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Abstract. We study Gevrey classes of holomorphic functions of several variables
on a polysector, and their relation to classes of Gevrey strongly asymptotically
developable functions. A new Borel-Ritt-Gevrey interpolation problem is formulated,
and its solution is obtained by the construction of adequate linear continuous extension
operators. Our results improve those given by Haraoka in this context, and extend
to several variables the one-dimensional versions of the Borel-Ritt-Gevrey theorem
given by Ramis and Thilliez, respectively. Some rigidity properties for the constructed
operators are stated.
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1. Introduction. A holomorphic complex function z �→ f (z) on a sector S in the
complex plane with vertex at 0 admits s-Gevrey asymptotic expansion, given by the
(formal) series

∑∞
m=0 amzm, as z tends to 0 if and only if the derivatives of f are subject to

s-Gevrey type bounds on proper subsectors of S. In this case, am = limz→0
1

m! f
m(z), so

that
∑∞

m=0 amzm is an s-Gevrey series. Conversely, for sectors Sθ of suitably small
opening θ , the Borel-Ritt-Gevrey theorem (see [11], [8], [1, 2.2.1]) guarantees the
existence of s-Gevrey holomorphic functions on Sθ having an arbitrarily prescribed s-
Gevrey asymptotic expansion. Thilliez [13] has obtained a similar result, which may be
seen as a linear continuous version of the Borel-Ritt-Gevrey theorem, by constructing
an extension operator from the space of Gevrey series into the space of functions whose
derivatives admit Gevrey-like bounds uniformly on all of Sθ (see Section 3).

Regarding functions of several complex variables, the concept of strong asymptotic
developability given by Majima [6, 7] resembles the one-variable definition in the sense
that, for a function f holomorphic on a polysector S ⊂ Cn with vertex at 0, to be
strongly asymptotically developable amounts to the boundedness of the derivatives
of f on proper subpolysectors of S (cf. [5, 12]). The asymptotic behaviour of f is
determined by the family TA( f ), consisting of functions obtained as limits of the
derivatives of f when some of its variables tend to 0. Haraoka [3] studied this concept
for Gevrey functions of several variables, and gave two interpolation results starting
from Gevrey data of the same type as

FA( f ) =
{

fα = lim
z→0

1
α!

Dαf (z)
}

α∈Nn

⊂ TA( f ).
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However, in general, for a function f strongly asymptotically developable the
knowledge of FA( f ) does not allow one to recover TA( f ). Therefore one should
consider an interpolation problem taking as initial datum a family F of the same type
as TA( f ) and subject to natural conditions that ensure there will be a function f with
TA( f ) = F . As far as we know, no such problem has been studied in the case of Gevrey
functions.

The main purpose of this paper is to give the solution for a new interpolation
problem of the said nature by means of the construction of linear continuous
extension operators. Theorem 3.4 extends the result of Thilliez for one variable
functions [13, Theorem 1.3] to the case of several variables. Though our statements
remain valid for polysectors inRn, whereR is the Riemann surface of log(z), we restrict
our attention to polysectors in Cn.

After giving some notation (Section 2), the problem and its solution are stated in
Section 3. For σ ∈ (0,∞)n, s ∈ (1,∞)n, a polysector Sθ ⊂ Cn of opening θ ∈ (0, 2π )n

and a Banach space E, we consider the space Ws
σ(Sθ, E) of holomorphic functions

f : Sθ → E such that

‖f ‖σ := sup
z∈Sθ , α∈Nn

‖Dαf (z)‖
(α!)sσα

< +∞.

Its relation to spaces of functions s-Gevrey strongly asymptotically developable is
studied. For f ∈ Ws

σ(Sθ, E), we denote by TA�( f ) the family consisting of those
elements of TA( f ) in n − 1 variables. TA�( f ) uniquely determines TA( f ), satisfies
certain coherence conditions, and their elements are subject to special Gevrey-type
bounds. This leads us to define the appropriate data space Gs

σ(Sθ, E), so arriving at
the main result in this paper, Theorem 3.4.

Section 4 is mainly devoted to the proof of this theorem. We first obtain a
result (Theorem 4.1), similar to that of Thilliez [13, Theorem 1.3], for vector valued
functions of one variable. The technique, elementary and completely different from
that of Thilliez, is based on Ramis’ one [11, 8], which allows a suitable study of the
bounds; it is also amenable to the determination of the behaviour of the interpolating
function in the special case where the space E in which it takes its values is of the
type Ws

σ(Sθ, E) (Lemma 4.3). Now, the fact that the spaces W (s,t)
(σ,τ )(Sθ × Uϕ, E) and

Ws
σ(Sθ,Wt

τ (Uϕ, E)) are isomorphic (Proposition 4.2), combined with a repeated
application of Theorem 4.1 and Lemma 4.3, lets us apply a recurrent argument
on the number of variables to obtain Theorem 3.4. As another consequence of
Proposition 4.2, we give, in this context, a linear continuous version (Theorem 3.3)
of the first interpolation result proven by Haraoka [3, Theorem 1.(1)]. See Section 3.

We emphasize that the consideration of vector valued functions in this paper
makes no difference as to the difficulty of the proofs; it is only due to the need for the
isomorphism just mentioned.

Finally, some rigidity properties for the different extension operators are stated in
Section 5. Annihilation conditions are given on the extending functions that assure the
initial data are null. We adopt the setting of the problem from the work of Thilliez [13]
and obtain similar results for functions of several variables. While Thilliez’s method
rests on a theorem of Paley-Wiener type dealing with Schauder bases, this does not
seem to apply here, and the main result in this Section, Theorem 5.2, is based on the
direct proof that a certain operator is invertible (Lemma 5.1).
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2. Notation. For n ∈ N = {0, 1, 2, . . .}, n ≥ 1, put N = {1, 2, . . . , n}. Let
α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Nn be two multiindices, m ∈ [0,∞),
t = (t1, t2, . . . , tn) ∈ [0,∞)n and z = (z1, z2, . . . , zn) ∈ Cn. We set

α + β = (α1 + β1, α2 + β2, . . . , αn + βn), mt = (mt1, mt2, . . . , mtn),
|α| = α1 + α2 + · · · + αn, α! = α1! α2! · · · αn!,
α ≤ β ⇔ αj ≤ βj∀j ∈ N, α < β ⇔ αj < βj∀j ∈ N,

1 = (1, 1, . . . , 1), ej = (0, . . . ,
( j)
1 , . . . , 0),

|zα| = |z|α = |z1|α1 |z2|α2 · · · |zn|αn , zα = zα1
1 zα2

2 · · · zαn
n ,

Dα = ∂α

∂zα
= ∂ |α|

∂zα1
1 ∂zα2

2 · · · ∂zαn
n

.

If J is a nonempty subset of N, the number of elements of J will be #J.
Consider, for j = 1, 2, . . . , n, an open sector Sj in C with vertex at the origin,

given by

Sj = {z ∈ C: θ1j < arg(z) < θ2j} (0 < θ2j − θ1j < 2π ).

