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1. Introduction and motivation

It is well known that many of the field equations from theoretical physics
(e.g. Einstein field equations, Maxwell's equations, Klein-Gordon equation) can
be obtained from a variational principle with a suitably chosen Lagrange density.
In the case of the Einstein equations the corresponding Lagrangian is degenerate
(i.e., the associated Euler-Lagrange equations are of second order whereas in
general these would be of fourth order), while in the cases of the Maxwell and
Klein-Gordon equations the Lagrangian usually used is not degenerate. However,
it is not generally realized that there exist degenerate Lagrange densities which
also give rise to these last two field equations. In this note the general structure
of this type of degenerate Lagrange density is examined.

We shall concentrate our attention on m quantities pA (A = 1,..., m) which
in general are each functions of position i.e.

Under transformations of the type

(1.1) x" = x"(xJ)

we shall assume that the pA transform according to the law1

(1.2) PA=C£pB,

where the Cg are functions of x" (or xJ) and are completely determined by the
transformation (1.1). To fix ideas we cite four examples all of which fall into
the above category.

* This work was supported by a grant from the National Research Council of Canada.
1 Unless otherwise noted the summation convention will apply, whereby repeated capital

indices A, B,... will be summed from 1 to m and repeated latin indices a,b,...,i ,j,... from 1 to n.
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[2] The Euler-Lagrange expression 483

(i) Scalar field <f>. If <p is a scalar field the counterpart of (1.2) reads

in which case m = 1, pA = <j> and CA — 1 .

(ii) Vector field ^ f . In this case m = n, pA = \j/i and Cg = £„*(= dx'/dx")
since a vector field transforms according to the law1

(iii) Tensor field gu. Here m = n2 , p '1 = 0l7 and Cg = B ^ correspond-
ing to

(iv) Non-tensorial field atj. If al7 are n2 quantities which transform accord-
ing to2

aa 6= £ £
i = i j = i

where we have put

Bl
ue = dBiJdxe and Ae

t = dx'ldx?,

then under these circumstances

C^= I iB^BiAiAJ + B'M.
c = l d = l

From these examples it is evident that pA may represent, on the one hand,
the components of an arbitrary relative tensor field and, on the other hand,
certain quantities which are manifestly non-tensorial in character.

We now assume that we are given a quantity L-the Lagrangian. It is further-
more supposed that L is a function of pA and its first M partial derivatives to-
gether with q arbitrary preassigned functions of position k" (a = l,...,q) and
the first Q partial derivatives of X", i.e.

(1.3) L= L(pA; p A , h ; ...; p A , h - iM', *•"'> ^ > i , ; •••! ^a>i,...iQ)>

where a comma denotes partial differentiation.
With L we can always associate the Euler-Lagrange expression EJJL) de-

fined by

(1.4) EA{L) = ^ + £ ( - 1 / d ~ ( dL ),

dpA ' = 1 dxH...dxir \dp\_t/

where, as mentioned above, the X" are not varied but are assumed to be preas-

2 The summation convention does not apply to this example.
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signed functions of position. In general the Euler-Lagrange expression (1.4)
will be of order 2M in pA (and order M + Q in A"). If the order of this expression
in pA is less than 2M the corresponding Lagrangian is called degenerate. For
examples of this see [2], [3] and [4].

In order to ensure that the so-called action integral corresponding to (1.3)
viz.

H
is an invariant, we assume that Lis a scalar density, i.e. under (1.1)

(1.5) L = BL

W h e r e fl-det|fli|.

In theoretical physics the role played by the Euler-Lagrange equations

(1.6) EA(L) = 0

is well known. It is usually possible to derive the field equations of physics from
a variational principle with a suitably chosen Lagrangian L. To illustrate this
we briefly discuss three important cases.

(a) Symmetric tensor field: Einstein vacuum field equations.
Consider the Lagrangian L given by

(1 -7) L(gij; gihk; giJM) = Jg gi}Rh
iJh,

where g = det | gtj | , g'J are characterised by

9iJ9kJ =

and

with

1 hk/
9\i j) = 2 9
 ^ ' M + ^ M

With the correspondence

p A = gtJ, X' = 0 ,

in (1.3) the associated Euler-Lagrange expression (1.4) is3

(1.8) E"(L) = - sj'g (gikgJkRLi --^VX1*,),

3 See e.g. [5] p. 258.
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and the Euler-Lagrange equations (1.6) are just the Einstein field equations
in vacuo.

