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The synchronisation of intense vorticity in
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The dynamics of intense vorticity is investigated by means of synchronisation experiments
in direct numerical simulations of isotropic turbulence. By imposing similar dynamics
above the dissipative range, the same structures of intense vorticity appear in two
independent turbulent flows, showing that intense vorticity synchronises to large-scale
dynamics. Remarkably, this synchronisation takes place despite the presence of chaos,
and affects mostly the intense vorticity, but not so much the weak vorticity background,
which remains comparatively asynchronous. These results pinpoint the role of large-scale
dynamics in the formation of intense vorticity structures, the so-called ‘worms’, and rule
out the possibility that they emerge primarily due to interactions within the dissipative
range, and then grow or coalesce into elongated structures. The stretching of the vorticity
vector by the large-scale rate-of-strain tensor is identified as the mechanism responsible for
the synchronisation of intense vorticity, supporting the extended view of vortex stretching
as a fundamental inter-scale mechanism in turbulence.
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1. Introduction

A striking feature of chaotic dissipative systems such as turbulence is the spontaneous
emergence of coherent structures, which appear as well-defined and traceable objects
in the obscure collection of chaotic interactions. A paramount example in turbulent
flows is the presence of long-lived coherent ‘worms’ or ‘sinews’ of intense vorticity.
These structures have a relevant impact on turbulence statistics (Pumir 1994; Toschi &
Bodenschatz 2009), and on diverse phenomena such as cavitation or clustering (Bappy
et al. 2020; Mathai, Lohse & Sun 2020). Since they were first detected in direct numerical
simulations (Siggia 1981; She, Jackson & Orszag 1990) and experiments (Douady, Couder
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& Brachet 1991; Cadot, Douady & Couder 1995), researchers have striven to explain
their origin and quantify their relevance to turbulence theory, but to date no consensus
exists. Frisch (1995) described this problem in terms of whether intense vortices are the
‘dog’ or the ‘tail’ of turbulence, i.e a relevant feature of turbulent flows with dynamical
significance, or just the byproduct of other underlying turbulent processes, with reduced
influence on the overall dynamics.

Understanding the mechanisms by which intense vorticity structures are generated and
controlled is essential to assess their relevance to turbulence dynamics. Diverse physical
mechanisms (Vincent & Meneguzzi 1994; Passot et al. 1995) and simplified models
(Burgers 1948; Pullin & Saffman 1998) have been proposed to explain their origin, but
none are fully consistent with the empirical evidence. On a fundamental basis, the vorticity
equation points directly to the interaction with the rate-of-strain tensor, the so-called
vortex stretching mechanism, as the cause for the generation of intense vorticity. Despite
extensive research focused on the characterisation of vortex stretching, the causal relations
that drive this mechanism are not well understood due to its nonlinear and non-local nature
(Ohkitani & Kishiba 1995).

Two of the most intriguing aspects of intense vortices are their disparity of scales and
the scaling of their circulation. They have radii of the order of Kolmogorov units, but
lengths that reach up to the inertial – or even integral – scales, and their circulation
scales with the root-mean-square of the velocity fluctuations and the Kolmogorov length
scale (Jiménez et al. 1993). These observations suggest that large and small scales are
involved in their dynamics, but it remains unclear which scales control their formation
and evolution. There is evidence that points in the direction of a top-down mechanism
controlled by large scales. Locally, the vorticity vector aligns predominantly with the
intermediate eigenvector of the rate-of-strain tensor (Ashurst et al. 1987). However, when
the rate-of-strain tensor is filtered, vorticity predominantly aligns with the most stretching
direction (Leung, Swaminathan & Davidson 2012; Lozano-Durán, Holzner & Jiménez
2016), suggesting that large scales are actively involved in the dynamics of the vorticity
vector. On the other hand, the scale of the worms’ radii and the dominant amplification of
vorticity by the rate-of-strain tensor in the dissipative scales challenge this scenario. This
evidence suggests a bottom-up process in which structures of intense vorticity may first
be originated by interactions within the dissipative range, and then grow or coalesce into
elongated tubes that reach up to inertial or integral scales (Jiménez et al. 1993).

Inthispaper,weshedlightonthedynamicsof intensevorticitybymeansofsynchronisation
experiments in direct numerical simulations of isotropic turbulence. These numerical
experimentsdisentanglethecausalrelationsbetweenthevorticityvectorandtherate-of-strain
tensor, and confirm the relevant role of large-scale dynamics in generating and controlling
intense vortices. Our results discard the view that they emerge primarily from small-scale
dynamics, and connect their evolution to scales at the end of the inertial range.