Any cartesian product S = ∏n
j=1 Sj ⊂ Cn of open sectors in C with vertex at 0 will

be called an (unbounded open) polysector in Cn with vertex at 0.
We say a polysector T in Cn (with vertex at the origin) is a proper subpolysector

of S if T = ∏n
j=1 Tj with Tj ⊂ Sj ∪ {0}, j = 1, 2, . . . , n. For convenience, polysectors of

the form

Sθ =
{

z = (z1, . . . , zn) ∈ Cn: |Arg(zj)| <
θj

2
, j = 1, . . . , n

}

will be mostly considered. We say that θ ∈ (0, 2π )n is the opening of Sθ.
If J is a nonempty subset of N and z ∈ Cn, we write zJ for the restriction of z to J,

regarding z as an element of CN . Let J and L be nonempty disjoint subsets of N. For
zJ ∈ CJ and zL ∈ CL, (zJ ,zL) represents the element of CJ∪L satisfying (zJ ,zL)J = zJ ,
(zJ ,zL)L = zL; we also write J ′ = N − J, and for j ∈ N we use j′ instead of {j}′. In
particular, we shall use these conventions for multiindices.

Finally, if Sθ = ∏n
j=1 Sθj is a polysector of Cn, then SθJ = ∏

j∈J Sθj ⊂ CJ .

3. Preliminaries and results on extension operators. Let (E, ‖·‖) be a complex
Banach space, θ ∈ (0, 2π )n, s ∈ (1,∞)n and σ ∈ (0,∞)n. Denote by Ws

σ(Sθ, E) the
complex vector space consisting of the holomorphic functions f : Sθ → E such that

‖f ‖σ := sup
z∈Sθ , α∈Nn

‖Dαf (z)‖
(α!)sσα

< +∞.

(Ws
σ(Sθ, E), ‖·‖σ) is a Banach space. For instance, we note that, in the simpler case

E = C, non-constant polynomial functions do not belong to any Ws
σ(Sθ, C), while

functions such as ψ , given by

ψ(z) =
n∏

j=1

exp
(−z−1/(sj−1)

j

)
,

belong to Ws
σ(Sθ, C), for suitable σ, whenever θ < (s − 1)π .
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Let f ∈ Ws
σ(Sθ, E). Since all its derivatives are bounded on Sθ, Barrow’s formula

implies that they are Lipschitzian. Hence, for ∅ �= J � N and αJ ∈ NJ (respectively, for
J = N and αN = α ∈ NN ≡ N

n) we can define a function from SθJ′ to E (respectively
a constant in E) by

fαJ (zJ ′) = lim
zJ→0

zJ∈SθJ

D(αJ ,0J′ )f (z)
αJ !


resp. fα = lim

z→0
z∈Sθ

Dαf (z)
α!


 . (1)

The limit is uniform on SθJ′ whenever J �= N, which implies that fαJ ∈ WsJ′
σJ′ (SθJ′ , E).

If we adopt the convention that WsN′
σN′ (SθN′ , E) = E, we also deduce that for every

∅ �= J ⊂ N and αJ ∈ NJ we have

‖fαJ ‖σJ′ ≤ (αJ !)sJ−1σαJ
J ‖ f ‖σ. (2)

In this way we may associate with f a family

TA0( f ) = {
fαJ : ∅ �= J ⊂ N, αJ ∈ NJ},

that we call the derived family for f . The limits in (1) being uniform, we obtain the
following result.

PROPOSITION 3.1. (Coherence conditions.) Let f ∈ Ws
σ(Sθ, E). Then, for every pair

of disjoint nonempty subsets J and L of N, αJ ∈ NJ and αL ∈ NL,

lim
zL→0

zL∈SθL

D(αL,0(J∪L)′ )fαJ (zJ ′)
αL!

= f(αJ ,αL)
(
z(J∪L)′

)
; (3)

the limit is uniform on Sθ(J∪L)′ whenever J ∪ L �= N.

Hereafter, we shall say that a family

F = {
fαJ ∈ WsJ′

σJ′
(
SθJ′ , E

)
: ∅ �= J ⊂ N, αJ ∈ NJ},

or briefly F = { fαJ }, is coherent if it satisfies (3).
Denote by As

σ(Sθ, E) the complex vector space of the holomorphic functions
f : Sθ → E such that there exists a family

TA( f ) = {
fαJ : ∅ �= J ⊂ N, αJ ∈ NJ} ,

where fαJ is a holomorphic function from SθJ′ to E when J �= N, and fαJ ∈ E when
J = N, satisfying the following condition: if we define

Appα(TA( f ))(z) =
∑

∅�=J⊂N

(−1)#J+1
∑

βJ∈N
J

βJ≤αJ−1J

fβJ (zJ ′ )zβJ
J , α ∈ N

n
, z ∈ Sθ,

then

Mσ( f ) := sup
z∈Sθ , α∈N

n

‖f (z) − Appα(TA( f ))(z)‖
(α!)s−1σα|z|α < +∞. (4)
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TA( f ) turns out to be unique, and will be called the total family of strongly asymptotic
expansion associated to f . The subfamily { fαN = fα ∈ E: α ∈ Nn} ⊂ TA( f ) will be
denoted by FA( f ).

We note that when n = 1, given s > 1 and θ ∈ (0, 2π ), we have f ∈ As
σ (Sθ , E) if

and only if there exists a family TA( f ) = FA( f ) = {am ∈ E: m ∈ N} (or, equivalently,
a formal power series

∑∞
m=0 amzm) such that

sup
z∈Sθ , m∈N

∥∥f (z) − ∑m−1
p=0 apzp

∥∥
(m!)s−1σ m|z|m < +∞.

In this situation we write f ∼ ∑∞
m=0 amzm.

Some remarks are in order. The concept of strong asymptotic developability was
established by Majima [6], and Haraoka [3] adapted it to the case of Gevrey functions.
In the present context, Haraoka’s definition would read as follows: a holomorphic
function f : Sθ → E is s-Gevrey strongly asymptotically developable as z tends to 0 in
Sθ (we write f ∈ As(Sθ, E)) if the suprema in (4) above, when taken over each proper
subpolysector T of Sθ and for a suitable σ = σ(T), are finite (and depend on T).

With a similar change in the definition of the space Ws
σ(Sθ, E) we obtain a new

vector space, Ws(Sθ, E). Haraoka [3, §1, Proposition 3] proved that the following
statements (with E = C, but this makes no difference) are equivalent:

(i) f ∈ As(Sθ, E);
(ii) f ∈ Ws(Sθ, E) and f is strongly asymptotically developable as z tends to 0 in

Sθ (in the sense of Majima).
Indeed, the assumption in (ii) that f be strongly asymptotically developable is

removable, as it can be easily deduced from Theorem 3.2 in [12]. In our situation we
immediately obtain the following result.