(b) Scalar field: Klein-Gordon Equation.
If we consider the Lagrangian

(1-9) L(4>;<j,y, Si]) = 1 Jg (g%rf>j + fc2<£2),

(where k = constant), and use the correspondence

p A = <j), k" = gi},

then (1.4) becomes

(1.10) E(L) =

where the vertical bar denotes covariant differentiation with respect to gtJ. The
Euler-Lagrange equation in this case is the Klein-Gordon equation.

(c) Vector field: Maxwell's equation
By choosing

where

Fu = *t,j-h.i

and by identifying

pA= i/,,, X' = gtJ,

we find that (1.4) reads

(1-12) E\L) =

The corresponding Euler-Lagrange equations are Maxwell's equations in the
absence of sources.

Of these three Lagrangians i.e. (1.7), (1.9) and (1.11), only one is degenerate
viz. (1.7). However, it is not generally realized that in the other two cases it is
possible to choose Lagrange densities which are degenerate but which still yield
(1.10) and (1.12) as the corresponding Euler-Lagrange expressions. These La-
grangians are

(1.13) y
and

(1.14) j j j U

respectively. Aside from their degeneracy, the Lagrangians (1.7), (1.13) and (1.14)
have something else in common—they all have the same structure viz.
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apAEA(L),

where a is a constant, in the general case. This raises three obvious questions:
1. If L is a scalar density and pA transform according to (1.2) is pAEA(L)

a scalar densityl
2. If pAEA{L) is a scalar density and we regard it as a new Lagrangian,

is it always degenerate?
3. If pA EA(L) is a degenerate Lagrange density are its Euler-Lagrange

equations always EA(L) = 0 , up to a constant!
These three questions will be answered in the next sections by means of

Theorems 2, 4 and 6 respectively.

2. Certain properties of the Euler-Lagrange expression

The main purpose of this section is to establish the transformation law for
EA{L) under (1.1) where it is assumed that pA and L transform according to
(1.2) and (1.5) respectively.

To this end we introduce the following notation. If F"[ is any function of
x' then

F~ • = F"
and -'">

for r = 1,2, Similarly if G\ is any function of x" then

G;:.,ao = G;;;
and

for r = 1,2, In view of this the summation convention will not apply to the
indices j 0 or a0.

It is possible to rewrite (1.4) in a slightly more concise form by introducing
the following definitions:

LA°=dLldpA,h(=dLldpA),

!#•••• ' '= dLldpA,loh...ir

for 1 :g r ^ M. In this case (1.4) becomes

EA{L) = E c - i y L ^ - - ' ' Ml..,v.
r = 0

In order to obtain the transformation law for EA(L) we will require the
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transformation properties of pA
iaoai..Mk for all k, 0 ̂  k ̂  M. We shall obtain

these properties in the form of a recurrence relation. In view of (1.2) it is clear
that pA

taaai...ak will be linear in pa
tiail,.,ij for all j , 0 ^ j ^ k, and can thus be

expressed in the form
k

(2-1) P ,aoay...ak ~ ^ <XBaoai...ak P ,io'l—ij>

where ajJĵ Y'.'.Vi, are functions of x". Differentiation of (2.1) with respect to x""*1

yields

*+i r . . . . 1

,aoai...«*+> ^ = i |̂  Baoai...ak ak+t Baoat...ak,at + , j ,!„•,....,

"r ^Boo<H...<it,afc+i P »

with the understanding that

A comparison of (2.2) with (2.1) [with k replaced by (k + 1) in the latter] yields
the following. If k is any integer, 0 ̂  k + 1 ^ M,

(2-3) a ^ ; t + 1 = j £ : ^ ; i i t + 1 f i i V . . i U + 1

L ifj>k
Obviously

(2-4) < = Ĉ.

