Appendix C

Solution to a common differential equation

We have often encountered a differential equation of the type

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}+\left[\epsilon-v \cosh 2 \mu-v \sinh 2 \mu \tanh x+v \cosh ^{2} \mu \operatorname{sech}^{2} \mathrm{x}\right] \psi=0 \tag{C.1}
\end{equation*}
$$

where v, μ are parameters and ϵ is the eigenvalue. This differential equation has been solved in Section 12.3 of [113] where the Schrödinger problem has also been extensively studied. Here we reproduce the solution.

The solution is given in terms of new parameters a and b

$$
\begin{align*}
& a=\frac{1}{2} \sqrt{v \mathrm{e}^{2 \mu}-\epsilon}-\frac{1}{2} \sqrt{v \mathrm{e}^{-2 \mu}-\epsilon} \equiv \frac{1}{2} \kappa_{+}-\frac{1}{2} \kappa_{-} \tag{C.2}\\
& b=\frac{1}{2} \sqrt{v \mathrm{e}^{2 \mu}-\epsilon}+\frac{1}{2} \sqrt{v \mathrm{e}^{-2 \mu}-\epsilon} \equiv \frac{1}{2} \kappa_{+}+\frac{1}{2} \kappa_{-} \tag{C.3}
\end{align*}
$$

Then, with

$$
\begin{equation*}
\psi=\mathrm{e}^{-a x} \operatorname{sech}^{b} x F(x) \tag{C.4}
\end{equation*}
$$

the equation for F becomes

$$
\begin{equation*}
F^{\prime \prime}-2[a+b \tanh x] F^{\prime}+\left[v \cosh ^{2} \mu-b(b+1)\right] \operatorname{sech}^{2} x F=0 \tag{C.5}
\end{equation*}
$$

where primes denote derivatives with respect to x. Defining

$$
\begin{equation*}
u=\frac{1}{2}[1-\tanh x] \tag{C.6}
\end{equation*}
$$

we get the hypergeometric equation

$$
\begin{equation*}
u(1-u) \frac{\mathrm{d}^{2} F}{\mathrm{~d} u^{2}}+[a+b+1-2(b+1) u] \frac{\mathrm{d} F}{\mathrm{~d} u}+\left[v \cosh ^{2} \mu-b(b+1)\right] F=0 \tag{C.7}
\end{equation*}
$$

The general solution may be found in [71]

$$
\begin{equation*}
F=A F_{1}+B F_{2} \tag{C.8}
\end{equation*}
$$

where A and B are constants of integration and

$$
\begin{gather*}
F_{1}=F(\alpha, \beta ; \gamma ; u) \tag{C.9}\\
F_{2}=u^{1-\gamma} F(\alpha-\gamma+1, \beta-\gamma+1 ; 2-\gamma ; u) \tag{C.10}
\end{gather*}
$$

where

$$
\begin{align*}
& \alpha=b+\frac{1}{2}-\sqrt{v \cosh ^{2} \mu+\frac{1}{4}} \\
& \beta=b+\frac{1}{2}+\sqrt{v \cosh ^{2} \mu+\frac{1}{4}} \tag{C.11}\\
& \gamma=a+b+1 \tag{C.12}
\end{align*}
$$

and γ is assumed to not be an integer.
The general analysis can be taken further by considering the solution at $x= \pm \infty$. A solution that is regular at $x \rightarrow \infty$ (i.e. $u=0$) is obtained by setting $B=0$ in Eq. (C.8). Regularity at $x=-\infty(u=1)$ is only obtained for certain values of ϵ, and thus the energy levels are quantized. The details of the general analysis may be found in Section 12.3 of [113].

In this book, we have often encountered the special case with $\mu=0$. Then, bound states are obtained for the following discrete values of $b>0$

$$
\begin{equation*}
b_{n}=\sqrt{v+\frac{1}{4}}-\left(n+\frac{1}{2}\right) \tag{C.13}
\end{equation*}
$$

where $n=0,1,2, \ldots, N$ with N determined by $b_{N+1} \leq 0$. The discrete eigenvalues of ϵ follow from the definition in Eq. (C.3)

$$
\begin{equation*}
\epsilon_{n}=(2 n+1) \sqrt{v+\frac{1}{4}}-\left(n^{2}+n+\frac{1}{2}\right) \tag{C.14}
\end{equation*}
$$