PROPOSITION 3.2. (a) Ws
σ(Sθ, E) ⊂ As

σ(Sθ, E) and, for every f ∈ Ws
σ(Sθ, E), we

have TA( f ) = TA0( f ) and Mσ( f ) ≤ ‖f ‖σ. Also, for every ∅ �= J ⊂ N and αJ ∈ NJ ,
fαJ ∈ AsJ′

σJ′ (SθJ′ , E); moreover, by Proposition 3.1,

TA( fαJ ) = TA0( fαJ ) = {
f(αJ ,βL): ∅ �= L ⊂ J ′, βL ⊂ NL}

.

(b) For every ϕ ∈ (0,∞)n with ϕ < θ, denote by Rϕf the restriction to Sϕ

of functions f defined on Sθ. Then, there exists c = (c1, . . . , cn) ∈ (1,∞)n, where
cj = cj(θj, ϕj), such that Rϕ(As

σ(Sθ, E)) ⊂ Ws
cσ(Sϕ, E) and, for every f ∈ As

σ(Sθ, E),
‖Rϕf ‖cσ ≤ Mσ( f ). Here, cσ means (c1σ1, . . . , cnσn).

For n ≥ 1, let us define

	s
σ(E) =

{
a = {aα}α∈Nn : νσ(a) := sup

α∈Nn

‖aα‖
(α!)s−1σα

< +∞
}

.

(	s
σ(E), νσ) is a Banach space. Note that whenever f ∈ Ws

σ(Sθ, E) we have
FA( f ) ∈ 	s

σ(E) (we trivially identify families and multisequences), and the map
J :Ws

σ(Sθ, E) → 	s
σ(E) sending f to FA( f ) is linear and, by (2), continuous, with

‖J ‖ ≤ 1. In case f ∈ As(Sθ, E) we have FA( f ) ∈ 	s
σ(E) for some σ ∈ (0,∞)n.

The following interpolation problem arises: given a ∈ 	s
σ(E), find a holomorphic

function f : Sθ → E that belongs to some of the Gevrey spaces considered and such
that FA( f ) = a.
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For n = 1, Ramis [10, 11, 8] (see also [1, Proposition 2.2.1]) showed that, whenever
θ ≤ (s − 1)π , the problem is solvable in As(Sθ , C). Haraoka generalized this result to
higher dimensions [3, §2, Theorem 1.(1)], as follows.

If θ < (s − 1)π , then for every a ∈ 	s
σ(C), there exists f ∈ As(Sθ, C) such that

FA( f ) = a. Their methods rely on the use of the one- or multi-dimensional finite
Laplace transform; no explicit information is given on the relationship between σ and
the constants σT in (4) corresponding to each proper sub(poly)sector T of Sθ.

Also, for n = 1, Thilliez [13, Theorem 1.3] proved that if θ ∈ (0, 2π ), θ < (s − 1)π ,
then for every σ > 0 there exist constants c = c(θ, s) ≥ 1 and C = C(θ, s, σ ) > 0, and a
linear operator Tσ,θ : 	s

σ (C) → W s
cσ (Sθ , C) such that for every a ∈ 	s

σ (C), JTσ,θ (a) = a
and ‖Tσ,θ (a)‖cσ ≤ Cνσ (a). The reason why θ < (s − 1)π in this result is that bounds
for the derivatives of the solution need to be uniform on all of Sθ . The technique now
rests on results on continuous extensions in ultradifferentiable classes of functions;
see [2].

We shall obtain the following generalization for functions of several variables.

THEOREM 3.3. Let s ∈ (1,∞)n and θ ∈ (0, 2π )n with 0<θ< (s − 1)π . Then there
exist c = c(s,θ) = (c1(s1, θ1), . . . , cn(sn, θn))∈ (1,∞)n, C =C(s,θ)>0 and, for each
σ ∈ (0,∞)n, a linear map Tσ,θ: 	s

σ(E) → Ws
cσ(Sθ, E) such that, for every a ∈ 	s

σ(E),
we have

J (Tσ,θ(a)) = a, ‖Tσ,θ(a)‖cσ ≤ C νσ(a).

As we said before, regarding functions of several variables, one should consider
the following question: is it possible to interpolate starting from the whole
family TA( f )? As far as we know, the only result of this type was proven by
Haraoka [3, §2, Theorem 1.(2)]. Under the additional hypothesis that a ∈ 	s

σ(E)
satisfies some convergence conditions which make it possible to obtain a whole family
F = {fαJ } by means of the relations

fαJ (zJ ′ ) =
∑

βJ′ ∈NJ′
a(αJ ,βJ′ )z

βJ′
J ′ ,

the existence of a function f ∈ As(Sθ, C) such that TA( f ) = F is proven.
We now give the framework needed to answer the previous question in the

affirmative. For n > 1 and f ∈ Ws
σ(Sθ, E) we call

TA�( f ) = {
fm{j} ∈ Wsj′

σj′
(
Sθj′ , E

)
: j ∈ N, m ∈ N

}
the first order family associated to f . It consists of those elements of TA( f ) in n − 1
variables. For convenience, we write fjm instead of fm{j} . TA( f ) is coherent and so TA�( f )
satisfies the following first order coherence conditions.

For every L ⊂ N consisting of at least two elements, every αL ∈ NL and every
j, � ∈ L, we have

lim
zL−{j}→0

zL−{j}∈SθL−{j}

D(αL−{j},0L′ )fjαj (zj′)

αL−{j}!
= lim

zL−{�}→0
zL−{�}∈SθL−{�}

D(αL−{�},0L′ )f�α�
(z�′)

αL−{�}!
;

the limits are uniform on SθL′ whenever L �= N.
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TA�( f ) determines TA( f ) uniquely. Conversely, if we consider a family

F� = {
fjm ∈ Wsj′

σj′
(
Sθj′ , E

)
: j ∈ N, m ∈ N

}
under the first order coherence conditions (we shall say that F� = { fjm} is a coherent
first order family), we may construct in a unique way a coherent family F = { fαJ }
whose first order subfamily is F�. (For details, see [12].)

Moreover, for f ∈ Ws
σ(Sθ, E) we have from (2) that

{ fjm}∞m=0 ∈ 	
sj
σj

(
Wsj′

σj′
(
Sθj′ , E

))
, νσj

({ fjm}∞m=0

) ≤ ‖ f ‖σ ( j ∈ N).

Thus, we are led to define the space Gs
σ(Sθ, E) consisting of the coherent first

order families G = { fjm} such that, for every j ∈ N, Gj = { fjm}∞m=0 ∈ 	
sj
σj (W

sj′
σj′ (Sθj′ , E)).

Setting Nσ(G) = supj∈N νσj (Gj), (Gs
σ(Sθ, E), Nσ) is a Banach space, and the map

J1:Ws
σ(Sθ, E) → Gs

σ(Sθ, E) sending f to TA�( f ) is linear, continuous and ‖J1‖ ≤ 1.
As a converse, we shall obtain the following linear continuous version of the generalized
Borel-Ritt-Gevrey theorem for functions of several variables.

