
Forum of Mathematics, Sigma (2023), Vol. 11:e98 1–20
doi:10.1017/fms.2023.93

RESEARCH ARTICLE

Post-Lie algebras in Regularity Structures
Yvain Bruned 1 and Foivos Katsetsiadis2

1IECL (UMR 7502), Université de Lorraine, Faculté des Sciences et Technologies Campus, Boulevard des Aiguillettes,
Vandœuvre-lès-Nancy, 54506, France; E-mail: yvain.bruned@univ-lorraine.fr.
2School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9
3FD, United Kingdom; E-mail: F.I.Katsetsiadis@sms.ed.ac.uk.

Received: 11 January 2023; Revised: 6 July 2023; Accepted: 3 August 2023

2020 Mathematics subject classification: Primary – 60L70, 60L30; Secondary – 16T05

Abstract
In this work, we construct the deformed Butcher-Connes-Kreimer Hopf algebra coming from the theory of Regularity
Structures as the universal envelope of a post-Lie algebra. We show that this can be done using either of the two
combinatorial structures that have been proposed in the context of singular SPDEs: decorated trees and multi-
indices. Our construction is inspired from multi-indices where the Hopf algebra was obtained as the universal
envelope of a Lie algebra, and it has been proved that one can find a basis that is symmetric with respect to certain
elements. We show that this Lie algebra comes from an underlying post-Lie structure.
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1. Introduction

Regularity Structures were introduced by Martin Hairer in [32] and are nowadays able to provide well-
posedness to a large class of singular stochastic partial differential equations (SPDEs). This is performed
via the theory developed in [9, 18, 5], which may be seen as a black box that constructs Taylor-type
expansions of solutions to these singular dynamics. These expansions rely on a description by means of
decorated trees that provide an abstract representation of the iterated integrals appearing in the series
expansion of the solution in the smooth setting. In [9], analytical operations on these expansions such
as recentering and renormalisation are performed via Hopf algebras which are close in spirit to the
Butcher-Connes-Kreimer Hopf algebra [15, 21, 22] (recentering) and the extraction-contraction Hopf
algebra [16] (renormalisation). One of the crucial points of this algebraic approach is the cointeraction
between the two Hopf algebras involved in [32, 9] which is reminiscent of the cointeraction proven in
[16] and observed at a group theoretic level in numerical analysis. The reader is referred to [20] for a
review of its applications to numerical analysis. We also refer the reader to [25, 8] for long surveys and
to [10] for a short survey on the theory of Regularity Structures.
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In this paper, we shall provide a strong link between the Hopf algebras involved in the theory and
the notion of post-Lie algebra. Post-Lie algebras appear naturally in the context of an affine connection
with constant torsion and vanishing curvature (see [39, 24]). They were first mentioned in [42, 38] on
the partition of posets and in the context of Lie-Butcher series. They have also been used in many works
in numerical analysis (see [39, 26, 17, 1, 2]).

We begin by explaining how this type of structure can appear in the context of singular SPDEs.
In [11], a deformation of the grafting pre-Lie product was introduced by Bruned and Manchon that
gives the pre-Lie product defined in [5]. Then, using the result of Guin-Oudom [30, 31], the authors
construct the Hopf algebra that encodes the combinatorics of recentering by taking a suitable quotient
of the Lie envelope of the plugging pre-Lie algebra. This procedure produces a deformation of the
Grossman-Larson product on trees [29]. Then, the extraction-contraction Hopf algebra given in [9]
is obtained from this deformed product. Indeed, it produces a pre-Lie product and together with the
Guin-Oudom procedure, one obtains the extraction-contraction Hopf algebra. This approach also gives
the cointeraction at the level of the deformed pre-Lie products. This new deformation formalism has
been crucial in [3, 4] for providing a simple proof of the renormalised equation that works in the non-
translation invariant setting. The proof relies on the local renormalisation maps introduced [12]. It also
inspires the development of the Hopf algebra of multi-indices suitable for quasilinear SPDEs in [40, 34,
35]. In particular, in [34], the authors construct a product operation on the universal enveloping algebra
of a Lie algebra of derivations by using a procedure that is similar in spirit to the one developed by Guin
and Oudom.

The main contribution of this paper is to unify the construction of the Hopf algebras appearing in the
theory of Regularity Structures as well as their presentation by means of a distinguished basis, by viewing
them as the Lie enveloping algebras of suitable post-Lie algebras and to show that the construction of
the associative product on the universal envelope of L in [34], together with the subsequent attainment
of a partially symmetric basis, can also be seen as taking the universal envelope of a particular post-Lie
algebra and exploiting the isomorphism induced by virtue of the result in [24]. The post-Lie perspective
provides a cleaner construction than the one given in [11] where one had to make the appropriate
identifications after taking the universal envelope over the plugging pre-Lie algebra. Our construction
replaces the plugging operation by a post-Lie structure that is intimately related to the deformed grafting
product.

The appearance of a post-Lie structure reflects the fact that the formal differentiation operators obey
certain non-commutative relations which necessitate the move from pre-Lie algebras to this more general
setting. It is our contention that this idea opens new perspectives in the field due to the intricate interplay
between the combinatorial, algebraic and geometric nature of the post-Lie category. A post-Lie algebra
carries the geometric datum of a connection and at the same time produces an associated representation
for its Lie enveloping Hopf algebra as well as an Hopf isomorphism while, in practice, the results
attained herein have a distinctly combinatorial flavour. Indeed, the special case of a pre-Lie algebra has
already been used by Loday and Ronco in [36] to formalise the idea of a combinatorial Hopf algebra
by means of a categorical equivalence. Lastly, our use of the post-Lie structure has already had some
impact by allowing one to construct planar Regularity Structures in [41] for SPDEs in homogeneous
spaces as well as to revisit, in [7], the Chapoton-Foissy isomorphism given in [27, 19]. Also, in [33], the
authors were inspired by our construction to study a class of post-Lie algebras comprised of derivations.

We can state our main result as a meta theorem:

Theorem 1.1. The Hopf algebra in [32, 9] encoding the combinatorics of recentering is obtained as
the universal envelope of a suitable post-Lie algebra.

Theorem 1.1 is split in the sequel into several results: Theorem 4.7 and Theorem 4.10 for decorated
trees and Theorem 5.7 for multi-indices. The central idea behind Theorem 1.1 is the non-commutation
of derivatives observed for multi-indices [34] and in [8] for the proof of the renormalised equation.
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Indeed, one has a collection of derivatives 𝐷 (𝑛) and 𝜕𝑖 with 𝑛 ∈ N𝑑+1 and 𝑖, 𝑗 ∈ {0, ..., 𝑑} such that

𝐷 (𝑛)𝐷 (𝑚) = 𝐷 (𝑚)𝐷 (𝑛) , 𝜕𝑖𝜕 𝑗 = 𝜕 𝑗𝜕𝑖

𝜕𝑖𝐷
(𝑛) = 𝐷 (𝑛)𝜕𝑖 + 𝑛𝑖𝐷

(𝑛−𝑒𝑖 ) , (1)

where the 𝑒𝑖 are the canonical basis of N𝑑+1. The last identity gave the authors the inspiration to
introduce a suitable Lie bracket on derivations that reflects this property. Then, one has to look for a
product compatible with this Lie bracket that will be a post-Lie product. In the context of decorated
trees, one has an analogue of (1) given by

↑𝑖𝑁𝜏

(
𝜎�̂𝑛𝜏

)
= 𝜎�̂𝑛

(↑𝑖𝑁𝜏
𝜏) − 𝜎�̂𝑛−𝑒𝑖𝜏. (2)

Here, 𝜎, 𝜏 are decorated trees with decorations on the nodes and edges given by N𝑑+1. The operator
↑𝑖𝑁𝜏

sums over all the possible ways to increase a node decoration in 𝜏 by 𝑒𝑖 . The product �̂𝑛−𝑒𝑖 is a
deformed grafting operation. The reader should keep in mind the following dictionary:

𝐷 (𝑛) ≡ �̂
𝑛, ↑𝑖𝑁𝜏

≡ 𝜕𝑖 .

Hence, the statement of Theorem (1.1) can be seen as independent of the underlying choice of
formalism whether that be decorated trees or multi-indices. Theorem 1.1 together with the deformation
formalism developed in [11] yield a precise answer on how to build up the structures first proposed in
[9] both on multi-indices and decorated trees. Among other things, we also expect this formalism to
prove very fruitful in exporting algebraic properties from numerical analysis and perturbative quantum
field theory to singular SPDEs.