2. Synchronisation experiments in isotropic turbulence

2.1. Complete synchronisation in the dissipative range
The synchronisation of chaotic systems is a well-known and widely studied phenomenon
with important consequences and applications in the natural sciences and engineering
(Pecora & Carroll 1990). See Di Leoni, Mazzino & Biferale (2020) for a recent application
to turbulence. In general, two or more chaotic systems are said to be synchronised when
all, or some, of their state variables evolve towards a common spatio-temporal pattern
under the action of a driving force or coupling. In particular, the synchronisation is said
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Synchronisation of intense vorticity in turbulence

to be complete when the driven systems evolve towards the same states regardless of their
initial conditions. As first shown by Yoshida, Yamaguchi & Kaneda (2005), and later by
Lalescu, Meneveau & Eyink (2013), homogeneous turbulence is a complex phenomenon
that exhibits the complete synchronisation of the dissipative scales when driven by similar
large-scale dynamics.

These synchronisation experiments are conducted as follows. We consider the
incompressible Navier–Stokes equations in a triply periodic cubic domain, which describe
the evolution of homogeneous isotropic turbulence,

∂tu + u · ∇u = −∇p + ν∇2u + f , (2.1)

where u = {ui} is the velocity vector, p is the kinematic pressure that ensures
incompressibility, ∇ · u = 0, ν is the kinematic viscosity and f is a solenoidal body force
that sustains turbulence by acting only on the large scales of the flow. We project these
equations on a truncated Fourier basis,

(∂t + νk2)û(k) = L̂(k; u) + f̂ (k), (2.2)

where the hat denotes variables in Fourier space, L = −u · ∇u − ∇p and k is the
wavenumber vector, with k its magnitude.

We now consider three different systems with similar physical parameters integrated in
parallel simulations: a master system, uM , and two slave systems, uA and uB. Hereafter, we
use the superscripts to distinguish quantities in the different systems. The master system
is a standard direct numerical simulation, while to the slave systems we continuously
assimilate the large scales of the master system. At each time step of the simulation, we
copy the data from the master to the two slave systems for modes below a prescribed
wavenumber ka, so that at all times

ûA,B(k) = ûM(k), if k < ka. (2.3)

This procedure, known as data assimilation, can be described in terms of a filtering
operation using a high-pass sharp Fourier filter with cutoff wavenumber ka,

G(k; ka) = 0, if k ≤ ka,

G(k; ka) = 1, if k > ka,

}
(2.4)

which decomposes the flow field into û = ûl + ûs, where ûs(k) = û(k)G(k; ka) and
ûl(k) = û(k) − ûs(k) are the small- and large-scale velocity fields, respectively.

The evolution equation of the slave system ‘A’ (or slave system ‘B’) is given by

∂tûA
l (k) = ∂tûM

l (k),

(∂t − νk2)ûA
s (k) = G(k; ka)L̂(k; uA

l + uA
s ),

}
(2.5)

where the master system drives the slave system through the actions of the
nonlinear interactions present in L. The initial conditions of the slave systems
satisfy uA

l (k; t0) = uB
l (k; t0) = uM

l (k; t0), and uA
s (k; t0) and uB

s (k; t0) are independent
small-scale velocity fields. Considering ka as a proxy for the assimilation scale, �a = π/ka,
the flow at scales above �a in the slave systems is always similar to that in the master
system due to the assimilation procedure, while the flow below �a evolves ‘freely’ under
the Navier–Stokes equations.

When �a < 16η (thus kaη > 0.2), where η = (ν3/〈ε〉4)1/4 is the Kolmogorov length
scale and 〈ε〉 is the ensemble-averaged kinetic energy dissipation, the slave systems
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synchronise completely and |ûB − ûA| → 0 when t → ∞ regardless of the initial
conditions in the small scales of the slave systems. Lalescu et al. (2013) report total
synchronisation for kaη > 0.15, but their experiments are anisotropic in the large scales
and prone to bursting.

We stress the dynamical interpretation of synchronisation: at scales below �a = 16η,
chaos is totally constrained by viscosity, and the dynamics is driven by scales above.
Synchronisation experiments provide a framework to identify the sufficient causes of the
synchronised events. The evolution of scales below 16η can be fully reconstructed with the
information of scales above, while the opposite is in general not true, evidencing a strong
causal connection from scales above 16η to scales below.

