Parasitology

Symposia of the British Society for Parasitology Volume 28 Parasite neurobiology

EDITED BY D W HALTON

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA and Canada should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011–4211. All orders must be accompanied by payment. The subscription price of volumes 102 and 103, 1991 is £156 UK, £161 elsewhere (US \$336 in the USA and Canada), payable in advance, for six parts and any supplements; separate parts cost £24 or US \$50 each (plus postage). Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER: send address changes in USA and Canada to *Parasitology*, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573–9864.


Parasitology

Symposia of the British Society for Parasitology Volume 28

Parasite neurobiology

EDITED BY D. W. HALTON

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE

NEW YORK PORT CHESTER MELBOURNE SYDNEY

Contents

Preface	S 1
List of contributions	S 3
Acknowledgements	S4
Chairman's opening remarks	S 5
Evolutionary aspects of transmitter molecules, their receptors and	
channels	S7
Introduction	S 7
Classification of transmitter molecules	S7
Properties of a synapse	S9
Voltage-gated channels and ligand-gated ion	
channels	S10
Ligand-gated channels	S11
Evolution of ion channels	S15
Overview of the physiological roles for	
transmitters	S15
Neuroactive peptides and co-localization	S16
Transmitters in platyhelminths	S19
Transmitters in nematodes	S20
Transmitters in arthropods	S21
Summary	S21
References	S22
Neurobiology of parasitic platyhelminths: possible solutions to	
the problems of correlating structure	
with function	S31
Summary	S31
Introduction	S31
Neuroanatomical localization of putative	
neurotransmitters	S31
Physiological action of small molecule	
neurotransmitters	S32
Pharmacology biochemistry and role of	

neurotransmitters	052
Pharmacology, biochemistry and role of	
second messengers in the action of small	
molecule neurotransmitters	S33
Neuropharmacology	S33
Biochemistry	S34
Second messengers	S35
Studies on isolated helminth muscle cells	S35
Patch clamping	S35
Quantitative fluorescence cytometry	S37
Discussion	S37
References	S38

The physiology and pharmacology of neuromuscular transmission in the	
nematode parasite, Ascaris suum	S41
Summary	S41
Introduction	S41
Locomotory behaviour	S42

NT	040
Nervous system	S42
Basic structure of Ascaris nervous system	S42
Non-spiking motoneurones of Ascaris	S42
Physiological interconnections of	
motoneurones	S42
Muscle	S43
Anatomy	S43
Morphology of somatic muscle cells	S43
Electrophysiology	S45
Electrical activity of muscle cells	S45
Ascaris muscle has acetylcholine and	
GABA receptors	S46
Ionic basis of the electrical responses to	
acetylcholine and GABA	S46
Biochemistry	S46
Biochemistry of acetylcholine	S46
Pharmacology	S47
Pharmacology of the acetylcholine	
receptor	S47
Pharmacology of the GABA receptor	S48
Arylaminopyridazine derivatives	S49
Biophysics	S54
Muscle vesicle preparation	S51
ACh single-channel currents	S51
GABA single-channel currents	S52
Ivermectin	S53
Effects of dihydroavermectin	S53
Other transmitters	S53
The action of 5-HT	S53
Other possible neurotransmitters	S54
Second messengers	S54
Conclusion	S54
References	S55

Neurobiology of arthropod parasites	S59
Introduction	S59
Acetylcholine	S60
Neurotransmitter at excitatory synapses in	
the CNS of acarine parasites	S60
Mechanism of resistance to	
organophosphates in ticks	S61
γ -Aminobutyric acid	S61
Neurotransmitter at inhibitory synapses in	
the CNS and muscle of ticks	S61
Action of avermeetins in the muscle and	501
CNS of ticks	S61
Glutamate	S63
Neurotransmitter at excitatory	505
neuromuscular junctions in the muscle	
of ticks	S63
	S63
Biogenic amines	303
Noradrenaline as a neurotransmitter in	0(2
ticks	S63
	1-2

Contents

Octopamine as a neuromodulator in acarine	
parasites	S64
Dopamine as a neurotransmitter at	
excitatory synapses in the salivary glands	
of ticks	S64
Neuropeptides	S65
Occurrence and function in ticks	S65
Concluding remarks and future opportunities	S65
References	S66
Introduction to neuropeptides:	
perspectives for the parasitologist	S71
Introduction	S71
Neuropeptide biosynthesis	S71
Selecting a peptidergic system	S73
Release and action of peptides	S74
Peptide inactivaton	S75
Conclusion	S75
Neuropeptides in platyhelminths	S77
Historical perspective	S77
Significance of the neurosecretory	
(peptidergic) system in platyhelminths	S78
Demonstration of neurosecretory elements in	
platyhelminths	S78
Localization and distribution of peptides in	
parasitic platyhelminths	S79
Isolation of 'native' parasite peptides	S84
Physiological roles of peptides in	
platyhelminths	S85
Conclusions	S86
Future directions	S87
References	S88
Role of regulatory peptides in parasitic	
platyhelminths and their vertebrate	
hosts: possible novel factors in	
host-parasite interactions	S93
Introduction	S93
Why study regulatory peptides in parasitic	
platyhelminths ?	S93
Why study regulatory peptides in their	
vertebrate hosts?	S94

Methods of regulatory peptide	
characterization	S94
Characterization of pancreatic polypeptide	
immunoreactivity in Schistosoma mansoni	
and its laboratory host, the mouse	S94
Characterization of pancreatic polypeptide	
immunoreactivity in Diclidophora	
merlangi and its teleostean fish host, the	
whiting (Merlangius merlangus)	S95
Characterization of tachykinin	
immunoreactivity in Diclidophora	
merlangi and the whiting (Merlangius	
merlangus)	S97
Characterization of regulatory peptide	
immunoreactivities in Haplometra	
cylindracea and the lung tissue of its	
frog host, Rana temporaria	S99
Characterization of vasoactive intestinal	
peptide (VIP) and peptide histidine	
isoleucine (PHI) immunoreactivity in the	•
tapeworm, Moniezia expansa, and the	
intestine of its host, the sheep	S101
Conclusion	S103
References	S103
Neuropeptides in the nematode Ascaris	
suum	S107
Introduction	S107
Immunocytochemical study of neuropeptide	
diversity	S107
Variety of peptide-like immunoreactivities	S108
Chemical characterization and physiological	
activity of endogenous Ascaris peptides	S110
Discussion	S112
Peptide families	S112
Differential localization	S113
Other methods for searching for novel	
peptides	S113
Relationship to other nematodes	S114
r	

References

Chairman's concluding remarks

iv

S114

S117