Finally, let us outline the paper by summarising the content of its sections. In Section 2, we recall
the basics of post-Lie algebras with Definition 2.1 and the Guin-Oudom type procedure on such a
product that leads to Theorem 2.2. It establishes a Hopf algebra isomorphism between the Hopf algebra
equipped with the product obtained from the post-Lie structure and the universal enveloping algebra of
a well-chosen Lie algebra. In Section 3, we introduce decorated trees and multi-indices. On decorated
trees, we recall multi-grafting products and their deformation coming from [11]. We stress the crucial
non-commutative property in Proposition 3.1 between the deformed grafting product and the insertion-
of-decorations operator. This also has an analogue at the level of multi-indices with certain derivative
operators. In Section 4, we make precise Theorem 1.1 in the context of decorated trees by introducing the
appropriate Lie algebra and post-Lie product. This allows us to apply the result from [24] and obtain the
desired isomorphism. As a consequence, we obtain a partially symmetric basis for the corresponding Lie
enveloping algebra. In Section 5, we identify the appropriate post-Lie structure in the context of multi-
indices and apply the same procedure, again obtaining the isomorphism result afforded to us by [24].
This gives an alternative way to obtain a partially symmetric basis for 𝑈 (𝐿), as was obtained in [34].

2. Post-Lie algebras

In this section, we briefly recall the definition of a post-Lie algebra and its various properties.
Definition 2.1. A post-Lie algebra is a Lie algebra (𝔤, [., .]) equipped with a bilinear product ⊲ satisfying
the following identities:

𝑥 ⊲ [𝑦, 𝑧] = [𝑥 ⊲ 𝑦, 𝑧] + [𝑦, 𝑥 ⊲ 𝑧] (3)

and
[𝑥, 𝑦] ⊲ 𝑧 = 𝑎⊲ (𝑥, 𝑦, 𝑧) − 𝑎⊲ (𝑦, 𝑥, 𝑧) (4)

with 𝑥, 𝑦, 𝑥 ∈ 𝔤, and the associator 𝑎⊲ (𝑥, 𝑦, 𝑧) is given by:

𝑎⊲ (𝑥, 𝑦, 𝑧) = 𝑥 ⊲ (𝑦 ⊲ 𝑧) − (𝑥 ⊲ 𝑦) ⊲ 𝑧.
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When 𝔤 is an abelian Lie algebra, (3) is void and (4) is the classical definition of the pre-Lie relation.
The equation gives then a (in general) nontrivial Lie bracket. One can define a new Lie bracket [[., .]]
given by

[[𝑥, 𝑦]] = [𝑥, 𝑦] + 𝑥 ⊲ 𝑦 − 𝑦 ⊲ 𝑥.

The post-Lie product ⊲ can be extended to a product on the universal enveloping algebra 𝑈 (𝔤) by first
defining it on 𝔤 ⊗ 𝑈 (𝔤):

𝑥 ⊲ 1 = 0, 𝑥 ⊲ 𝑦1...𝑦𝑛 =
𝑛∑
𝑖=1

𝑦1...(𝑥 ⊲ 𝑦𝑖)...𝑦𝑛

and then extending it to 𝑈 (𝔤) ⊗ 𝑈 (𝔤) by defining

1 ⊲ 𝐴 = 𝐴, 𝑥𝐴 ⊲ 𝑦 = 𝑥 ⊲ (𝐴 ⊲ 𝑦) − (𝑥 ⊲ 𝐴) ⊲ 𝑦,

𝐴 ⊲ 𝐵𝐶 =
∑
(𝐴)

(𝐴(1) ⊲ 𝐵) (𝐴(2) ⊲ 𝐶),

where 𝐴, 𝐵, 𝐶 ∈ 𝑈 (𝔤) and 𝑥, 𝑦 ∈ 𝔤. Here, we have used Sweedler’s notation for the coproduct Δ:
Δ𝐴 =

∑
(𝐴) 𝐴

(1) ⊗ 𝐴(2) . This coproduct is defined for 𝑥 ∈ 𝔤 by

Δ𝑥 = 𝑥 ⊗ 1 + 1 ⊗ 𝑥

and then extended multiplicatively with respect to the concatenation product. Finally, one is able to
define an associative product ∗ on 𝑈 (𝔤):

𝐴 ∗ 𝐵 =
∑
(𝐴)

𝐴(1) (𝐴(2) ⊲ 𝐵). (5)

Then, one of the main results in [24, Thm 3.4], which depends on the above construction, allows us to
exploit the underlying post-Lie structure on 𝔤 in order to obtain information about the structure of𝑈 (𝔤).

Theorem 2.2. The Hopf algebra (𝑈 (𝔤), ∗,Δ) is isomorphic to the enveloping algebra 𝑈 (�̄�) where �̄� is
the Lie algebra equipped with the Lie bracket [[., .]].

Remark 2.3. This result is a generalisation of the Guin-Oudom procedure in [30, 31] applied on a pre-
Lie product. The Guin-Oudom construction allows one to get an associative product and an isomorphism
with the enveloping algebra of a Lie algebra whose bracket is obtained by antisymmetrisation of a pre-
Lie product. As in the simpler pre-Lie case, the post-Lie assumption gives some extra structure to the
underlying Lie algebra. The construction of the ∗ product can be viewed as a way to upload the extra
structure to the universal enveloping algebra and exploit the additional information by means of an
isomorphism theorem.

Furthermore, one has the following proposition which shows that a post-Lie structure underlying a
Lie algebra produces a representation-theoretic datum (see [37, Sec. 5]):

Proposition 2.4. The mapping

𝜌 : �̄� → 𝐸𝑛𝑑R(𝑈 (𝔤)), 𝑥 ↦→ (𝑦 ↦→ 𝑥 ⊲ 𝑦 + 𝑥𝑦)

is a linear representation of the Lie algebra �̄�. Furthermore, by the universal property of the enveloping
algebra, it extends to a linear representation

𝜌 : 𝑈 (�̄�) → 𝐸𝑛𝑑R (𝑈 (𝔤))
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of the algebra𝑈 (�̄�). We call this the representation induced by the post-Lie algebra (𝔤, [., .], ⊲) or, more
shortly, the induced representation.

We finish this section by presenting standard examples of pre- and post-Lie algebras. We first consider
the set of non-planar rooted trees denoted by T . We define a product �̄ called grafting product defined
for two rooted trees 𝜏, 𝜎 by

𝜎�̄𝜏 :=
∑
𝑣 ∈𝑁𝜏

𝜎�̄𝑣𝜏,

where 𝑁𝜏 is the set of vertices of 𝜏 and 𝜎�̄𝑣𝜏 is obtained by grafting the tree 𝜎 on the tree 𝜏 at vertex
v by means of a new edge. Below, we provide an example of computation for �̄:

• �̄ = + 2 .

The space T equipped with �̄ is the free pre-Lie algebra over one generator • (see [23]). We consider
the linear span of planar rooted trees denoted by PT . Now, one has

≠

which is not the case in the non-planar setting. One can define a magmatic operation �̄𝑙 called left
grafting. It is given for 𝜏, 𝜎 non-planar rooted trees by

𝜎�̄𝑙𝜏 :=
∑
𝑣 ∈𝑁𝜏

𝜎�̄𝑙,𝑣𝜏,

where 𝜎�̄𝑙,𝑣𝜏 is obtained by grafting the tree 𝜎 on the tree 𝜏 at vertex v by means of a new edge at the
leftmost location. Below, we provide an example of computation for �̄𝑙:

• �̄𝑙 = + + + .

If we consider the free Lie algebra generated by PT equipped with the leftmost grafting, one obtains
the free post-Lie algebra (see [39, Thm. 3.2]).

3. Decorated trees, multi-indices and non-commuting operators

In this section, we recall two different combinatorial structures that are both used in the context of
Regularity Structures with the aim of solving singular SPDEs. The first one is that of decorated trees
and the second one is that of multi-indices. We shall stress the non-commutative nature of some key
operators defined on these structures and proceed to show that their non-commutative properties can be
elegantly captured by certain post-Lie algebraic structures.

Decorated trees as introduced in [9] are described in the following way. Pick two symbols I and Ξ and
let D := {𝐼,Ξ} × N𝑑+1 define the set of edge decorations. These two symbols represent a convolution
with a kernel 𝐼 and a noise term Ξ. One may add more symbols if one works with a system of SPDEs
with more than one noise and one kernel. Decorated trees over D are of the form 𝑇𝔫

𝔢 = (𝑇, 𝔫,𝔢),
where T is a non-planar rooted tree with node set 𝑁𝑇 and edge set 𝐸𝑇 . The maps 𝔫 : 𝑁𝑇 → N

𝑑+1

and 𝔢 : 𝐸𝑇 → D are node, respectively edge, decorations. We denote the set of decorated trees by 𝔗.
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The tree product is defined by

(𝑇, 𝔫,𝔢) · (𝑇 ′, 𝔫′,𝔢′) = (𝑇 · 𝑇 ′, 𝔫 + 𝔫′,𝔢 + 𝔢′) ,

where 𝑇 · 𝑇 ′ is the rooted tree obtained by identifying the roots of 𝑇 and 𝑇 ′. The sums 𝔫 + 𝔫′ mean that
decorations are added at the root and extended to the disjoint union by setting them to vanish on the
other tree. We make the connection with symbolic notation introduced in the previous part.