2.2. Partial synchronisation above the dissipative range
In this work we reproduce and extend the numerical experiments of Yoshida et al. (2005)
for assimilation scales larger than 16η, when synchronisation is only partial and the slave
systems develop their own chaotic dynamics. As we will show, synchronicity is still
relevant in some parts of the slave systems, pointing to the events that are caused by scales
above the assimilation scale.

We consider fully developed isotropic turbulence at two different Reynolds numbers of
the master system, Reλ = u′λ/ν = 120 and 195, where λ = (15ν/〈ε〉)1/2u′ is the Taylor
microscale, u′ is the root-mean-square velocity fluctuation and ε = ν

∑
k k2ûû∗ is the

instantaneous volume-averaged energy dissipation rate. The angular brackets denote the
ensemble average and the asterisk indicates the complex conjugate. These Reynolds
numbers are simulated on cubic grids with N3 = 2563 and 5123 points, and all simulations
are run at a fixed resolution of kmaxη = 2.0, where kmax = (

√
2/3)N is the maximum

wavenumber magnitude. Further details of the code are described in Cardesa, Vela-Martín
& Jiménez (2017).

We explore the partial synchronisation of the slave systems for �a between 20η and
40η. For each different assimilation scale and Reynolds number, we have run simulations
for a time of approximately 20Teto, where Teto = L/u′ is the eddy turnover time and L =
(π/K)

∑
k k−1E(k) is the integral scale. Here E(k) = 2πk2〈ûû∗〉k is the kinetic energy

spectrum, 〈·〉k denotes average over time and over wavenumber shells of radius k, and
K = ∑

k E(k). For statistical analysis, we have collected between 20 and 100 independent
velocity fields for each case, which are enough to converge the statistics.

In these experiments the synchronisation of scales below �a is incomplete, and
these scales develop their own independent chaotic dynamics, which are, however, not
completely decoupled from the master system. As shown in figure 1(a), the temporal
signals of the dissipation above wavenumber ka, i.e. εs = ν

∑
k>ka

k2ûû∗, in the slave
systems are highly synchronised to the signal of the master system. The correlation
coefficient between these signals in the master and slave systems is approximately 0.99 for
�a = 20η, and drops only to 0.91 for �a = 30η for the two Reynolds numbers considered
here.

In figure 1(b,c), we show the energy and the dissipation spectra, E(k) and D(k) =
2νk2E(k), at different values of ka for the master and slave systems. The smooth transition
of the energy spectra from the assimilated data to the freely evolving modes above ka
indicates a strong dynamic coupling from the master to the slave system, and the good
collapse of the dissipation spectra in Kolmogorov units indicates healthy small-scale
dynamics. The only significant consequence of the assimilation procedure is the increment
of the average dissipation in the slave systems with respect to the master system. This
increment is approximately 5 % for �a = 20η and 30 % for �a = 40η, and leads to a slight
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Figure 1. (a) Phase diagram of signals of the volume-averaged dissipation above ka for the master, εM
s , and

slave, εA
s and εB

s , systems. The signals cover 15Teto, with markers separated by 0.1Teto, and correspond to
�a = 20η and Reλ = 120. The upper dotted line marks εB

s = εA
s , and the lower εM

s = 0.93εA
s . (b) Energy

spectra normalised with the total energy for the master system (dashed line) and for the slave systems (lines
with markers) for different assimilation scales. The solid line is proportional to (kη)−5/3. (c) Premultiplied
dissipation spectra normalised in Kolmogorov units for the master system (dashed line) and the slave systems
(lines with markers), and premultiplied error spectra (lines without markers), for different assimilation scales.
The data correspond to Reλ = 195, but are qualitatively similar for Reλ = 120. The vertical dotted in lines (b,c)
mark the assimilation scales.

reduction of the effective Reλ of between 3 % and 12 %. This is a consequence of the lack
of a feedback mechanism from scales below �a to scales above, but it does not affect the
structure of the small scales in the slave systems, which have similar statistics to those of
the master system. For instance, the skewness and the flatness factor of the longitudinal
velocity derivatives are indistinguishable between systems. We find that F3 ≈ −0.54 and
F4 ≈ 6.3 in all systems for Reλ = 195, where Fn = 〈(∂iui)

n〉/〈(∂iui)
2〉n/2 (no summation

intended for repeated indices). These values are similar to those in the literature (Jiménez
et al. 1993).