THEOREM 3.4. Given s ∈ (1,∞)n and θ ∈ (0, 2π )n with θ < (s − 1)π , there exist
a constant vector c = c(s,θ) = (c1(s1, θ1), . . . , cn(sn, θn)) ∈ (1,∞)n, a constant C =
C(s,θ) > 0 and, for each σ ∈ (0,∞)n, a linear operator

Uσ,θ: Gs
σ(Sθ, E) −→ Ws

cσ(Sθ, E)

such that, for every G ∈ Gs
σ(Sθ, E), we have

J1(Uσ,θ(G)) = G and ‖Uσ,θ(G)‖cσ ≤ CNσ(G).

4. Proofs for results in Section 3. We recall that in the one-dimensional case the
families TA( f ) and FA( f ) coincide.

THEOREM 4.1. Let s ∈ R, s > 1; S={z ∈ C : |Arg(z)|<min(π, (s − 1)π
2 )}, and E a

complex Banach space . Then, for every σ > 0 there exists a linear operator Tσ : 	s
σ (E) →

As(S, E) such that, for every a ∈ 	s
σ (E), we have TA(Tσ (a)) = FA(Tσ (a)) = a; for every

θ ∈ (0, 2π ) with θ < (s − 1)π , there exist c = c(s, θ ) > 1 and C = C(s, θ ) > 0 such that,
for every σ > 0, Tσ,θ = Rθ ◦ Tσ maps 	s

σ (E) into W s
cσ (Sθ , E), J ◦ Tσ,θ is the identity

map on 	s
σ (E) and

‖Tσ,θ (a)‖cσ ≤ C νσ (a)
(
a ∈ 	s

σ (E)
)
.

In the above Rθ denotes restriction to Sθ .

Proof. The technique being well-known, we only sketch the procedure and the way
bounds may be determined.

Take k = (s − 1)−1 > 0. From Stirling’s formula, including Binet’s function
[4, Theorem 8.5b], and the inequality td ≤ ddet−d , where t, d > 0, one obtains
constants c0(s) = c0(k) ≥ 1 and c1(s) = c1(k) ≥ 1 such that

(p!)1/k

	
(
1 + p

k

) ≤ c0(k)
(
k1/ke2π

)p
,

	
(
1 + p

k

)
(p!)1/k

≤ c1(k)
(
k−1/ke2π

)p
(p ∈ N). (5)
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Given a = {am}∞m=0 ∈ 	s
σ (E), the series

∑∞
m=0

am

	(1+ m
k )zm is seen to converge for |z| <

R0 = 1
σk1/k , and it defines there a holomorphic function ϕ; we take R = 1

2e2π R0 < R0

and define the function Tσ (a) by

Tσ (a)(z) = k
zk

∫ R

0
ϕ(t)e−tk/zk

tk−1 dt (z ∈ S),

Tσ (a) is holomorphic from S to E (principal values are considered).
The equality

k
zk

∫ ∞

0

tp

	
(
1 + p

k

)e−tk/zk
tk−1 dt = zp (p ∈ N),

and the splitting

ϕ(z) =
m−1∑
p=0

ap

	
(
1 + p

k

)zp + zmψm(z) (m ≥ 1),

lead to the following decomposition:

Tσ (a)(z) −
m−1∑
p=0

apzp = f1(z) − f2(z),

where

f1(z) = k
zk

∫ R

0
e−tk/zk

tk+m−1ψm(t) dt,

f2(z) = k
zk

∫ ∞

R
e−tk/zk

tk−1
m−1∑
p=0

(
ap

	
(
1 + p

k

) tp
)

dt.

Standard estimations, together with (5), show that, for every θ0 ∈ (0, 2π ) with
θ0 < (s − 1)π and for every z ∈ Sθ0 , we have

‖f1(z)‖ ≤ 2c0(k)c1(k)
cos(kθ0/2)

(
e4πσ

(cos(kθ0/2))1/k

)m

(m!)s−1|z|mνσ (a)

and

‖f2(z)‖ ≤ 2c0(k)c1(k)
cos(kθ0/2)

(
2e4πσ

(cos(kθ0/2))1/k

)m

(m!)s−1|z|mνσ (a).

Hence, we obtain∥∥∥∥∥∥Tσ (a)(z) −
m−1∑
p=0

apzp

∥∥∥∥∥∥ ≤ 4c0(k)c1(k)
cos(kθ0/2)

(
2e4πσ

(cos(kθ0/2))1/k

)m

(m!)s−1|z|mνσ (a)

= C(s, θ0)(c2(s, θ0)σ )m(m!)s−1|z|mνσ (a),

so that Tσ (a) ∈ As(S, E), TA(Tσ (a)) = a, Tσ,θ0 (a) ∈ As
c2σ

(Sθ0, E) and Mc2σ (Tσ,θ0 (a)) ≤
C(s, θ0)νσ (a).
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Given θ ∈ (0, 2π ) such that θ < (s − 1)π , it suffices to take θ0 =
1
2 (θ + min(2π, (s − 1)π )) and apply part (b) in Proposition 3.2 to conclude that there
exists c3 = c3(θ0, θ ) = c3(s, θ ) > 1 such that, if we put c = c(s, θ ) := c2(s, θ0)c3(s, θ ) and
C = C(s, θ ) := C(s, θ0), then

Tσ,θ (a) ∈ W s
cσ (Sθ , E) and ‖Tσ,θ (a)‖cσ ≤ Cνσ (a),

as desired. �
Explicit expressions for c(s, θ ) and C(s, θ ) may be given.
We note that one can obtain a linear continuous version of the classical Borel

theorem for Gevrey C∞ functions on R by applying Theorem 4.1 (once or twice,
according to whether s > 2 or 1 < s ≤ 2) on sectors of suitably small opening. Although
this version has already been given by Petzsche [9, Theorem 2.1], our solution has the
particular feature that the extension operator provides functions analytic on R − {0}.

The next result is not difficult to obtain and will be decisive when it comes to going
from the one-variable problem to the case of several variables.

PROPOSITION 4.2. Let Sθ and Vϕ be polysectors of Cn and Cm, respectively, E a
Banach space, σ, τ ∈ (0,∞)n, and s, t ∈ (1,∞)n. Then, the map

f ∈ W (s,t)
(σ,τ )(Sθ × Vϕ, E) −→ f ∗ ∈ Ws

σ

(
Sθ,Wt

τ (Vϕ, E)
)
,

defined for every z ∈ Sθ by f ∗(z) = f (z, ·), is an isomorphism. We have ‖f ∗(z)‖τ ≤
‖f ‖(σ,τ ), ‖f ∗‖σ = ‖f ‖(σ,τ ) and, for every α ∈ Nn, β ∈ Nm,

D(α,β)f (z,ω) = Dβ(Dαf ∗(z))(ω) ((z,ω) ∈ Sθ × Vϕ). (6)

As a first application of this result we shall prove Theorem 3.3.