– An edge decorated by (𝐼, 𝑎) ∈ D is denoted by 𝐼𝑎. The symbol 𝐼𝑎 is also viewed as the operation that
grafts a tree onto a new root via a new edge with edge decoration 𝑎. The new root at hand remains
decorated with 0.

– An edge decorated by (Ξ, 0) ∈ D is denoted by Ξ. We suppose that these edges are terminal edges
with zero node decoration at their leaves.

– A factor 𝑋ℓ encodes a single node •ℓ decorated by ℓ ∈ N𝑑+1. We write 𝑋𝑖 , 𝑖 ∈ {0, 1, . . . , 𝑑} to denote
𝑋𝑒𝑖 . Here, we have denoted by 𝑒𝑖 the vector of N𝑑+1 with 1 in ith position and 0 otherwise. The
element 𝑋0 is identified with the empty tree 1.

Using this symbolic notation, given a decorated tree 𝜏, there exist decorated trees 𝜏1, ..., 𝜏𝑟 such that

𝜏 = 𝑋ℓΞ𝑚
𝑟∏
𝑖=1

𝐼𝑎𝑖 (𝜏𝑖),

where
∏

𝑖 is the tree product, ℓ ∈ N𝑑+1, 𝑚, 𝑟 ∈ N. In relevant applications, a product of noises is not
allowed and one can only consider the case 𝑚 ∈ {0, 1}. A tree of the form 𝐼𝑎 (𝜏) is called a planted tree
as there is only one edge connecting the root to the rest of the tree. Below, we present an example of
decorated trees:

𝜏 = 𝑋𝛼Ξ𝐼𝑎 (𝑋
𝛽) =

𝛼

𝛽

Ξ 𝑎
, 𝐼𝑏 (𝜏) =

𝛼

𝛽

𝑏

𝑎Ξ

where we have put Ξ on the edge to specify that it is decorated by (Ξ, 0). For an edge decorated by
(𝐼, 𝑎), we have just put 𝑎. Nodes without decoration mean that their decoration is equal to zero. We
define a product called grafting product:

𝜎�𝑎 𝜏 :=
∑
𝑣 ∈𝑁𝜏

𝜎�𝑎
𝑣 𝜏,

where 𝜎 and 𝜏 are two decorated rooted trees, 𝑁𝜏 is the set of vertices of 𝜏 and 𝜎�𝑎
𝑣 𝜏 is obtained by

grafting the tree 𝜎 on the tree 𝜏 at vertex v by means of a new edge decorated by 𝑎 ∈ N𝑑+1. Grafting
onto noise-type edges, that is, edges decorated by (Ξ, 0) are forbidden. Therefore, there is a bijection
between noises as decorated edges and noises as node decorations. Below, we provide an example of
this grafting product:

•𝛼 �𝑎

𝛾

𝛽

Ξ 𝑏
=

𝛾

𝛼
𝛽

Ξ 𝑏
𝑎

+
𝛾

𝛼

𝛽

Ξ 𝑏

𝑎

.

One should notice that we did not graft onto the noise edge. The family of grafting products (�𝑏)𝑏∈N𝑑+1

forms a multi-pre-Lie algebra, in the sense that they satisfy the following identities:

(𝜏1 �
𝑎 𝜏2) �

𝑏 𝜏3 − 𝜏1 �
𝑎 (𝜏2 �

𝑏 𝜏3) = (𝜏2 �
𝑏 𝜏1) �

𝑎 𝜏3 − 𝜏2 �
𝑏 (𝜏1 �

𝑎 𝜏3),
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where the 𝜏𝑖 are decorated trees and 𝑎, 𝑏 belong to N𝑑+1. This is an extension of the notion of a pre-Lie
product (which is recovered when the family is reduced to one element) and was first introduced in [5,
Prop. 4.21]. This multi-pre-Lie algebra can be summarised into a single pre-Lie structure on the space
of planted trees, given by the product:

𝐼𝑎 (𝜎) � 𝐼𝑏 (𝜏) := 𝐼𝑏 (𝜎�
𝑎 𝜏).

This was first noticed in [28] (see also [11, Prop. 3.2]). Below, we provide an example that illustrates
the grafting operation:

𝛼

𝑎
�

𝛽

𝑏

Ξ

=

𝛼

𝛽

𝑏

𝑎Ξ

Notice that we do not graft at the root, which has its decoration set to zero.
Furthermore, the products�𝑎 can be deformed via a pre-Lie isomorphism described in [11, Sec.

2.2]. The deformed products are given by

𝜎�̂𝑎𝜏 :=
∑
𝑣 ∈𝑁𝜏

∑
ℓ∈N𝑑+1

(
𝔫𝑣

ℓ

)
𝜎�𝑎−ℓ

𝑣 (↑−ℓ𝑣 𝜏).

Intuitively, one should think of the operators ↑−ℓ𝑣 as encoding the operation of partial differentiation
at a purely algebraic level. Formally, 𝔫𝑣 ∈ N𝑑+1 denotes the decoration at the vertex 𝑣 and the operator
↑−ℓ𝑣 is defined as subtracting ℓ from the node decoration of 𝑣.

The generic term is self-explanatory if there exists a (unique) pair (𝑏, 𝛼) ∈ N𝑑+1 × N𝑑+1 such that
𝑎 = ℓ + 𝑏 and 𝔫𝑣 = ℓ + 𝛼. It vanishes by convention if this condition is not satisfied. Given a scaling
𝔰 ∈ N𝑑+1

0 = N𝑑+1 \ {0}, we define the grading of a tree as the sum of the gradings of its edges and denote
it by | · |grad:

|𝜏 |grad :=
∑
𝑒∈𝐸𝜏

��𝔢(𝑒)��𝔰 ,
where 𝐸𝜏 are the edges of 𝜏, 𝔢(𝑒) is the decoration of the edge 𝑒 and for a given n ∈ N𝑑+1, one has

|n|𝔰 :=
𝑑∑
𝑖=0

𝑠𝑖𝑛𝑖 .

A scaling 𝔰 is necessary as these decorated trees are used in the context of singular SPDEs where
different variables come with different degrees of homogeneity. A good example to keep in mind is
that of parabolic equations, where the linear operator is given by 𝜕𝑡 − Δ , with the Laplacian acting on
the spatial variable. It is then natural to make powers of t ‘count double’ and take the parabolic scaling
(2, 1, ..., 1).

The deformed product �̂𝑎 has been first introduced in [5, Rem. 4.12]. One notices that �̂𝑎 is a
deformation of�𝑎 in the sense that

𝜎�̂𝑎𝜏 = 𝜎�𝑎 𝜏 + lower grading terms.

Again, one may summarise the above family of multi-pre-Lie products into a single pre-Lie product.
More specifically, the deformed pre-Lie product �̂ is given by

𝐼𝑎 (𝜎) �̂ 𝐼𝑏 (𝜏) := 𝐼𝑏 (𝜎 �̂
𝑎 𝜏).
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Below, we provide an example illustrating the product �̂:

𝛼

𝑎
�̂

𝛽

𝑏

Ξ

=

𝛼

𝛽

𝑏

𝑎Ξ

+
∑

ℓ∈N𝑑+1
0

(
𝛽

ℓ

)
𝛼

𝛽 − ℓ

𝑏

𝑎 − ℓΞ

Another important operation we will need to define on the space of trees is ↑𝑖:

↑𝑖 𝜏 =
∑
𝑣 ∈𝑁𝜏

↑𝑒𝑖𝑣 𝜏.

Here, the insertion does not happen on top of noise-type edges. We provide below an example of
computation:

↑𝑖

𝛾

𝛽

Ξ 𝑏
=

𝛾 + 𝑒𝑖

𝛽

Ξ 𝑏
+

𝛾

𝛽 + 𝑒𝑖

Ξ 𝑏
.