In figure 1(c), the error spectrum

R(k) = 〈�û�û∗〉k/〈ûû∗〉k, (2.6)

where �u = uA − uB, shows that the coupling between the assimilated data and the freely
evolving modes of the slave systems is very local in scale, with error increasing sharply
for wavenumbers larger than ka. This locality and the strong correlation of the energy
dissipation signals bring to mind the energy cascade process (Zhou 1993; Eyink & Aluie
2009; Cardesa et al. 2015). We suggest that partial synchronisation, which we analyse in
the following sections, reflects the control exerted by scales above the assimilation scale
into smaller scales to produce the adequate amount of inter-scale energy fluxes.

3. The structure of partial synchronisation

In this section, we characterise the structure of partial synchronisation between the slave
fields in physical space, with focus on the vorticity vector, ω = ∇ × u. A very relevant
aspect of these experiments is that the local degree of synchronisation is not homogeneous
in space, but depends strongly on the magnitude of the vorticity vector, Ω = |ω|. In
figure 2(a,b), we show visualisations of structures of intense vorticity in the slave and
master fields for �a = 20η and Reλ = 120. We observe a conspicuous synchronisation of
worms, which overlap or appear adjacent with the same orientation.

These structures have a typical radius of approximately 4η, but lengths larger than
the assimilation scales used in our experiments (Jiménez et al. 1993). As shown by the

913 R8-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.153


A. Vela-Martín

0

p.
d.

f.

2 4 6
10–4

10–3

10–2

10–1

100
20η

50η100η

25η

ΩM

Ω/〈Ω〉

(b)(a) (c)

Figure 2. (a) Visualisation of intense vorticity structures in the slave systems ‘A’ (red) and ‘B’ (blue), and of
structures of intense vorticity in the large scales of the master system (magenta) for �a = 20η. Red and blue
isosurfaces (slave systems) correspond to ΩA,B = 3〈Ω〉, and magenta isosurfaces (master system) to ΩM

l =
4〈ΩM

l 〉. The panel shows the full computational domain. (b) Detail of the synchronisation of intense vortices in
the slave systems in a (150η)3 subdomain. Colours as in panel (a). The data in (a,b) correspond to different flow
fields from simulations at Reλ = 120. (c) Probability density function of the large-scale vorticity magnitude,
ΩA

l (solid markers), and the small-scale vorticity magnitude, ΩA
s (empty markers), in the slave system, and the

vorticity magnitude in the master system ΩM (solid black line) for Reλ = 120. All quantities are normalised
with 〈Ω〉 in each system. Dotted vertical lines mark Ω/〈Ω〉 = 1 and 3.

dissipation spectra in figure 1(c), the assimilated data contain a non-negligible fraction of
the total dissipation (16 % for �a = 20η), and therefore of the total squared vorticity. We
discard, however, the view that the assimilated data contain structures of intense vorticity.
In figure 2(c), we show the probability density function (p.d.f.) of ΩA

s = |ωA
s |, ΩA

l = |ωA
l |

and ΩM = |ωM|. Here ω̂l = ω̂(k)(1 − G(k; ka)) corresponds to the vorticity above scale
�a, which is assimilated from the master system, and ω̂s = ω̂(k)G(k; ka) to the vorticity
below scale �a. Even for �a = 20η, the assimilated data contain only a small fraction of
the vorticity magnitude above 〈Ω〉, and a negligible fraction of the intense vorticity above
3〈Ω〉, which is a threshold used to identify vorticity worms (Jiménez et al. 1993). On the
other hand, the p.d.f.s of the total and the small-scale vorticity magnitude are very similar.
Hence intense vorticity structures originate in the small scales due to interactions with the
assimilated data, but are not imposed by the assimilation process.

To characterise the local synchronisation pattern of the vorticity field, we evaluate the
cosine of the angle of alignment between the vorticity vectors of the two slave systems,

cos(ωA, ωB) = ωA · ωB/(|ωA||ωB|), (3.1)

and the local error,
E = |ωA − ωB|/(|ωA| + |ωB|), (3.2)

which also contains information on the differences in the magnitude of the vorticity vector.
We analyse only the synchronisation between the slave systems, but similar results are
obtained by comparing the slave and master systems: the features shared by the slave
systems due to their synchronisation are also present in the master system.