Proof of Theorem 3.3. We apply induction on the number of variables n. The case
n = 1 has been already solved. Suppose the result holds for n − 1 variables, n ≥ 2. We
take σ ∈ (0,∞)n and a = {aα}α∈Nn ∈ 	s

σ(E).
Fix m ∈ N and consider am = {a(m,β)}β∈N1′ . We recall that 1′ = {2, 3, . . . , n}. It is

clear that am ∈ 	
s1′
σ1′ (E) and

νσ1′ (am) ≤ (m!)s1−1σ m
1 νσ(a). (7)

By the induction hypothesis, there exist c1′ = (c2(s2, θ2), . . . , cn(sn, θn)) ∈ (1,∞)1′
,

C1′ = C1′(s,θ) > 0 and a linear map

Tσ1′ ,θ1′ : 	s1′
σ1′ (E) −→ Ws1′

c1′σ1′
(
Sθ1′ , E

)
such that

J
(
Tσ1′ ,θ1′ (am)

) = am,
∥∥Tσ1′ ,θ1′ (am)

∥∥
c1′σ1′ ≤ C1′ νσ1′ (am).

Put E1 = Ws1′
c1′σ1′ (Sθ1′ , E); taking into account (7) we see that

b = {
Tσ1′ ,θ1′ (am)

}∞
m=0 ∈ 	s1

σ1
(E1) and νσ1 (b) ≤ C1′νσ(a).
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The one-dimensional result ensures the existence of c1 = c1(s1, θ1) > 1, C1 =
C1(s1, θ1) > 0 and a linear map Tσ1,θ1 : 	s1

σ1
(E1) → W s1

c1σ1
(Sθ1 , E1) such that

J
(
Tσ1,θ1 (b)

) = b,
∥∥Tσ1,θ1 (b)

∥∥
c1σ1

≤ C1νσ1 (b).

If we take c = (c1, c1′ ), we have by Proposition 4.2 that W s1
c1σ1

(Sθ1 , E1) and Ws
cσ(Sθ, E)

are isomorphic. We define Tσ,θ(a) ∈ Ws
cσ(Sθ, E) as the function corresponding to

Tσ1,θ1 (b) via that isomorphism, so that

‖Tσ,θ(a)‖cσ = ∥∥Tσ1,θ1 (b)
∥∥

c1σ1
≤ C1νσ1 (b) ≤ C1C1′νσ(a) = Cνσ(a).

Finally, observe that TA(Tσ,θ(a)) is coherent and (6) holds, so that for every α =
(m,β) ∈ N × N1′

we may write

lim
z→0

Dα(Tσ,θ(a))(z)
α!

= lim
z1′→0

1
β!

Dβ

(
lim

z1→0

Dm
(
Tσ1,θ1 (b)

)
(z1)

m!

)
(z1′ )

= lim
z1′→0

Dβ
(
Tσ1′ ,θ1′ (am)

)
(z1′ )

β!
= a(m,β) = aα,

as desired. We conclude that J (Tσ,θ(a)) = a. �

Before proceeding to the proof of Theorem 3.4, we need some information on the
behaviour of the one variable solution when it takes its values in a Banach space of the
type Ws

σ(Sθ, E).
Let E be a Banach space, n ≥ 1, s ∈ (1,∞)n, σ ∈ (0,∞)n and θ ∈ (0, 2π )n with

θ < (s − 1)π ; let t > 1, τ > 0 and ρ ∈ (0, 2π ) with ρ < (t − 1)π . Suppose that for
every µ ∈ N we are given a function fµ ∈ Ws

σ(Sθ, E) in such a way that f = { fµ}∞µ=0 ∈
	t

τ (Ws
σ(Sθ, E)). Take � = (t − 1)−1, R = (2e2πτ�1/�)−1. By the proof of Theorem 4.1,

we know that the function H∗ = Tτ,ρ( f): Sρ → Ws
σ(Sθ, E), given by

H∗(ω) = �

ω�

∫ R

0


 ∞∑

µ=0

fµ
	

(
1 + µ

�

) tµ


 e−t�/ω�

t�−1 dt,

belongs to W t
c(t,ρ)τ (Sρ,Ws

σ(Sθ, E)), for suitable c(t, ρ) > 1, and J (H∗) = { fµ: µ ∈
N}. Hence the function H: Sρ × Sθ → E given by H(ω,z) = H∗(ω)(z) belongs, by
Proposition 4.2, to W t,s

(c(t,ρ)τ,σ)(Sρ × Sθ, E) and, for every α ∈ Nn, we have

D(0,α)H(ω,z) = Dα(H∗(ω))(z)

= �

ω�

∫ R

0


 ∞∑

µ=0

Dαfµ(z)

	
(
1 + µ

�

) tµ


 e−t�/ω�

t�−1 dt. (8)

LEMMA 4.3. If, for every m, µ ∈ N, and j ∈ N, we have

lim
zj→0
zj∈Sθj

Dmej fµ(z) = 0 uniformly on Sθj′ ,
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then, for every m ∈ N and j ∈ N

lim
zj→0
zj∈Sθj

D(0,mej)H(ω,z) = 0 uniformly on Sρ × Sθj′ .

Proof. By (8) we have

D(0,mej)H(ω,z) = Dmej (H∗(ω))(z)

= �

ω�

∫ R

0


 ∞∑

µ=0

Dmej fµ(z)

	
(
1 + µ

�

) tµ


 e−t�/ω�

t�−1 dt.

Given ε > 0, there exists µ0 ∈ N such that, for every µ ≥ µ0, every z ∈ Sθ and every
t ∈ [0, R], one has ∥∥∥∥∥

∞∑
µ=µ0

Dmej fµ(z)

	
(
1 + µ

�

) tµ
∥∥∥∥∥ < ε.

Since

lim
zj→0
zj∈Sθj

Dmej fµ(z) = 0 (µ = 0, 1, . . . , µ0 − 1),

uniformly on Sθj′ , there exists δ > 0 such that whenever z = (z1, z2, . . . , zn) ∈ Sθ and
zj ∈ Sθj ∩ Dδ(0) we have

‖Dmej fµ(z)‖ ≤ ε 	
(
1 + µ

�

)
µ0Rµ

(µ = 0, 1, . . . , µ0 − 1).

Hence, for every z ∈ Sθ with zj ∈ Sθj ∩ Dδ(0) and every ω ∈ Sρ , we have

∥∥D(0,mej)H(ω,z)
∥∥ ≤ �

|ω|�
∫ R

0




∥∥∥∥∥∥
µ0−1∑
µ=0

Dmej fµ(z)

	
(
1 + µ

�

) tµ

∥∥∥∥∥∥
+

∥∥∥∥∥
∞∑

µ=µ0

Dmej fµ(z)

	
(
1 + µ

�

) tµ
∥∥∥∥∥
]

exp
(

−t��
(

1
ω�

))
t�−1 dt

≤ 2ε
�

|ω|�
∫ R

0
exp

(
−t��

(
1
ω�

))
t�−1 dt

≤ 2ε
�

|ω|�
∫ ∞

0
exp

(
−t�

cos(�ρ/2)
|ω|�

)
t�−1 dt

= 2ε

cos(�ρ/2)
�

|ω|�
∫ ∞

0
exp

(−u�

|ω|�
)

u�−1 du = 2ε

cos(�ρ/2)
,

and the proof is complete. �
Proof of Theorem 3.4. Let G = { fjm: j ∈ N, m ∈ N} ∈ Gs

σ(Sθ, E) be given.
We know that G1 = { f1m}∞m=0 ∈ 	s1

σ1
(Ws1′

σ1′ (Sθ1′ , E)). By Theorem 4.1, there exist
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c1 = c1(s1, θ1) > 1 and C1 = C1(s1, θ1) > 0 such that

Tσ1,θ1 (G1) = H [1]∗
1 ∈ W s1

c1σ1

(
Sθ1 ,Ws1′

σ1′ (Sθ1′ , E)
)

H [1]∗
1 ∼

∞∑
m=0

f1mzm
1 and

∥∥H [1]∗
1

∥∥
c1σ1

≤ C1 νσ1 (G1).