This operator is a derivation for the grafting product�𝑎 in the sense that

↑𝑖 (𝜎�𝑎 𝜏) = (↑𝑖 𝜎) �𝑎 𝜏 + 𝜎�𝑎 (↑𝑖 𝜏)

and one has the following right derivation property:

↑𝑖𝑁𝜏
(𝜎�𝑎 𝜏) = 𝜎�𝑎 (↑𝑖 𝜏),

where ↑𝑖𝑁𝜏
is defined as ↑𝑖 but with 𝑁𝜏 
 𝑁𝜎 replaced by 𝑁𝜏 . These two properties are clearly not true

for the deformed pre-Lie products �̂𝑎. They are, however, true up to some deformation. This is made
formal by the following proposition:
Proposition 3.1. One has, for all decorated trees 𝜎, 𝜏 and 𝑎 ∈ N𝑑+1, 𝑖 ∈ {0, ..., 𝑑},

↑𝑖𝑁𝜏

(
𝜎�̂𝑎𝜏

)
= 𝜎�̂𝑎

(↑𝑖 𝜏) − 𝜎�̂𝑎−𝑒𝑖𝜏. (6)

Proof. Identity (6) is a consequence of the following:

𝜎�̂𝑎
(↑𝑖 𝜏) =

∑
𝑣 ∈𝑁𝜏

∑
ℓ∈N𝑑+1

(
𝔫𝑣 + 𝑒𝑖

ℓ

)
𝜎�𝑎−ℓ

𝑣 (↑−ℓ+𝑒𝑖𝑣 𝜏)

𝜎�̂𝑎−𝑒𝑖 𝜏 =
∑
𝑣 ∈𝑁𝜏

∑
ℓ∈N𝑑+1

(
𝔫𝑣

ℓ

)
𝜎�𝑎−ℓ−𝑒𝑖

𝑣 (↑−ℓ𝑣 𝜏)

=
∑
𝑣 ∈𝑁𝜏

∑
ℓ∈N𝑑+1

(
𝔫𝑣

ℓ − 𝑒𝑖

)
𝜎�𝑎−ℓ

𝑣 (↑−ℓ+𝑒𝑖𝑣 𝜏)

↑𝑖𝑁𝜏

(
𝜎�̂𝑎𝜏

)
=

∑
𝑣 ∈𝑁𝜏

∑
ℓ∈N𝑑+1

(
𝔫𝑣

ℓ

)
𝜎�𝑎−ℓ

𝑣 (↑−ℓ+𝑒𝑖𝑣 𝜏).

Then, we conclude by the fact that(
𝔫𝑣

ℓ − 𝑒𝑖

)
+

(
𝔫𝑣

ℓ

)
=

(
𝔫𝑣 + 𝑒𝑖

ℓ

)
.

�
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Remark 3.2. The extra term in (6) can be seen as a term of lower order as the decorations of the grafting
operator are decreased by 𝑒𝑖 .

Recently, a different encoding of iterated integrals has been introduced in [34] based on multi-indices.
Let’s briefly recall the definitions given by the authors. We suppose we are given two sets of abstract
variables (𝑧𝑘 )𝑘∈N and (𝑧𝑛)𝑛∈N𝑑+1 . The 𝑧𝑘 encode nodes of arity 𝑘 and the 𝑧𝑛 are monomials. Multi-
indices 𝛽 overN andN𝑑+1 measure the frequency of the variables 𝑧𝑘 , 𝑧𝑛, so that we can write monomials

𝑧𝛽 :=
∏

𝑘∈N, 𝑛∈N𝑑+1

𝑧
𝛽 (𝑘)
𝑘 𝑧

𝛽 (𝑛)
𝑛 .

One can write 𝛽 according to the canonical basis of 𝑒𝑘 , 𝑒𝑛 encoding the 𝑧𝑘 , 𝑧𝑛:

𝛽 =
∑
𝑘∈N

𝛽(𝑘)𝑒𝑘 +
∑

𝑛∈N𝑑+1

𝛽(𝑛)𝑒𝑛.

We introduce a family of derivations on these multi-indices: 𝐷 (0) , (𝐷 (𝑛) )𝑛≠0 and 𝜕𝑖 , 𝑖 ∈ {0, ..., 𝑑}.
These are defined in the following way:

𝐷 (0) =
∑
𝑘∈N

(𝑘 + 1)𝑧𝑘+1𝜕𝑧𝑘 , 𝐷 (𝑛) = 𝜕𝑧𝑛 , 𝑛 ≠ 0,

where 𝜕𝑧𝑘 is the derivative in the coordinates 𝑧𝑘 . The action of this derivative operator corresponds to
increasing the arity of a node by one. Then, the derivatives 𝜕𝑖 are given by

𝜕𝑖 =
∑
𝑛

(𝑛𝑖 + 1)𝑧𝑛+𝑒𝑖𝐷
(𝑛) .

For all these derivatives, we will use a matrix representation (𝐷 (0) )
𝛾
𝛽 , (𝐷

(𝑛) )
𝛾
𝛽 and (𝜕𝑖)

𝛾
𝛽 , where 𝛾 and

𝛽 are multi-indices.

(𝐷 (0) )
𝛾
𝛽 =

∑
𝑘≥0

{
(𝑘 + 1)𝛾(𝑘) if 𝛾 + 𝑒𝑘+1 = 𝛽 + 𝑒𝑘

0 otherwise

}
(𝐷 (𝑛) )

𝛾
𝛽 =

{
𝛾(𝑛) if 𝛾 = 𝛽 + 𝑒𝑛

0 otherwise

}
for 𝑛 ≠ 0

(𝜕𝑖)
𝛾
𝛽 =

∑
𝑘≥0

{
(𝑘 + 1)𝛾(𝑘) if 𝛾 + 𝑒𝑘+1 + 𝑒𝑒𝑖 = 𝛽 + 𝑒𝑘

0 otherwise

}
+

∑
𝑛≠0

{
(𝑛𝑖 + 1)𝛾(𝑛) if 𝛾 + 𝑒𝑛+𝑒𝑖 = 𝛽 + 𝑒𝑛

0 otherwise

}
.

The non-commutative property (6) appears at the level of the derivations. Indeed, one has

𝜕𝑖𝐷
(𝑛) = 𝐷 (𝑛)𝜕𝑖 + 𝑛𝑖𝐷

(𝑛−𝑒𝑖 ) . (7)

This motivates the introduction of a Lie bracket in the next section for taking into account that non-
commutative property. We note that the encoding given by multi-indices does not precisely correspond
to the original encoding via decorated trees. Indeed, the decorated trees associated to them contain more
node decorations, in the spirit of [5] where a new class of trees has been introduced for proving a pre-Lie
morphism property on some elementary differentials. The new decorated trees are of this form:

𝜏 = Ξ
𝑘1∏
𝑗=1

𝑋ℓ 𝑗

𝑘2∏
𝑖=1

𝐼 (𝜏𝑖), (8)
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where now the noise Ξ systematically appears at every node and can be omitted in the notation. All the
edges have the same decoration (𝐼, 0). The main novelty are the new decorations given by the product
of the 𝑋𝑚 𝑗 and this time, we have

𝑘1∏
𝑗=1

𝑋ℓ 𝑗 ≠ 𝑋
∑𝑘1

𝑗=1 ℓ 𝑗 .

We denote the set of these decorated trees by 𝔗0. Then, the mapping to a multi-index can be performed
recursively via the following map Ψ:

Ψ(𝜏) = (𝑘1 + 𝑘2)! 𝑧𝑘1+𝑘2

𝑘1∏
𝑗=1

(ℓ 𝑗 !) 𝑧ℓ 𝑗
𝑘2∏
𝑖=1

Ψ(𝜏𝑖), Ψ(Ξ) = 1. (9)

The deformed pre-Lie product in this context takes the form

𝜎�̂𝑎𝜏 :=
∑
𝑣 ∈𝑁𝜏

∑
ℓ∈{0,𝑎}

(
𝔫𝑣

ℓ

)
𝜎�̂𝑎−ℓ

𝑣 (↑̂
−ℓ
𝑣 𝜏)

= 𝜎�𝑎 𝜏 +
∑
𝑣 ∈𝑁𝜏

𝜎�̂0
𝑣 (↑̂

−𝑎
𝑣 𝜏),

(10)

where ↑̂
−𝑎
𝑣 removes one 𝑋𝑎 at the node 𝑣; otherwise, it is equal to zero. Then, we need to put an extra

restriction as decorated trees described in (8) have only zero edge-decorations. Therefore, when 𝑎 = 0,
one has

𝜎�̂𝑎𝜏 = 𝜎�𝑎 𝜏.

Otherwise, one has

𝜎�̂𝑎𝜏 =
∑
𝑣 ∈𝑁𝜏

𝜎�̂0
𝑣 (↑̂

−𝑎
𝑣 𝜏).