In figure 3(a,b), we show the p.d.f.s of cos(ωA, ωB) and E for �a = 20η considering all
data, and the same p.d.f.s conditioned to different values of the magnitude of the vorticity
vector in one of the slave systems. Synchronisation is manifest in the strong alignment
between the vorticity vectors of the slave systems (note the logarithmic axis). When
conditioned to the local magnitude of the vorticity vector, this alignment becomes stronger
for large Ω , and weaker for small Ω . The peak of the alignment p.d.f. is approximately 10
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Figure 3. (a,b) The p.d.f.s of (a) the angle of alignment and (b) the error between the vorticity vector of the
slave systems as a function of the intensity of the vorticity magnitude for �a = 20η. (c,d) The p.d.f.s of (c) the
angle of alignment and (d) the error between the vorticity vector of the slave systems for Ω > 3〈Ω〉 for different
assimilation scales. (e, f ) The p.d.f.s of (e) the angle of alignment and ( f ) the error between the vorticity vector
of the slave systems as a function of the intensity of the vorticity magnitude for �a = 40η. In all panels the
empty markers correspond to Reλ = 120 and solid markers to Reλ = 195. The dotted lines mark the error and
angle of alignment of fully decorrelated vorticity fields.

for Ω > 3〈Ω〉, but decreases five-fold for Ω < 0.5〈Ω〉. A similar picture stems from the
local error, which is smaller for large Ω than for small Ω . Intense vorticity is substantially
more synchronised to the action of large scales than weak vorticity.

In figure 3(c,d) we show the p.d.f.s of cos(ωA, ωB) and E conditioned to Ω > 3〈Ω〉
for different values of the assimilation scale. In agreement with the scale locality of
synchronisation exposed by the error spectra in figure 1(c), the statistics of the angle of
alignment and the error become closer to those of decorrelated fields as the assimilation
scale increases. While for �a = 20η a strong synchronisation is evident both in the angle
of alignment and in the error, for �a = 30η synchronisation is lost to a large degree, but
this loss is more conspicuous in the error than in the angle of alignment. In figure 3(e, f )
we show the p.d.f.s of cos(ωA, ωB) and E conditioned to Ω for �a = 40η. The error is very
close to that of completely decorrelated fields independently of the vorticity magnitude,
but there exists a statistically significant deviation from a completely random alignment
of intense vorticity. Although scales up to 40η do not control the intensity and position of
intense vortices, they seem to have an effect on their orientation.

4. The synchronisation mechanism

In order to identify the synchronisation mechanism, we consider the vorticity equation

Dtω = W + ν∇2ω, (4.1)
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where Dt is the Lagrangian derivative, W = S · ω is the vortex-stretching vector and
S = (∇u + ∇uT)/2 is the rate-of-strain tensor. While viscosity is necessary for the local
equilibrium of coherent vortices, it is not in itself a mechanism able to generate structure.
We are left with the interaction between the rate-of-strain tensor and the vorticity vector,
represented by W , as the only possible mechanism for the synchronisation of intense
vorticity.

We explain the synchronisation mechanism by focusing on the local amplification of the
magnitude of the vorticity vector by the rate-of-strain tensor,

σ = 1
Ω2 ω · W , (4.2)

which enters the evolution equation of the vorticity magnitude and the enstrophy as
DtΩ = σΩ and DtΩ

2 = 2σΩ2 (in the inviscid case). To account for the action of the
assimilated data above �a on the slave systems, we use (2.4) to separate the velocity
gradients in scales below and above �a, i.e. S = Sl + Ss and ω = ωl + ωs. This gives
four different scale contributions to the stretching vector, W α�β = Sα · ωβ , and to the
local amplification of the vorticity magnitude,

σα�β = 1
Ω2 ω · W α�β, (4.3)

where α and β take letters ‘s’ or ‘l’ to denote the contribution of scales smaller or larger
than �a, and � points to the scale being stretched by the rate-of-strain tensor. Thus σs�s and
σl�l represent the stretching of small- and large-scale vorticity by the rate-of-strain tensor
in the same scale, and σl�s and σs�l the stretching of small- and large-scale vorticity by
the rate-of-strain tensor in large and small scales, respectively.