By Proposition 4.2, the function H [1] given by H [1](z) = H [1]∗
1 (z1)(z1′) belongs to

Ws
(c1σ1,σ1′ )(Sθ, E), and ‖H [1]‖(c1σ1,σ1′ ) = ‖H [1]∗

1 ‖c1σ1 . Put J1(H [1]) = {h[1]
jm}; for every

z1′ ∈ Sθ1′ we have

h[1]
1m(z1′ ) = lim

z1→0
z1∈Sθ1

Dme1 H [1](z)
m!

= lim
z1→0
z1∈Sθ1

(
H [1]∗

1

)m
(z1)(z1′)

m!
= f1m(z1′).

Let us consider the function H [1]∗
2 given by

H [1]∗
2 (z2)(z2′) = H [1](z2,z2′ )

(
z2 ∈ Sθ2 , z2′ ∈ Sθ2′

)
.

By Proposition 4.2, H [1]∗
2 ∈ W s2

σ2
(Sθ2 ,W(c1σ1,σ{1,2}′ )(Sθ2′ , E)) and

H [1]∗
2 ∼

∞∑
m=0

h[1]
2m zm

2 .

From the coherence conditions for G and J1(H [1]) we have that, for every m, k ∈ N,

lim
z1→0
z1∈Sθ1

Dme1
(

f2k − h[1]
2k

)
(z2′)

m!
= lim

z2→0
z2∈Sθ2

Dke2
(

f1m − h[1]
1m

)
(z1′ )

k!
= 0.

Since G ∈ Gs
σ(Sθ, E), we have G2 = { f2m}∞m=0 ∈ 	s2

σ2
(Ws2′

σ2′ (Sθ2′ , E)); on the other hand,

{h[1]
2m}∞m=0 ∈ 	s2

σ2
(Ws2′

(c1σ1,σ{1,2}′ )
(Sθ2′ , E)). Hence

{
f2m − h[1]

2m

}∞
m=0 ∈ 	s2

σ2

(
Ws2′

(c1σ1,σ{1,2}′ )

(
Sθ2′ , E

))
,

and we can apply Theorem 4.1 to obtain constants c2 = c2(s2, θ2) > 1 and C2 =
C2(s2, θ2) > 0 such that the function

Tσ2,θ2

({
f2m − h[1]

2m

}∞
m=0

) = H [2]∗
2 ∈ W s2

c2σ2

(
Sθ2 ,W

s2′
(c1σ1,σ{1,2}′ )

(
Sθ2′ , E

))
,

and

H [2]∗
2 ∼

∞∑
m=0

(
f2m − h[1]

2m

)
zm

2 ,
∥∥H [2]∗

2

∥∥
c2σ2

≤ C2 νσ2

({
f2m − h[1]

2m

}∞
m=0

)
. (9)
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Proposition 4.2 implies that H [2], given by H [2](z) = H [2]∗
2 (z2)(z2′), belongs to

Ws
(c1σ1,c2σ2,σ{1,2}′ )

(Sθ, E), and ‖H [2]‖(c1σ1,c2σ2,σ{1,2}′ ) = ‖H [2]∗
2 ‖c2σ2 . Observe that if we put

J1(H [2]) = {h[2]
jm}, by the previous Lemma and (9) we have

h[2]
1m = 0, h[2]

2m = f2m − h[1]
2m (m ∈ N).

Now, F [2] = H [1] + H [2] is in Ws
(c1σ1,c2σ2,σ{1,2}′ )

(Sθ, E) and, if J1( f [2]) = { f [2]
jm }, we have

f [2]
jm = fjm, for j = 1, 2 and m ∈ N. Consider the function F [2]∗

3 defined by

F [2]∗
3 (z3)(z3′) = F [2](z3,z3′ )

(
z3 ∈ Sθ3 , z3′ ∈ Sθ3′

)
.

According to Proposition 4.2, F [2]∗
3 ∈ W s3

σ3
(Sθ3 ,W(c1σ1,c2σ2,σ{1,2,3}′ )(Sθ3′ , E)) and

F [2]∗
3 ∼

∞∑
m=0

f [2]
3m zm

3 .

From the coherence conditions for G and J1( f [2]) we have that, for every m, k ∈ N and
for j = 1, 2,

lim
zj→0
zj∈Sθj

Dmej
(

f3k − f [2]
3k

)
(z3′ )

m!
= lim

z3→0
z3∈Sθ3

Dke3
(

fjm − f [2]
jm

)
(zj′)

k!
= 0.

As G ∈ Gs
σ(Sθ, E), we have G3 = { f3m}∞m=0 ∈ 	s3

σ3
(Ws3′

σ3′ (Sθ3′ , E)); on the other hand,

{ f [3]
3m}∞m=0 ∈ 	s3

σ3
(Ws3′

(c1σ1,c2σ2,σ{1,2,3}′ )
(Sθ3′ , E)), so that

{
f3m − f [2]

3m

}∞
m=0 ∈ 	s3

σ3

(
Ws3′

(c1σ1,c2σ2,σ{1,2,3}′ )

(
Sθ3′ , E

))
.

We can apply Theorem 4.1 and obtain constants c3 = c3(s3, θ3) > 1 and C3 =
C3(s3, θ3) > 0 such that

Tσ3,θ3

({
f3m − f [2]

3m

}∞
m=0

) = H [3]∗
3 ∈ W s3

c3σ3

(
Sθ3 ,W

s3′
(c1σ1,c2σ2,σ{1,2,3}′ )

(
Sθ3′ , E

))
,

and

H [3]∗
3 ∼

∞∑
m=0

(
f3m − f [2]

3m

)
zm

3 ,
∥∥H [3]∗

3

∥∥
c3σ3

≤ C3 νσ3

({
f3m − f [2]

3m

}∞
m=0

)
. (10)

Again by Proposition 4.2, the function H [3] given by H [3](z) = H [3]∗
3 (z3)(z3′ ) satisfies

H [3] ∈ Ws
(c1σ1,c2σ2,c3σ3,σ{1,2,3}′ )(Sθ, E),

∥∥H [3]
∥∥

(c1σ1,c2σ2,c3σ3,σ{1,2,3}′ )
= ∥∥H [3]∗

3

∥∥
c3σ3

.