Such deformation is reminiscent of the one used in the context of numerical analysis in [13, 11], where
there is only one term of lower order. In [40, 34], the authors consider only a subclass of multi-indices;
that is,

{𝑧𝛾𝐷 (𝑛) }[𝛾 ] ≥0,

where [𝛾] is given by

[𝛾] =
∑
𝑘≥0

𝑘𝛾(𝑘) −
∑
𝑛≠0

𝛾(𝑛).

The condition [𝛾] ≥ 0 corresponds to the fact that we have fewer monomial multi-indices than branches
coming from the 𝑒𝑘 . The authors are also more restrictive by projecting according to the homogeneity
of the multi-indices given by a map 𝛾 ↦→ |𝛾 |𝔰 depending on the chosen scaling 𝔰. The extra condition is
given by: |𝛾 |𝔰 − |𝑛|𝔰 > 0. In the context of decorated trees, it corresponds to planted trees with positive
homogeneity.

4. A post-Lie algebra for decorated trees

In this section, we explain how the previous formalism can be expressed directly on decorated trees in
order to obtain the coproduct Δ2 appearing in [11] which has been introduced in [32, 9]. This coproduct
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is crucial for defining the Hopf algebra governing the recentering procedure in Regularity Structures. It
is used for constructing recentered iterated integrals that are the building blocks of solutions for singular
SPDEs.

We give analogues to the spaces introduced in the previous section by using the letter V . We define
the following spaces:

V =
〈
{𝐼𝑎 (𝜏), 𝑎 ∈ N𝑑+1, 𝜏 ∈ 𝔗} ∪ {𝑋𝑖}𝑖=0,...,𝑑

〉
R

,

Ṽ =
〈
{𝐼𝑎 (𝜏), 𝑎 ∈ N𝑑+1, 𝜏 ∈ 𝔗}

〉
R

.

The space Ṽ is the linear span of planted decorated trees, and V is the linear span of planted trees with
the monomials 𝑋𝑖 . We introduce a Lie bracket and a product on the space V that are compatible with
one another and will give us a post-Lie algebraic structure.

Definition 4.1. We define a product ⊲̂ on V for every 𝑎, 𝑏 ∈ N𝑑+1, 𝑖, 𝑗 ∈ {0, . . . , 𝑑} as

𝑋𝑖 ⊲̂ 𝐼𝑎 (𝜏) =↑
𝑖 𝐼𝑎 (𝜏), 𝐼𝑎 (𝜏) ⊲̂ 𝑋𝑖 = 0, 𝑋𝑖 ⊲̂ 𝑋 𝑗 = 0, (11)

and

𝐼𝑎 (𝜎) ⊲̂ 𝐼𝑏 (𝜏) = 𝐼𝑎 (𝜎) �̂ 𝐼𝑏 (𝜏).

Definition 4.2. We define the Lie bracket on V as [𝑥, 𝑦]0 = 0 for 𝑥, 𝑦 ∈ Ṽ , [𝑥, 𝑦]0 = 0 for 𝑥, 𝑦 ∈ 〈 𝑋𝑖 〉R
and as

[𝐼𝑎 (𝜏), 𝑋𝑖]0 = 𝐼𝑎−𝑒𝑖 (𝜏). (12)

Remark 4.3. Note that the image of this bracket lies inside Ṽ . Moreover, the definition of the Lie bracket
is similar to the one on multi-indices.

Theorem 4.4. The triple (V , [., .]0, ⊲̂) is a post-Lie algebra.

Proof. One has to check

𝑥 ⊲̂ [𝑦, 𝑧]0 = [𝑥 ⊲̂ 𝑦, 𝑧]0 + [𝑦, 𝑥 ⊲̂ 𝑧]0 (13)

and

[𝑥, 𝑦]0 ⊲̂ 𝑧 = 𝑎⊲̂ (𝑥, 𝑦, 𝑧) − 𝑎⊲̂ (𝑦, 𝑥, 𝑧). (14)

It is easy to check (13), for 𝑥 = 𝑋𝑖 . Then, if we consider 𝑥 = 𝐼𝑎 (𝜎) by symmetry, we can restrict
ourselves to the case 𝑦 = 𝐼𝑎 (𝜎) and 𝑧 = 𝑋𝑖 which will be non-zero. We have

𝐼𝑎 (𝜎) ⊲̂ [𝐼𝑏 (𝜏), 𝑋𝑖]0 = 𝐼𝑎 (𝜎) �̂ 𝐼𝑏−𝑒𝑖 (𝜏).

We conclude by the fact that

[𝐼𝑎 (𝜎) ⊲̂ 𝐼𝑏 (𝜏), 𝑋𝑖]0 = 𝐼𝑏−𝑒𝑖 (𝐼𝑎 (𝜎) �̂𝜏) = 𝐼𝑎 (𝜎) �̂ 𝐼𝑏−𝑒𝑖 (𝜏).

It remains to show (14). If 𝑧 = 𝑋𝑖 , then it is zero on both sides. Let us consider 𝑧 = 𝐼𝑏 (𝜏). If 𝑥 and 𝑦 are
both planted trees, the fact that �̂ is a pre-Lie product gives the answer. For symmetry reason, we can
consider 𝑥 = 𝐼𝑎 (𝜎) and 𝑦 = 𝑋𝑖 . From the left-hand side, we get

[𝑥, 𝑦]0 ⊲̂ 𝑧 = 𝐼𝑎−𝑒𝑖 (𝜎) �̂ 𝐼𝑏 (𝜏).
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From the right-hand side, only two terms remain:

𝑎⊲̂ (𝑥, 𝑦, 𝑧) = 𝐼𝑎 (𝜎) ⊲̂ (𝑋𝑖 ⊲̂ 𝐼𝑏 (𝜏)) − (𝐼𝑎 (𝜎) ⊲̂ 𝑋𝑖) ⊲̂ 𝐼𝑏 (𝜏)

= 𝐼𝑎 (𝜎) �̂ 𝐼𝑏 (↑
𝑖 𝜏)

because 𝐼𝑎 (𝜎) ⊲̂ 𝑋𝑖 = 0. Then

𝑎⊲̂ (𝑦, 𝑥, 𝑧) = 𝑋𝑖 ⊲̂ (𝐼𝑎 (𝜎) ⊲̂ 𝐼𝑏 (𝜏)) − (𝑋𝑖 ⊲̂ 𝐼𝑎 (𝜎)) ⊲̂ 𝐼𝑏 (𝜏)

= ↑𝑖 (𝐼𝑎 (𝜎) �̂ 𝐼𝑏 (𝜏)) − (↑𝑖 𝐼𝑎 (𝜎)) �̂ 𝐼𝑏 (𝜏)

= 𝐼𝑏 (↑
𝑖
𝑁𝜏

(𝐼𝑎 (𝜎) �̂ 𝜏)),

where we have used

𝐼𝑏 (↑
𝑖 (𝐼𝑎 (𝜎) �̂ 𝜏)) − 𝐼𝑏 (𝐼𝑎 (↑

𝑖 𝜎) �̂ 𝜏)) = 𝐼𝑏 (↑
𝑖
𝑁𝜏

(𝐼𝑎 (𝜎) �̂ 𝜏)).

Indeed by definition, one has

↑𝑖 (𝐼𝑎 (𝜎) �̂ 𝜏) =
∑

𝑣 ∈𝑁𝜎
𝑁𝜏

↑𝑖𝑣 (𝐼𝑎 (𝜎) �̂ 𝜏)

=
∑
𝑣 ∈𝑁𝜎

↑𝑖𝑣 (𝐼𝑎 (𝜎) �̂ 𝜏) +
∑
𝑣 ∈𝑁𝜏

↑𝑖𝑣 (𝐼𝑎 (𝜎) �̂ 𝜏)

= (↑𝑖 𝐼𝑎 (𝜎)) �̂ 𝜏+ ↑𝑖𝑁𝜏
(𝐼𝑎 (𝜎) �̂ 𝜏).

In the end, we get

𝑎⊲̂ (𝑥, 𝑦, 𝑧) − 𝑎⊲̂ (𝑦, 𝑥, 𝑧) = 𝐼𝑎 (𝜏) �̂ 𝐼𝑏 (↑
𝑖 𝜎) − 𝐼𝑏 (↑

𝑖
𝑁𝜎

(𝐼𝑎 (𝜏) �̂𝜎)).

