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The generalized Pexider equation

(1) g(F(x,y))=H{f(x),f(y),x,y)

where / and g are unknown and x, y, are real, has been discussed by J. Aczel
[1] and J. Aczel and M. Hosszu [2], In [2] it is shown that if F is continuous
and F and H are strictly increasing in their first variables and strictly de-
creasing in their second variables, then two initial conditions suffice to
determine at most one continuous solution /of (1). We extend these results
to strictly increasing and strictly decreasing functions F and derive results
for strictly monotonic F and H.

As in [2] we call F reflexive at a if F(a, a) — a, i.e. if x = a is a fixed-
point of F(x, x). We sometimes omit parentheses where the meaning is clear,
e.g. fx = f(x). We use the standard notation for iterates, e.g. a.°x = x,
a.n+1x = cca.nx, n = 0, 1, • • \

THEOREM 1. Let I be an interval. Let F be continuous and strictly in-
creasing (or decreasing) in Ixl. Let N be a Hausdorff space. Let H be defined
inNxNxIxI such that

(I) H(ult ux, x, x) = H(uz,u2, x, x) implies ux = u2;

and either

(II) H(u, %, *, y) = H(u, M2, x, y) implies u-^ — u^,

or

(III) # ( % , u, x, y) = H(u2, u, x, y) implies ux = u%.

Let g = gx and f = fx, also g = g2 and f = /2, satisfy (1) in Ixl. Let
fx and /2 be continuous maps of I into N, and a, b el such that a ^b,
h(a) = fz(a)> fi(b) = fi{b)- Then fx = /2 in I and gx = g2 in the range of
F on Ixl.

Let g = / in (1). / / F is reflexive everywhere in I the condition (I) is
redundant. If F(a, a) el and F is not reflexive at a the condition f^b) = f2(b)
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is redundant. If I is the interval 0 ^ x < d and F(x, y) = x-\-y the condi-
tions (II) and (III) are redundant; and provided a > 0 the condition
fx(b) = /2(6) is redundant.

PROOF. Let px = F(x, x), xel. Then p is continuous and strictly
monotonic and has a unique inverse p~\ We may define G = p~xF. Then
G has domain Ixl and range I, and is continuous, strictly increasing in
both variables, and reflexive in / .

Let (II) hold. We may suppose a < b. Let ax = G(a,x), fix = G(b, x),
xel. Then a and fi are continuous, strictly increasing, and have unique
inverses. Also oca = a, fib = b, ax < x for x > a, fix > x for x < b.

We may substitute G(x, y) for a; and y in (1), then /x and /2 satisfy
the functional equation

(2) H(fx, fy, x, y) = H{fG(x, y), fG(x, y), G(x, y), G(x, y))

in Ixl. Substitute x = a and y = b, ah, a?b, • • •, successively in (2), then
(I) implies ftx

nb = f2a.nb (n = 1, 2, • • •)•
Let / ' be the interval a <j a; <j 6. Assume that f1 =£ f2 in / ' . Then it

is not true that fx = /2 in a set which is dense in / ' . Hence there exist
alr bx el' such that /x and f2 intersect at ax and bx but are different every-
where in a1<x<b1. Let cn = G(a.nb, ax). Then (I) and (2) imply
/xcn = f2cn. But a"6 -> a, cn -> aa1( and since these sequences strictly
decrease, there exists an integer m such that

But (II) and (2) with x = a and y = arxcm imply fi«.~1cm — f2«.~xcm,
which contradicts our assumption. Hence /x = /2 in / ' .

If xel, x ^ a, then a* a; 6 / ' for some positive integer q; hence
f^x = f2a."x, and (II) and (2) with x = a and <y = aJ'^x, a.Q-2x, • • •, x,}
successively, imply ftx = f2x. If x e I, x % b, then firx e I' for some positive
integer r; hence fxfirx = f2fi

rx, and (II) and (2) with x = b and

y = fi--ix, fir~2x, • • • , x ,

successively, imply ftx = /2a\ Hence /x = /2 in / .
If instead of (II), (III) holds, the above process may be repeated with

G(a, x) and G(b, x) replaced by G(x, a) and G(x, b), respectively.
Let g = f in (1). If F(x, x) = x, x e I, then fx and/2 satisfy the equation

fx = H(fx, fx, x, x) in / , which is sufficient for the proof of the theorem,
instead of (I). If F(a,a)el and F(a,a)^a then fxa = f2a implies
fiF(a, a) — f2F(a, a), and we may take b — F(a, a).

Let g = f in (1), / be the interval 0 ^ x < d, and F{x, y) — x+y.
If t el such that ftt = f2t then fkt = H(fk%t, fk\t, \t, \t) (k = 1, 2), and
(I) implies ft\t = f2\t. If also nt el for some positive integer n, then
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fx2t = H(fit, fxt, t, t) = ft2t,

f13t = H(f12t,f1t,2t,t)=f2Zt,

and by induction fxnt = f%nt. Now, either a > 0 or b > 0, and if a > 0
the points m2~na (in and » positive integers) are dense in I. But /xa = /2a
implies f1m2~na = f%m2~na, hence fx = /2 in / .

THEOREM 2. Le£ g = f in (1). Lrf F ie reflexive at a, continuous and
strictly monotonic in each variable in a neighbourhood of (a, a). For (x, y)
in a neighbourhood of (a, a) and (u, v) in a neighbourhood of (c, c) let
H(u, v, x, y) be strictly monotonic in u and v. Let fx and /2 be continuous
solutions of (1) in a neighbourhood of (a, a), and fx(a) = /2(a) = c. Then there
exists a neighbourhood of a in which either fx and /2 have only the one point in
common or are identical.

PROOF. fx and /2 will satisfy

(3) fE(x, y) = J{fx, fy, x, y)

for (x, y) in a neighbourhood of (a, a), where

E(x,y) = F{F(x,a),F(a,y)}
and

J(u, v, x, y) = H{H(u, c, x, a), H(c, v, a, y), F(x, a), F{a, y)}.

But E(a, a) = a and E is continuous and strictly increasing in a neigh-
bourhood of (a, a). Also for (x, y) in a neighbourhood of (a, a) and (u, v)
in a neighbourhood of (c, c), J(u, v, x, y) is strictly increasing in u and v.
Hence there exists a neighbourhood N of c and a neighbourhood / of a such
that f± and /2, E and / satisfy the hypotheses of Theorem 1. Then I is the
required neighbourhood of a.

EXAMPLE. The equation

(4) f(Vfa\) = VfWW)

illustrates both theorems. The function F(x, y) = V\xy\ is not strictly
monotonic in either variable in any region including the origin; indeed there
is an infinite number of continuous solutions of (4) of the form A\x\B

which pass through the origin and any other point with positive y coordinate.
If we consider (4) only for negative x and y we may apply Theorem 1.
However although F is then not reflexive anywhere both initial conditions
are necessary; in this case the condition F(a, a) el in Theorem 1 is not
fulfilled for any a el.
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NOTE. The reflexive case in Theorem 1 is already contained in [1] as
a special case.
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