If J1(H [3]) = {h[3]
jm}, then the previous Lemma and (10) imply that

h[3]
jm = 0 ( j = 1, 2, m ∈ N);

h[3]
3m = f3m − f [2]

3m (m ∈ N).
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Hence F [3] = F [2] + H [3] belongs toWs
(c1σ1,c2σ2,c3σ3,σ{1,2,3}′ )

(Sθ, E), and if we putJ1( f [3]) =
{ f [3]

jm }, we have f [3]
jm = fjm, for j = 1, 2, 3 and m ∈ N. After the necessary steps,

we would obtain a function F = F [n] = Uσ,θ(G) solving the problem. Indeed, the
construction shows Uσ,θ is linear and sends Gs

σ(Sθ, E) into Ws
cσ(Sθ, E), with

c = (c1(s1, θ1), . . . , cn(sn, θn)) ∈ (1,∞)n; moreover, J1(Uσ,θ(G)) = G. Finally, we can
write ∥∥H [1]

∥∥
cσ

≤ ∥∥H [1]
∥∥

(c1σ1,σ1′ ) = ∥∥H [1]∗
1

∥∥
c1σ1

≤ C1 νσ1 (G1) ≤ C1Nσ(G);∥∥H [2]
∥∥

cσ
≤ ∥∥H [2]

∥∥
(c1σ1,c2σ2,σ{1,2}′ )

= ∥∥H [2]∗
2

∥∥
c2σ2

≤ C2 νσ2

({
f2m − h[1]

2m

}∞
m=0

) ≤ C2
(
νσ2 (G2) + νσ2

(
J

(
H [1]∗

2

)))
≤ C2

(
Nσ(G) + ∥∥H [1]

∥∥
(c1σ1,σ1′ )

) ≤ (1 + C1)C2Nσ(G);

and inductively,

∥∥H [j]
∥∥

(c1σ1,...,cjσj,σ{1,...,j}′ )
≤ Cj

j−1∏
k=1

(1 + Ck) Nσ(G).

Hence, we have

∥∥F [j]
∥∥

(c1σ1,...,cjσj,σ{1,...,j}′ )
=

∥∥∥∥∥
j∑

k=1

H [k]

∥∥∥∥∥
(c1σ1,...,cjσj,σ{1,...,j}′ )

≤
j∑

k=1

∥∥H [k]
∥∥

(c1σ1,...,ckσk,σ{1,...,k}′ )

≤
j∑

k=1

Ck

k−1∏
�=1

(1 + C�) Nσ(G)

=
( j∏

k=1

(1 + Ck) − 1

)
Nσ(G),

and, in particular,

‖Uσ,θ(G)‖cσ = ∥∥F [n]
∥∥

cσ

≤
(

n∏
k=1

(1 + Ck) − 1

)
Nσ(G) = C Nσ(G),

where C = C(s,θ) > 0, as desired. �

5. Rigidity properties. In order to study the rigidity of the operator Tσ,θ

constructed in Theorem 3.3, we shall depart from the setting in Thilliez [13, §2].
Let n ≥ 1, s ∈ (1,∞)n, σ ∈ (0,∞)n, and define

	s
σ,0(E) =

{
a = {aα}α∈Nn : aα ∈ E, lim

|α|→∞
‖aα‖

(α!)s−1σα
= 0

}
.
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Obviously we have 	s
σ,0(E) ⊂ 	s

σ(E), and (	s
σ,0(E), νσ) is a Banach space. For θ ∈

(0, 2π )n with θ < (s − 1)π , consider

Hs
σ(Sθ, E) = {

f ∈ Ws
cσ(Sθ, E):J ( f ) ∈ 	s

σ,0(E)
}
,

where c = (c1(s1, θ1), · · · , cn(sn, θn)) ∈ (1,∞)n is the constant vector in Theorem 3.3;
on this space we define the norm

‖f ‖∧
σ = ‖f ‖cσ + νσ(J ( f )).

(Hs
σ(Sθ, E), ‖·‖∧

σ) is a Banach space, and its subspace

Fs
σ(Sθ, E) = {

f ∈ Hs
σ(Sθ, E):J ( f ) = 0

}
is closed, so that the quotient space Ls

σ(Sθ, E) = Hs
σ(Sθ, E)/Fs

σ(Sθ, E) is a Banach
space, with norm

| ḟ |σ = inf
g∈Fs

σ (Sθ ,E)
‖ f + g‖∧

σ = νσ(J ( f )) + inf
g∈Fs

σ (Sθ ,E)
‖ f + g‖cσ.

Let πσ: Hs
σ(Sθ, E) → Ls

σ(Sθ, E) be the canonical map. It is clear that the map J
induces a well-defined map J̇ : Ls

σ(Sθ, E) → 	s
σ,0(E), which indeed is an isomorphism,

with inverse πσ ◦ Tσ,θ. For every a ∈ 	s
σ,0(E) we have

|J̇ −1a|σ = |πσ ◦ Tσ,θ(a)|σ ≤ ‖Tσ,θ(a)‖∧
σ

= ‖Tσ,θ(a)‖cσ + νσ(JTσ,θ(a)) ≤ (1 + C)νσ(a),

so that ‖J̇ −1‖ ≤ 1 + C, where C = C(s,θ) ∈ (0,∞) is the constant in Theorem 3.3.
The map Pσ: Hs

σ(Sθ, E) → Hs
σ(Sθ, E), defined by Pσ = Tσ,θ ◦ J , is linear and

continuous.
Suppose that, for every α ∈ Nn, we choose zα = (z(1)

α , . . . , z(n)
α ) ∈ Sθ. Consider the

map K̇: Ls
σ(Sθ, E) → EN

n
given by

K̇( ḟ ) =
{

1
α!

Dα(Pσf )(zα)
}

α∈Nn

.

K̇ is well-defined. Under suitable conditions on the points zα, we shall prove that K̇ is
“sufficiently close” to J̇ .

LEMMA 5.1. Suppose that there exists k ∈ (0, 1) such that
n∑

j=1

∣∣z( j)
α

∣∣(αj + 1)sj cjσj ≤ k
C(1 + C)cα

(α ∈ Nn).

Then the range of K̇ is contained in 	s
σ(E) and K̇ admits a continuous inverse.

Proof. Fix α ∈ Nn and ḟ ∈ Ls
σ(Sθ, E). The α-coordinate of J̇ ( ḟ ) equals

1
α! D

α(Pσ f )(0), so that for the distance dα between it and the α-coordinate of

K̇( ḟ ) we can write

dα = 1
α!

‖Dα(Pσf )(zα) − Dα(Pσf )(0)‖

= 1
α!

∥∥∥∥∥∥
∫ 1

0

n∑
j=1

Dα+ej (Pσf )(tzα)z( j)
α dt

∥∥∥∥∥∥
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≤ ‖Pσf ‖cσ

α!

n∑
j=1

∣∣z( j)
α

∣∣(α + ej)!s(cσ)α+ej

≤ 1
α!