The equality between the two expressions is given by Proposition 3.1. �

Corollary 4.5. The bracket [[., .]] defined by

[[𝑥, 𝑦]] = [𝑥, 𝑦]0 + 𝑥 ⊲̂ 𝑦 − 𝑦 ⊲̂ 𝑥

for every 𝑥, 𝑦 ∈ V is a Lie bracket on V .
Remark 4.6. The relation between the two Lie algebras [[., .]] and [., .]0 is central to the notion of
post-Lie algebra. For instance, in [6, Def. 2.1], the authors introduce post-Lie algebras by starting with
the two Lie algebras. The post-Lie product then has to check several compatibility conditions with these
two Lie algebras.

We denoted by𝑈 (V0) the enveloping algebra with the Lie bracket [., .]0 and by𝑈 (V) the enveloping
algebra with the Lie bracket [[., .]]. We also set ∗ to be the product obtained by the Guin-Oudom type
procedure given in Section 2.
Theorem 4.7. The Hopf algebra 𝑈 (V) is isomorphic to the Hopf algebra (𝑈 (V0), ∗,Δ).
Proof. This is a direct application of Theorem 2.2. �

Following [34], one makes use of this isomorphism and the fact that the bracket [., .]0 vanishes on Ṽ to
obtain the deformed coproduct given in [32, 9, 11], by selecting a basis for𝑈 (V) that is symmetric with
respect to the elements of the basis of Ṽ . More precisely, along with the aid of the Poincare-Birkhoff-Witt
theorem and after choosing to order the 𝑋𝑖 according to their indices, one obtains a basis of the form

𝐵 (F,m) =
∏

𝑖=0,...,𝑑
𝑋𝑚𝑖

𝑖 𝐼𝑎1 (𝜎1) · · · 𝐼𝑎𝑛 (𝜎𝑛),

where F = 𝐼𝑎1 (𝜎1) · · · 𝐼𝑎𝑛 (𝜎𝑛) ranges over all forests of planted trees and m ∈ N𝑑+1.
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Remark 4.8. By virtue of Proposition 2.4 in Section 2, one obtains the following representation of �̄�:

𝜌 : �̄� → 𝐸𝑛𝑑R(𝑈 (𝔤))

𝐼𝑎 (𝜎) ↦→ (𝐴 ↦→ 𝜎�̂𝑎𝐴 + 𝐼𝑎 (𝜎) · 𝐴), 𝑋𝑖 ↦→ (𝐴 ↦→↑𝑖 𝐴 + 𝑋𝑖 · 𝐴),

where 𝐴 = 𝐵 (F,m) =
∏

𝑖=0,...,𝑑 𝑋
𝑚𝑖

𝑖 𝐼𝑎1 (𝜎1) · · · 𝐼𝑎𝑛 (𝜎𝑛) is a basis element as above and · denotes the
associative product in 𝑈 (𝔤). We note that, on the second line, in order for us to be able to apply the
grafting product, an element A can clearly be interpreted as a rooted tree by merging all the 𝐼𝑎𝑖 (𝜎𝑖) on
a single root and adjoining the appropriate label on that root.

As one can play around using the commutation relations on the universal envelope 𝑈 (𝔤), the linear
representation given in the remark above gives us hints about the resulting ∗ product on the universal
enveloping algebra. Indeed, we shall now proceed to prove that the product ∗ thus obtained is identical
to the product ★2 that governs the combinatorics of recentering in regularity structures. The product★2
is the dual of the Δ2 coproduct as was proven in [11]. Therefore, our Hopf algebra will be proven to be
precisely the dual of the Hopf algebra H2 used in regularity structures for handling the combinatorics of
recentering. For this, we shall use the following proposition that characterizes the ★2 product and was
proven in [11, Prop. 3.17]:
Proposition 4.9. Let 𝜎 = 𝑋 𝑘 ∏

𝑖 𝐼𝑎𝑖 (𝜎𝑖). Then one has

𝐼𝑏 (𝜎 ★2 𝜏) = ↑̃
𝑘
𝑁𝜏

(∏
𝑖

𝐼𝑎𝑖 (𝜎𝑖) �̂ 𝐼𝑏 (𝜏)

)
,

where ↑̃𝑘𝑁𝜏
is defined by

↑̃
𝑘
𝑁𝜏

=
∑

𝑘=
∑

𝑣∈𝑁𝜏 𝑘𝑣

↑𝑘𝑣𝑣 . (15)

Theorem 4.10. The product★2 coincides with the product ∗ obtained by the previous construction by un-
folding the post-Lie operation onto the universal envelope𝑈 (V0). One has for every 𝜎 = 𝑋 𝑘 ∏

𝑖 𝐼𝑎𝑖 (𝜎𝑖)

𝐼𝑏 (𝜎 ★2 𝜏) = 𝜎 ⊲̂ 𝐼𝑏 (𝜏).

Proof. When 𝜎 = 𝑋𝑖 or 𝜎 = 𝐼𝑎 (�̂�), this is just a consequence of the definition of ⊲̂. If 𝜎 = 𝑋𝑖 𝐼𝑎 (�̂�);
we make use of Proposition 3.1 (here ↑̃𝑒𝑖 = ↑𝑖):

𝐼𝑏 (𝜎 ★2 𝜏) =↑
𝑖
𝑁𝜏

(𝐼𝑎 (�̂�) �̂ 𝐼𝑏 (𝜏))

= 𝐼𝑎 (�̂�) �̂ 𝐼𝑏 (↑
𝑖 𝜏) − 𝐼𝑎−𝑒𝑖 (�̂�) �̂ 𝐼𝑏 (𝜏)

= 𝐼𝑎 (�̂�) ⊲̂ (𝑋𝑖 ⊲̂ 𝐼𝑏 (𝜏)) − 𝐼𝑎−𝑒𝑖 (�̂�) ⊲̂ 𝐼𝑏 (𝜏)

= 𝐼𝑎 (�̂�)𝑋𝑖 ⊲̂ 𝐼𝑏 (𝜏) − (𝐼𝑎 (�̂�) ⊲̂ 𝑋𝑖) ⊲̂ 𝐼𝑏 (𝜏) − 𝐼𝑎−𝑒𝑖 (�̂�) ⊲̂ 𝐼𝑏 (𝜏)

= 𝐼𝑎 (�̂�)𝑋𝑖 ⊲̂ 𝐼𝑏 (𝜏) − 𝐼𝑎−𝑒𝑖 (�̂�) ⊲̂ 𝐼𝑏 (𝜏)

= 𝑋𝑖 𝐼𝑎 (�̂�) ⊲̂ 𝐼𝑏 (𝜏),

where we have used the definition of ⊲̂ in the fourth (see the recursive definition in section 2) and fifth
lines above. We can then proceed by induction in order to prove it for 𝜎 = 𝑋 𝑘 ∏

𝑖 𝐼𝑎𝑖 (𝜎𝑖) following the
recursive definition of the product giving in Section 2. �

One may wonder how the post-Lie algebra introduced here relates to the post-Lie algebra on planar
rooted trees. In fact, our post-Lie algebra can be interpreted as a quotient of the free object defined
in Section 2. Indeed, we can consider the 𝑋𝑖 as terminal edges. Then, we look at the set recursively
defined by
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14 Y. Bruned and F. Katsetsiadis

𝔗𝑝 =
{
Ξ

∏
𝑖

𝐴𝑖 , 𝐴𝑖 ∈ {𝐼𝑎 (𝜏), 𝜏 ∈ 𝔗𝑝 , 𝑎 ∈ N𝑑+1} ∪ {𝑋𝑖}𝑖=0,...,𝑑

}
.

Here the product Π𝑖 is not commutative and therefore 𝔗𝑝 contains planar decorated trees. Below, we
provide an example of such decorated trees:

Ξ

Ξ

𝑎𝑋𝑖

≠
Ξ 𝑋𝑖

Ξ

𝑎

.

Notice that now there is no decorations on the nodes. Edges decorated by 𝑋𝑖 represent the symbol 𝑋𝑖 .
We define new spaces V𝑝 and Ṽ𝑝

V𝑝 =
〈
{𝐼𝑎 (𝜏), 𝑎 ∈ N𝑑+1, 𝜏 ∈ 𝔗𝑝} ∪ {𝑋𝑖}𝑖=0,...,𝑑

〉
R

,

Ṽ𝑝 =
〈
{𝐼𝑎 (𝜏), 𝑎 ∈ N𝑑+1, 𝜏 ∈ 𝔗𝑝}

〉
R

.