By means of (2.3) we can prove the

LEMMA. / / under (1.1) pA and L transform according to (1.2) and (1.5)
respectively then for 1 ̂  fc ̂  M — 1

Z f _ i y r 'o>i..iM-p - L f — i W • o i i - i M - t _

p = 0

jt — I ik-j-i

— ^ \ ~ l ) \ L, y—l)L,A ,aM-PaM-p-i...aM-k+j+t +

(2.5) •'=0 P = 0

flM-k ID I

*ffl0«l—«M ^Aio'l—'M-fc-lD*M-k
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PROOF. We shall prove this by induction over k. With k = 1 (2.5) reads

T>oh''M j ioh.-'M-i (T «O"I-"M f aoai...aM-i \

(2 6) ''M ~ ~ '"M ~
w ^.Aioii...iM -2 jyiM-i ID f oaai---aM ^Aooi\...iM-2 D I M - I / DX <*Baoai...aM-2

IiaM-il
li-LA ^Bloal...aM-, °aM 1° •

From (1.5) and (2.1) we find

Lfo'i- -'M faoai...a\f Aioii...iM ID
B ~ '-'A ccBaoal...aMla>

which, by virtue of (2.3), can be written as

T h'l-'M f aoai...aif Aioii...iM-l R'M/D
^B ~ L A ^Baoau-iM-i^aJO.

In view of the fact that
^(B'JB) = 0,

we thus have

{•*••') I^B ,iM—y^A ,aM
l*Baoat...aM-i + ^ A ^Baoai...aM - l,aM)lD •

From (1.5) and (2.1) we also see that

O 9C\ T'o'l-.-iM-l _ (Jaaai...aM Aiaii...iM-l , J aoai—aM -1 Aioii-iM-i \ I n
(Z.S) LB — (LA <*Baoai...aM +

LA xBaoat...aM -JlU •

Subtraction of (2.8) from (2.7) yields

flo'i—IM T'oii-'M-i fTaoai—OM T aa"i-"M-i\ ~Aioii..iM-i in •
^B ,iM — l^B ~\^A ,aM~l-A ) aBttOal...aM-JD ~*~

I T cad-CM (^Aiali-.-iit-i lvAioii..iM-i\iD
"r L i t \PcBaoai...aM-i,aM ~ aBaoai...aM )ID>

which is (2.6) when account is taken of (2.3). Hence (2.5) is valid for k = 1.
We now assume (2.5) to be true for fixed k and establish the validity of

(2.5) with k replaced by k + 1, i.e. we wish to show that (2.5) implies

k
y ( \\Pfioil-iM-p I /• 1 ^ + 1 r ' 0 > l - > M - k - l _
^\-l)L'B i i i i + \~l) ^B -

k ,k-j

— y c _ i v I y ( — \\pr °o«i—«MJ>
• " V l ) \ ^ \ v) ^A ,aM-P

(2 9) J'=o \p=o

We see that the first term on the left hand side of (2.9) is the derivative of the
left hand side of (2.5) with respect to xiM'k. Consequently the left hand side of
(2.9) can be expressed as the sum of six expressions, viz.
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fc-l k-j
y c—iV y /•_ivTo°ai•••""-" wiiio«i—iM-ic-i /D ,

j = 0 p = 0

t-1 8 fc-J-1
I y / _ I Y / y /•_i\prao«i"-«M-l.

-T ^ \ l) ^ K L)^A , o M -p- -OM-k + j + l
; = o p = o

fc-1
, V / _ ivl faoa,...aM-k + j Aioii...iM-k-i in

k+1

The fourth expression can be absorbed in the first by extending the summation
in the latter from j = k — 1 to j = k. In the second and third expressions we
replace the summation over j by one over j — I and include a j = 0 term (which
is zero by (2.3)). From the sixth expression we extract the term j = k + 1 and
combine it with the fifth expression. Finally we group the remaining terms in
the sixth expression with those in the third to find that the left hand side of (2.9)
reads

j=0 [p=0

-iM-k-i _ nMoii...iM-k-i \IT> ,
...aM-k* j-i "•Bao-fM -k + j - 2 . « M - k + j ' - ul" ~

+ 1.-A; LA Ka-Baa...aM ~ a-Baoai...aM - i.aM)l" •

By virtue of (2.3) this is the right hand side of (2.9), which establishes the lemma.
With the aid of this lemma we are now in a position to prove

THEOREM 1. If under (1.1) pA and L transform according to (1.2) and (1.5)
respectively then

(2.10) BEA(L) = C X

PROOF. In (2.5) we set fc = M — 1 to find

I (-l)'L{?-iM-'-,1.M_r..,2 + {-\)M-lUp =
p = 0

M-l iM-j-2
— y ( i v J

J = 0 I p=O

_l_ ( i\M — j-l7ao...+ (—1) LA

4. (_\\M-i-T<>0"MM
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By differentiating the latter with respect to x" , multiplying by ( —1)~M and
recalling (1.4) we see that

