparisons of the interface profiles

In this appendix we compare the interface profiles obtained through simulations for the NS
equations with those calculated numerically from the lubrication equations. Here, we focus
on inertialess flows (Oh � 1) on no-slip fibres. So we perform numerical investigations
for the no-slip lubrication equation (2.13) introduced in § 2. Note that Lister et al. (2006)
used a different lubrication equation (D1) to explore nonlinear dynamics of film interfaces,
particularly those exhibiting characteristic collar-and-lobe structures, written as

∂h
∂t

= −1
3

∂

∂z

[
(h − α)3

(
∂h
∂z

+ ∂3h
∂z3

)]
. (D1)

Here, the assumption h − α � α simplifies the form of (D1) compared with (2.13).
Both of these lubrication equations, with periodic boundary conditions, are solved using
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a simple second-order finite-difference scheme in both time and space. In the direct
numerical simulations of the NS equations, we set Oh = 10 and ls = 0 to enable a
straightforward comparison with the numerical solutions of the lubrication equations.
Figure 15(a) illustrates excellent agreement between the numerical predictions of the NS
and lubrication equations, starting from the same initial interface profile, for a thin film
(α = 0.8). However, deviations become more pronounced for a thicker film (α = 0.5),
consistent with previous theoretical results from instability analysis (Zhao et al. 2023a).
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