One can define the leftmost grafing product on these trees denoted by ⊲̂𝑙 . One grafts on the leftmost spot
at the right of the noise Ξ. We impose one restriction which is that one cannot graft on top of the 𝑋𝑖 .
This gives

𝐼𝑎 (𝜏) ⊲̂𝑙 𝑋𝑖 = 0, 𝑋𝑖 ⊲̂𝑙 𝑋 𝑗 = 0. (16)

Then, for recovering our post-Lie product, we need to quotient by certain relations that are given by the
Lie bracket (12)

𝑋𝑖𝑋 𝑗 = 𝑋 𝑗𝑋𝑖 , 𝐼𝑎 (𝜏)𝐼𝑏 (𝜎) = 𝐼𝑏 (𝜎)𝐼𝑎 (𝜏),

𝐼𝑎 (𝜏)𝑋𝑖 = 𝑋𝑖 𝐼𝑎 (𝜏) + 𝐼𝑎−𝑒𝑖 (𝜏).
(17)

Using these relations, we work in the basis described by 𝔗 where now the 𝑋𝑖 appear before the planted
trees. We shall slightly abuse notation by still using the term leftmost grafting for the resulting operation
after taking the quotient and will still denote it by ⊲̂𝑙 . Then, one has that the leftmost grafting product
coincides with the post-Lie product ⊲̂.

Proposition 4.11. The leftmost grafting ⊲̂𝑙 coincides with ⊲̂ on V .

Proof. We proceed by induction, using the basis of V and making use of the recursive construction of
𝔗 afforded to us by the sets 𝔗𝑝 defined above. We want to show that for every 𝜏 and 𝜎 in V , one has

𝜎 ⊲̂𝑙 𝜏 = 𝜎 ⊲̂ 𝜏.

When 𝜏 = 𝑋𝑖 , this is just a consequence of (16) and (11). Now, we suppose that 𝜏 = 𝐼𝑏 (𝜏) where

𝜏 = Ξ𝑋ℓ
𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ).

Then, one has

𝜎 ⊲̂𝑙 𝜏 = 𝐼𝑏
���Ξ𝜎𝑋ℓ

𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ) + Ξ𝑋ℓ
𝑟∑

𝑛=1

(
𝜎 ⊲̂𝑙 𝐼𝑎𝑛 (𝜏𝑛)

) ∏
𝑗≠𝑛

𝐼𝑎 𝑗 (𝜏𝑗 )
���, (18)
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which is the recursive defintion of ⊲̂𝑙 . We apply the induction hypothesis to conclude on the fact that for
every 𝑛 ∈ {1, ..., 𝑟},

𝜎 ⊲̂𝑙 𝐼𝑎𝑛 (𝜏𝑛) = 𝜎 ⊲̂ 𝐼𝑎𝑛 (𝜏𝑛).

For the first term on the right-hand side of (18), one has if 𝜎 = 𝑋𝑖 ,

Ξ𝜎𝑋ℓ
𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ) = Ξ𝑋𝑖𝑋
ℓ

𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 )

= Ξ𝑋ℓ+𝑒𝑖

𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ) = Ξ
(
𝑋𝑖 ⊲̂𝑋

ℓ
) 𝑟∏

𝑗=1
𝐼𝑎 𝑗 (𝜏𝑗 ).

If 𝜎 = 𝐼𝑎 (�̂�), then

Ξ𝜎𝑋ℓ
𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ) = Ξ𝐼𝑎 (�̂�)𝑋
ℓ

𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 )

= Ξ
∑
𝑚

(
ℓ

𝑚

)
𝑋ℓ−𝑚𝐼𝑎−𝑚(�̂�)

𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ),

where we have used (17) repeatedly. In the end, one obtains

𝜎 ⊲̂𝑙 𝜏 = 𝐼𝑏
���Ξ

(
𝜎 ⊲̂ 𝑋ℓ

) 𝑟∏
𝑗=1

𝐼𝑎 𝑗 (𝜏𝑗 ) + Ξ𝑋
𝑟∑

𝑛=1

(
𝜎 ⊲̂ 𝐼𝑎𝑛 (𝜏𝑛)

) ∏
𝑗≠𝑛

𝐼𝑎 𝑗 (𝜏𝑗 )
���,

which is exactly the recursive definition of ⊲̂. �

Below, we illustrate Proposition 4.11. We first compute the leftmost grafting and we use (17)

𝐼𝑎 (Ξ) ⊲̂𝑙
Ξ 𝑋𝑖

=
Ξ 𝑋𝑖

Ξ

𝑎

=
Ξ

Ξ

𝑎𝑋𝑖

+
Ξ

Ξ

𝑎 − 𝑒𝑖
.

However, one has

𝐼𝑎 (Ξ) ⊲̂
𝑒𝑖

Ξ
=

𝑒𝑖

Ξ

Ξ

𝑎
+

Ξ

Ξ

𝑎 − 𝑒𝑖
.

We conclude by using the identification of consecutive edges of the form 𝑋 𝑘 at the right location of the
noise Ξ to node decoration 𝑘 which gives

Ξ

Ξ

𝑎𝑋𝑖

=
𝑒𝑖

Ξ

Ξ

𝑎
.
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5. A post-Lie algebra for multi-indices

Recall the Lie algebras of derivations on R[[𝑧𝑘 , 𝑧𝑛]] defined in [34], which are

�̃� =
〈
{𝑧𝛾𝐷 (𝑛) }[𝛾 ] ≥0

〉
R

,

which, equipped with the pre-Lie product � defined in [34] by

𝑧𝛾𝐷 (𝑛) � 𝑧𝛾
′

𝐷 (𝑛′) =
∑
𝛽′

(𝑧𝛾𝐷 (𝑛) )
𝛾′

𝛽′ 𝑧
𝛽′

𝐷 (𝑛′)

is also a pre-Lie algebra. We also consider

𝐿 =
〈
{𝑧𝛾𝐷 (𝑛) }[𝛾 ] ≥0 ∪ {𝜕𝑖}𝑖=0,...,𝑑

〉
R

.

Here 𝛾 is a multi-index and 𝑛 ∈ N𝑑+1
0 . Note that we do not impose the condition |𝛾 |𝔰 − |𝑛|𝔰 > 0. The Lie

bracket [·, ·] on 𝐿 is defined by

[𝑧𝛾𝐷 (𝑛) , 𝑧𝛾
′

𝐷 (𝑛′) ] =
∑
𝛽′

(𝑧𝛾𝐷 (𝑛) )
𝛾′

𝛽′ 𝑧
𝛽′

𝐷 (𝑛′) −
∑
𝛽

(𝑧𝛾
′

𝐷 (𝑛′) )
𝛾
𝛽 𝑧

𝛽𝐷 (𝑛)

[𝜕𝑖 , 𝜕 𝑗 ] = 0, [𝑧𝛾𝐷 (𝑛) , 𝜕𝑖] = 𝑛𝑖𝑧
𝛾𝐷 (𝑛−𝑒𝑖 ) −

∑
𝛽

(𝜕𝑖)
𝛾
𝛽 𝑧

𝛽𝐷 (𝑛) ,

where the 𝛽 and 𝛽′ are such that [𝛽] ≥ 0, [𝛽′] ≥ 0.

Definition 5.1. The Lie algebra 𝐿0 is the Lie algebra with underlying vector space L and the Lie bracket
[𝑥, 𝑦]0 which is defined as [𝑥, 𝑦]0 = 0 for 𝑥, 𝑦 ∈ �̃� and 𝑥, 𝑦 ∈ 〈𝜕𝑖〉R. We then define

[𝑧𝛾𝐷 (𝑛) , 𝜕𝑖]0 = 𝑛𝑖𝑧
𝛾𝐷 (𝑛−𝑒𝑖 ) .

Remark 5.2. This choice of bracket will directly translate to the fact that we can only partially sym-
metrize the basis of 𝑈 (𝐿).

Remark 5.3. The space �̃� equipped with � corresponds to an example of the natural pre-Lie algebra
given in [14, Sec. 2.1]. But the adjunction of the operator 𝜕𝑖 changes the structure and can be seen as
a non-commutative generalisation. Indeed, the derivative operators 𝜕𝑖 and 𝐷 (𝑛) do not commute. Such
non-commutative relations appear in elementary quantum mechanics; see, for example, [43, Eq. 10.7].

Definition 5.4. We define the product 𝑥 �̂ 𝑦 = 𝑥 � 𝑦 for all 𝑥, 𝑦 ∈ �̃�. We then set 𝜕𝑖 �̂ 𝑧𝛾𝐷 (𝑛) = 𝜕𝑖𝑧
𝛾𝐷 (𝑛)

and 𝑧𝛾𝐷 (𝑛) �̂ 𝜕𝑖 = 0 otherwise.

Theorem 5.5. The space L equipped with the Lie bracket [𝑥, 𝑦]0 and the product �̂ is a post-Lie algebra.
Furthermore, the Lie bracket [[𝑥, 𝑦]] = [𝑥, 𝑦]0 + 𝑥�̂𝑦 − 𝑦�̂𝑥 is equal to the original Lie bracket [𝑥, 𝑦]
on L.