J=0 p=0

M-2 iM-k-2
i V / IV/'I V ( J\P~**r«O"-«M-i> i /" ]\-J-l£ao-iJ

j=0 [ j > = 0 ' M P J + 2

~r~ ™ A Bao...ajl '
J=0

By virtue of (2.3) only the 7 = 0 terms in the first and final expresssions survive
on the right hand side—all others cancel. We thus find

{ M - l \

y ( i\p-MTao..aM-p , fa01 ~Aio I f>
ZJ \ II Li A a,, at ' Li AI&Ban ID 5

p = 0 I

which, in view of (2.4), is (2.10).
From Theorem 1 we see immediately that if pA are the components of a

relative tensor of covariant valency r , contravariant valency s and weight w,
then EA(L) are the components of a relative tensor of covariant valency 5, contra-
variant valency r and weight (1 — w).

We remark that Theorem 1 can be extended to quantities pA which trans-
form according to
n |1\ -A /-iA B i nA

yZ.lL) p = (^BP ~T U
where the C /and 9A are functions of x" and are completely determined by the
transformation (1.1). [A typical example of this would be the symmetric afline
connection F?y which transforms according to

In fact we can prove the

THEOREM. If under (1.1) L is a scalar density and pA transform according
to (2.11) then

BEA(L) = C*£B(L).

However, we will not consider this case in any further detail, but will return to
(1.2). If we multiply (2.10) by pA and note (1.2) we have

THEOREM 2. / / under (1.1) pA and L transform according to (1.2) and (1.5)
respectively then pAEA is a scalar density.
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We shall now give a direct proof of the frequently asserted

THEOREM 3. A divergence satisfies the Euler-Lagrange equations identi-
cally*, i.e. if a Lagrangian L is of the form

(D)

L = S\t
(D)

where

S I ^ 'Zn * f\^ * * n^ • 2 " • J ) * • • 3 " "\

— \r 9 P ' l i * * ' * ' r ' l i i\f t ' * ' / l 9 ' * ' 9 >Ii 1 / *

and p is any positive integer
then

EA(L) = 0.

PROOF. It is clear that5

M - l p

(Z.1ZJ L, - ZJ a B /? ,jojt...jri + Z. 2> „ X Joji-jrl

(D) r = 0 r = 0

where

^'I jojl-Jr _ ()S'l()pB

and

For l r g f c ^ M — l i t i s easily seen, from (2.12), that

M - l
r foil-..Ik _ y OC>; J0Jl-jr/2nA \nB ,
^ ^ - i (.Ci B /dp ,iail...ik)p ,jojt...jri +
(D) r = O

(2-13) + i{d^i^"^ldp\ll.^',)oSl...Jri +
r = O

+ ^['k; IliollM-.it- 0

where the square bracket denotes complete symmetrisation over it...ik (since
i0 is excluded from this symmetrisation process we place it in braces). However,
for 1 g k ̂  M — 1, it is easily seen that

M - l
ci;ioii...'k _ V (a<?>:>o>i—^ipy-B \ B ,
^ .i - ^ ^ 5 ^ I°P ,Jojl:Jr)P JoJi-Jri +

r = 0

r = 0

4 This result is not at variance with [1] p. 121.
5 Summation over a from 1 to q.
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which, when taken together with (2.13), yields

i i - i k _ _ o i ; i o i i - - > k i c [ ' » < ; | l ' o | | > i - ' k - i ]

( D )

From the latter we see that for 1 ̂  k ̂  M — 1

rio'i.-.ik olk + i;io'i."«fc I c 'k l io ' i . - ik - i
^ X ,(0 '«-lk ~ ^ ,ioii...ik + i + ^A ,ioi'i...fk
(B)

from which we conclude that

A f - l

^\~l)L'A ,ioh...ik + \~i-) ^A .ioh-iM-t + ^A .i, — U -
* = 1 (D)

In view of (2.12) the last two terms on the left hand side are respectively the
k = M and k = 0 terms of the first expression, so that

3. Degenerate Lagrange densities

For the reasons indicated in section 1 we now wish to investigate the con-
sequences of adopting the quantity

(3.1) JSP = pAEA(L)

as a Lagrangian. If it is assumed that the pA transform according to (1.2) then
Theorem 2 assures us that JS? is a scalar density — one of the requirements usually
made of a Lagrangian. Furthermore, if Lis of the type (1.3) then in general EA(L)
will involve derivatives of pA up to order 2M and derivatives of X" up to order
M + Q, in which case