C(s,θ)νσ(J f )α!s(cσ)α
n∑

j=1

∣∣z( j)
α

∣∣(αj + 1)sj cjσj

≤ Ccα


 n∑

j=1

∣∣z( j)
α

∣∣(αj + 1)sj cjσj


 α!s−1σα| ḟ |σ.

By the hypotheses we find that dα ≤ (1 + C)−1k(α!)s−1σα| ḟ |σ, so that

νσ(K̇ḟ − J̇ ḟ ) = sup
α∈Nn

dα

(α!)s−1σα
≤ k

1 + C
| ḟ |σ.

It is now clear that K̇(Ls
σ(Sθ, E)) ⊂ 	s

σ(E), and that K̇: Ls
σ(Sθ, E) → 	s

σ(E) is linear
and continuous with

‖K̇ − J̇ ‖ ≤ k
1 + C

<
1

1 + C
≤ 1

‖J̇ −1‖ .

The Banach isomorphism theorem lets us conclude that K̇ admits a continuous
inverse. �

We shall now give a result about the rigidity of the extension operators Tσ,θ.

THEOREM 5.2. Suppose that there exists k ∈ (0, 1) such that

n∑
j=1

∣∣z( j)
α

∣∣(αj + 1)sj cjσj ≤ k
C(1 + C)cα

(α ∈ Nn).

If a ∈ 	s
σ,0(E) is such that Dα(Tσ,θa)(zα) = 0, for all α ∈ Nn, then a = 0.

Proof. Observe that the conditions on a amount to K̇(πσ ◦ Tσ,θ(a)) = 0 ; by the
previous lemma, this implies that πσ ◦ Tσ,θ(a) = 0̇, and so

a = J ◦ Tσ,θ(a) = J̇ (πσ ◦ Tσ,θ(a)) = 0,

as desired. �
When n = 1 the theorem reads as follows.

THEOREM 5.3. Let s > 1, σ > 0 and θ ∈ (0, 2π ) with θ < (s − 1)π . Suppose that we
are given a sequence {zm}∞m=0 of points in Sθ such that there exists k ∈ (0, 1) with

|zm| ≤ k
σC(1 + C)(m + 1)scm+1

(m ∈ N).

Then, if a ∈ 	s
σ,0(E) is such that (Tσ,θ a)(m)(zm) = 0, for every m ∈ N, we have a = 0.

As a consequence we obtain the following result.
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COROLLARY 5.4. Let s, σ , θ and {zm}∞m=0 be as above and ϕ ∈ [(s − 1)π, 2π ). Suppose
that a function f ∈ W s

σ (Sϕ, E) satisfies

J f ∈ 	s
σ,0(E) and (Tσ,θJ f )(m)(zm) = 0, for every m ∈ N.

Then, we have f ≡ 0.

Proof. By the Hahn-Banach Theorem, it suffices to prove that φ ◦ f ≡ 0, for every
φ ∈ E′. The previous result implies that J f = 0 and so the same holds for the complex
function φ ◦ f ∈ W s

σ (Sϕ, C). Watson’s lemma implies that φ ◦ f ≡ 0. �
We come to the study of the rigidity of the operators Uσ,θ. Let n > 1, s ∈

(1,∞)n, σ ∈ (0,∞)n and θ ∈ (0, 2π )n with θ < (s − 1)π . Define Gs
σ,0(Sθ, E) as the

set consisting of the families G = { fjm} ∈ Gs
σ(Sθ, E) such that

lim
m→∞

‖fjm‖σN−{j}

m!sj−1σ m
j

= 0 ( j = 1, 2, . . . , n);

equivalently, G = { fjm} ∈ Gs
σ,0(Sθ, E) if and only if G is a coherent first order family

and, for every j = 1, 2, . . . , n, we have

Gj = { fjm}∞m=0 ∈ 	
sj

σj,0

(
Wsj′

σj′
(
Sθj′ , E

))
.

In the following result we use the same notation as that in the statement and proof of
Theorem 3.4.

THEOREM 5.5. Let G ∈ Gs
σ,0(Sθ, E) and let H [1], H [2], . . . , H [n] be the successive

functions obtained on constructing Uσ,θ(G). Suppose there exists a set of complex
numbers {zjm}j∈N,m∈N such that

(i) for every j ∈ N and every m ∈ N, zjm ∈ Sθj ,
(ii) there exists k ∈ (0, 1) with

|zjm| ≤ k

σjCj(1 + Cj)(m + 1)sj cm+1
j

( j ∈ N, m ∈ N),

(iii) for every j and m, Dmej (H [j])(zjm, ·) is identically zero on Sθj′ . Then, G is the null
family.

Proof. Recall that H [1](z) = H [1]∗
1 (z1)(z1′),∀ z ∈ Sθ, where H [1]∗

1 = Tσ1,θ1 (G1). For
j = 1, and according to (6) in Proposition 4.2, condition (iii) means that (H [1∗]

1 )m)(z1m) =
0. Conditions (i) and (ii) allow us to apply Theorem 5.3 to conclude that G1 is the null
family. Tσ1,θ1 being linear, we have H [1]∗

1 = 0, and also H [1] = 0 = H [1]∗
2 , so that we have

in fact h[1]
2m = 0, for every m. Then,

{
f2m − h[1]

2m

}∞
m=0 = { f2m}∞m=0 = G2,

and H [2]∗
2 = Tσ2,θ2 (G2); we may repeat the preceding argument to obtain G2 is the null

family, and so on. �
The following lemma will readily lead us to an easy corollary of the previous

result.
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LEMMA 5.6. Let s and σ be as usual and let ϕ = (ϕ1, . . . , ϕn) ∈ (0, 2π )n be such that
there is j ∈ N with ϕj ≥ (sj − 1)π . If f ∈ Ws

σ(Sϕ, E) and J1( f ) is the null family, then f
is identically zero on Sϕ.

Proof. It suffices to fix an arbitrary element zj′ ∈ Sϕj′ and show that the function
f (·,zj′ ) admits the null series as sj-Gevrey asymptotic expansion at 0 following Sϕj . The
opening of this sector being large, we may apply Watson’s lemma to conclude that this
function is identically zero. �

COROLLARY 5.7. Let s, σ and θ be as usual and let ϕ = (ϕ1, . . . , ϕn) ∈ (0, 2π )n be
such that θ < ϕ and there exists j ∈ N with ϕj ≥ (sj − 1)π . Suppose that f ∈ Ws

σ(Sϕ, E)
satisfies conditions (a) and (b).

(a) Its restriction to Sθ, say f̃ , is such that J1( f̃ ) ∈ Gs
σ,0(Sθ, E).

(b) Let H [1], H [2], . . . , H [n] be the successive functions obtained on constructing
Uσ,θ(J1( f̃ )). There exists a set of complex numbers {zjm}j∈N,m∈N satisfying conditions
(i), (ii) and (iii) in Theorem 5.5.

Then, f is identically zero.
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2. J. Chaumat and A. M. Chollet, Théorème de Whitney dans des classes
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