Proof. One carefully checks that the axioms of a post-Lie algebra hold. The proof is similar to the one
for decorated trees. More specifically the axioms for a post-Lie algebra are

𝑥 �̂ [𝑦, 𝑧]0 = [𝑥 �̂ 𝑦, 𝑧]0 + [𝑦, 𝑥 �̂ 𝑧]0

and

[𝑥, 𝑦]0 �̂ 𝑧 = 𝑎�̂ (𝑥, 𝑦, 𝑧) − 𝑎�̂ (𝑦, 𝑥, 𝑧).

As in the previous section, one easily checks that the first property is true. We prove the second property
by distinguishing cases.
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Case 1: If 𝑥, 𝑦 ∈ 〈𝜕𝑖〉R, then either 𝑧 ∈ 〈𝜕𝑖〉R and the property holds trivially, or 𝑧 ∈ �̃� and we have
0 on the left-hand side and only two non-zero terms on the right-hand side that cancel each other out.
Hence, the property holds in this case.

Case 2: 𝑥, 𝑦 ∈ �̃� and 𝑧 ∈ 〈𝜕𝑖〉R, then all terms are 0 by definition of the product �̂ and the property
holds trivially.

Case 3: If 𝑥, 𝑦, 𝑧 ∈ �̃�, we notice that, in this case, the second property is equivalent to

[𝑥, 𝑦]0 �̂ 𝑧 = 𝑎� (𝑥, 𝑦, 𝑧) − 𝑎� (𝑦, 𝑥, 𝑧),

which is simply the pre-Lie property for the product �.
Case 4: If 𝑦, 𝑧 ∈ �̃� and 𝑥 ∈ 〈𝜕𝑖〉R, then from the left-hand side, we have

[𝑥, 𝑦]0 �̂ 𝑧 = 𝑛𝑖𝑧
𝛾𝐷 (𝑛−𝑒𝑖 ) � 𝑧𝛾

′

𝐷 (𝑛′) .

From the right-hand side, the following terms remain:

𝑎�̂ (𝑥, 𝑦, 𝑧) = 𝑧𝛾𝐷 (𝑛) �̂ (𝑋𝑖 �̂ 𝑧𝛾
′

𝐷 (𝑛′) ) − (𝑧𝛾𝐷 (𝑛) �̂ 𝑋𝑖) �̂ 𝑧𝛾
′

𝐷 (𝑛′)

= 𝑧𝛾𝐷 (𝑛) �̂ (𝜕𝑖𝑧
𝛾′𝐷𝑛′ )

because 𝑧𝛾𝐷 (𝑛) �̂ 𝜕𝑖 = 0. Then

𝑎�̂ (𝑦, 𝑥, 𝑧) = 𝜕𝑖 �̂ (𝑧𝛾𝐷 (𝑛) ) �̂ 𝑧𝛾
′

𝐷 (𝑛′) ) − (𝜕𝑖 �̂ 𝑧𝛾𝐷 (𝑛) ) �̂ 𝑧𝛾
′

𝐷 (𝑛′)

= 𝜕𝑖 (𝑧
𝛾𝐷 (𝑛) � 𝑧𝛾

′

𝐷 (𝑛′) ) − (𝜕𝑖𝑧
𝛾𝐷 (𝑛) ) � 𝑧𝛾

′

𝐷 (𝑛′) .

Finally, one obtains

𝑎�̂ (𝑥, 𝑦, 𝑧) − 𝑎�̂ (𝑦, 𝑥, 𝑧) = 𝑧𝛾𝐷 (𝑛) � (𝜕𝑖𝑧
𝛾′𝐷 (𝑛′ ) − 𝜕𝑖 (𝑧

𝛾𝐷 (𝑛) � 𝑧𝛾
′

𝐷 (𝑛′) )

+ (𝜕𝑖𝑧
𝛾𝐷 (𝑛) ) � 𝑧𝛾

′

𝐷 (𝑛′) ,

which is equal to 𝑛𝑖𝑧𝛾𝐷 (𝑛−𝑒𝑖 ) � 𝑧𝛾
′
𝐷 (𝑛′) after unwinding definitions, as desired.

Since any remaining cases are covered by symmetry, we have a post-Lie algebra. To finish the proof,
we notice that the second claim of the lemma is immediate from the definitions of the brackets and the
product �̂. �

Remark 5.6. The map Ψ defined (9) can be extended to a pre-Lie morphism between the vector space
Ṽ0 given by

Ṽ0 =
〈
{𝐼𝑎 (𝜏), 𝑎 ∈ N𝑑+1, 𝜏 ∈ 𝔗0}

〉
R

and �̃�. We denote this extension by Ψ̂ and it is given for every 𝐼𝑎 (𝜎) ∈ Ṽ0 by

Ψ̂(𝐼𝑎 (𝜎)) = Ψ(𝜎)
𝐷 (𝑎)

𝑎!
.

One also has

Ψ̂(𝐼𝑎 (𝜎) �̂ 𝐼𝑏 (𝜏)) = Ψ̂(𝐼𝑎 (𝜎)) � Ψ̂(𝐼𝑏 (𝜏))

where the pre-Lie product on the decorated trees is the one given by (10). To obtain a post-Lie morphism,
one has to extend the map Ψ̂ on the 𝑋𝑖 by setting

Ψ̂(𝑋𝑖) = 𝜕𝑖 .
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For example, one easily checks that

Ψ̂(𝑋𝑖 ⊲̂ 𝐼𝑎 (𝜎)) = Ψ̂(↑𝑖 𝐼𝑎 (𝜎)) = 𝜕𝑖 �̂Ψ(𝜎)
𝐷 (𝑎)

𝑎!
= Ψ̂(𝑋𝑖) ⊲̂ Ψ̂(𝐼𝑎 (𝜎)),

where here ↑𝑖 applied to a decoration
∏𝑘

𝑗=1 𝑋
ℓ 𝑗 gives

↑𝑖
𝑘∏
𝑗=1

𝑋ℓ 𝑗 = 𝑋𝑖

𝑘∏
𝑗=1

𝑋ℓ 𝑗 +

𝑘∑
𝑗=1

𝑋ℓ 𝑗+𝑒𝑖
∏
𝑗′≠ 𝑗

𝑋ℓ 𝑗′ .

Similarly, for the bracket, one gets

Ψ̂([𝑋𝑖 , 𝐼𝑎 (𝜎)]) = Ψ̂(𝐼𝑎−𝑒𝑖 (𝜎)) = Ψ(𝜎)
𝐷 (𝑎−𝑒𝑖 )

(𝑎 − 𝑒𝑖)!
= [Ψ̂(𝑋𝑖), Ψ̂(𝐼𝑎 (𝜎))] .

Due to the condition [𝛾] ≥ 0, for any element of �̃�, there exists a pre-image in V0 via Ψ̂.

We are now able to use the main theorem in [24] which generalizes the Guin-Oudom theorem on
the Lie enveloping algebra of a pre-Lie algebra to the case of a post-Lie algebra in order to obtain the
following result:

Theorem 5.7. One has a Hopf algebra isomorphism of 𝑈 (𝐿) with (𝑈 (𝐿0),★,Δ). Furthermore, this
isomorphism immediately gives us a partially symmetric basis for 𝑈 (𝐿) as the one obtained in [34].

Proof. The first part is obtained directly by using the result in [24]. Then, for the second part, we simply
notice that [𝑥, 𝑦]0 vanishes on �̃�, which results in the relation 𝑥𝑦 = 𝑦𝑥 holding for 𝑥, 𝑦 ∈ �̃� inside𝑈 (𝐿).
This, together with the Poincare-Birkhoff-Witt theorem, gives us a basis for 𝑈 (𝐿) that is symmetric
with respect to the elements of the basis of �̃�. �

Remark 5.8. Using the post-Lie morphism Ψ̂, one has a direct connection between the product on
multi-indices and the one on decorated trees. Indeed, the map Ψ̂ is in particular a Lie morphism for
[., .] and so has a natural extension to𝑈 (𝔤). Hence, it commutes with the construction in Section 2. By
virtue of this, it extends to a morphism of Hopf algebras and so one has for 𝐴, 𝐵 ∈ 𝑈 (𝐿0),

𝐴 ★ 𝐵 = Ψ̂(𝑥) ★ Ψ̂(𝑦) = Ψ̂(𝑥 ∗ 𝑦),

where 𝑥, 𝑦 ∈ 𝑈 (V0) are such that 𝐴 = Ψ̂(𝑥) and 𝐵 = Ψ̂(𝑦).
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