•* — ^KP >P , i l 5 - - - . P > i i i 2 . . i ' 2 M ' / l >A , > i ' • • • ' A .iiiz-iM + Q' •

This in turn suggests that the associated Euler-Lagrange expression EA(^C) [i.e.
(1.4) with L replaced by .S? and M replaced by 2M] will be of order 4M in
pA. In fact this is not the case as is shown by

THEOREM 4. If

L = L(pA; pA,h;...; pA,ili2..,M ;/.«;*«,,,;...; A'£l...,0)

and

Se = pAEA(L)

then EA{£f) is at most of order 2M in pAi.e. ^C is a degenerate Lagrange density.

https://doi.org/10.1017/S1446788700011125 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011125


[12] The Euler-Lagrange expression 493

PROOF. For any positive integer r, 2 ̂  r ̂  M consider the quantity

- j

,tr-J

where

S ir-J / Wr~Jr>A jioil...ir

- \-l) P ,irir-l-ir-j*lLA .ioh-ir- ;'- 1

and 1 :g j j£ r — 1. Clearly we have

, i r - j - y - l ) P ,ir-ir-JLA ,ioll-.lr-J-l +

(, 1 ; P ,ir...ir.i+1^-A ,iO...ir-j>

from which we conclude that

r - l
V1 C'r-J _ _ nA jioil...ir _ (_\\r

n
A T io—'r

^ "5 ,ir-j — — P ,ioil...irLA y l> P ,irLA ,lO...ir-f
J = l

In view of the fact that the last terra on the right hand side can be expressed
in the form

K l ) \\P ^ A .io-ir-l'.ir P ^A ,io..-ir) '

we find that for 2 ̂  r ̂  M

r - l
r _ _ ^ T i o i V i
,io...ir ~ P Aa...ir

Ajio-.ir _ _ ^ T io...iV i V c'r - /

Consequently we find

T1 C 1 W * r i o —'r — V rt^ jio...tr

r=0 r=0

(3.2)

r = l

which, in view of (3.1), is of the form

(3.3) se = &v + T ii

where

(3.4) J2?1= i
r = 0

and
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r'= Z rZs''-^.y+ Z(-i)IP^-''.ta...Ir.X-
r = 2 j = l r = l

However, by virtue of the fact that T\t is a divergence, Theorem 3 assures us
that it will not contribute to EA(£C). Therefore we find from (3.3) that

Furthermore it is clear from (3.4) that

• ^ 1 = -^liP >P ,ii>---lP ,i1...iMl^"l^',ii
:> ••• > ^ " , / i . . . i Q } >

so that EA(Hf) is at most of order 2M in pA. This establishes the theorem.
We have shown that if JSf, given by (3.1), is used as a Lagrangian then the

corresponding Euler-Lagrange equations are also obtained from ^ t , given by
(3.4). We also know that 3? is a scalar density. It is obviously of interest to estab-
lish the tensorial character of ££\ . This can easily be accomplished as follows.
Under (1.1) we have

M M M

S B tio-ir _ y B y fao.-.ajAio-irlD
P ,io.. ir^B — & P ,io...ir ^ '-A xBao-ajlD

r = 0 r=0 7=0
M l M \

Aio..Mr I Tao.--aj I
M i M \

E l y B -,Aio...ar\
\ Z< P ,io...ir

a-Baa...a1\
7 = 0 lr = 0 )

B A10...Or I TOO.
P ,io...iraBao..ay|L/l

By (2.1) and 2.3) the quantity in brackets on the right hand side is pA,ao^Mj,
which establishes

THEOREM 5. The Euler-Lagrange expressions obtained from

J? = pAEA(L)
and

M

ia...wL'A
Cf _ V n

A T U>—lr
•X i — L, p ,ia...iri-,Ar=0

are identical, and, furthermore, both JtC and SCt are scalar densities.

We are now in a position to give a partial answer to the third question posed
in section 1. From Theorem 5 we see that if £Ci is proportional to L i.e. if

&! = kL

where A; is a non-zero constant then

By virtue of the definition of =£?! we thus have
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THEOREM 6. / / L is homogeneous of degree fe(# 0) in the variables
{pA;p\;...;p\.mAJ, i.e. if

M
y A jioii-lr_ Kj
*- P .ioh.-ir'-A — KL->

r=0

then the Lagrange density pAEA(L) will also have as its Euler-Lagrange equa-
tions precisely

EA(L) = 0.
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