In figure 4(a) we show the average of the four amplification terms in synchronisation
experiments as a function of �a. Here we have included synchronisation experiments
with �a < 20η. The stretching of large-scale vorticity by large- and small-scale strain,
σl�l and σs�l, are small compared to the terms involving small-scale vorticity, σs�s and
σl�s, which dominate the total amplification. We focus on σs�s and σl�s and study their
relation to the local level of synchronisation in the slave fields. In figure 4(b,c), we show the
average of σl�s and σs�s conditioned to cos(ωA, ωB) and to E for �a = 20η. The stretching
of small-scale vorticity by large-scale strain is on average intense in regions where the
vorticity vectors are highly synchronised, cos(ωA, ωB) ≈ 1 and E ≈ 0, indicating that
this mechanism is involved in the synchronisation process. The average of σl�s is also
large when cos(ωA, ωB) ≈ −1 and E ≈ 1. We suggest that this is related to the quadratic
dependence of σl�s on the vorticity vector, which implies that the large-scale strain equally
stretches vortices with the same orientation but with opposite sign. This allows for the
possibility that intense large-scale strain aligns vorticity antiparallel in the slave systems,
which leads to cos(ωA, ωB) ≈ −1 and E ≈ 1 where σ is large. This antiparallel alignment
is, however, unlikely (figure 3a).

The conditional average of σs�s shows that, conversely to σl�s, this quantity is
independent of the local level of synchronisation, discarding any synchronisation
mechanism other than the stretching of the small-scale vorticity by the large-scale strain.

In this analysis and in the previous one, we do not observe any significant variation of
the statistics with Reλ.

In figure 4(d), we show the average of σl�s and σs�s for �a = 20η conditioned to
Ω . The contributions of both terms to the amplification of intense vorticity are very
similar. Although this might suggest that both mechanisms are equally involved in the
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Figure 4. (a) Average amplification of the vorticity magnitude, σα�β , due to contributions of the rate-of-strain
tensor and the vorticity vector at different scales; see (4.3). (b–d) Average of σl�s and σs�s in the slave systems
for �a = 20η conditioned to: (b) the error, (c) the angle of alignment and (d) the magnitude of the vorticity
vector. In panels (a–d) quantities are normalised with Kolmogorov units. (e, f ) Average of σl�s conditioned to:
(e) the error and ( f ) the angle of alignment at different assimilation scales, normalised with the inertial time
τa = (�2

a/〈ε〉)1/3. Empty markers correspond to Reλ = 120 and solid markers to Reλ = 195.

dynamics of intense vorticity, synchronisation experiments prove this false. The stretching
of the vorticity vector by the large-scale rate-of-strain tensor controls to a large extent the
magnitude and orientation of intense vorticity.

The synchronising effect of vortex stretching is also present at larger assimilation scales
despite the loss of synchronicity. In figure 4(e, f ) we show the p.d.f. of σl�s conditioned to
cos(ωA, ωB) and to E for large values of �a. Here σl�s is normalised with the characteristic
inertial time at scale �a, i.e. τa = (�2

a/〈ε〉)1/3. The collapse of the p.d.f.s indicates that the
synchronising effect of the large-scale stretching extends up to inertial scales, and that it
scales in inertial units. As �a increases, chaos below this scale becomes more relevant,
and large-scale stretching cannot effectively control the position and magnitude of intense
vortices, but it does affect their orientation. This is shown by the preferential alignment of
intense vorticity up to �a = 40η in figure 3(e).

5. Discussion

We have conducted numerical experiments in isotropic turbulence to show that, by
imposing similar dynamics above the dissipative range to two independent turbulent flows,
similar structures of intense vorticity are generated in the two flows, i.e intense vorticity
synchronises to scales above the dissipative range. Remarkably, synchronisation happens
despite the presence of chaotic dynamics, and is more pronounced for the intense vorticity
than for the weak vorticity. We have reported that the dynamics at scales above 20η,
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where η is the Kolmogorov scale, largely controls the magnitude and orientation of intense
vorticity. For larger scales, synchronicity is progressively lost, but the orientation of the
intense vorticity is still affected by scales up to 40η. These experiments show that the
dynamics above the dissipative range is, to a large extent, a sufficient cause of the structure
of intense vorticity in the dissipative range. We conclude that intense vortices do not
emerge primarily due to the self-organisation of velocity gradients in the dissipative range,
but due to the dynamics at larger scales.

The synchronisation pattern does not change in the range of moderate Reλ studied. At
higher Reynolds numbers, intermittency effects may affect synchronisation, but we suggest
that this phenomenon should persist due to its connection with the energy cascade, which
we discuss later in this section.

We have identified the stretching of the vorticity vector by the large-scale rate-of-strain
tensor as the mechanism responsible for the synchronisation of intense vorticity. While
intense vorticity is equally stretched by the rate-of-strain tensor at scales below and
above 20η, we have shown that the stretching of scales above controls its magnitude and
orientation.

A possible interpretation of these results is that the formation of intense vortices is a
multiscale process. Inertial scales form the cast for the vortices, providing a preferential
orientation for their axes, while interactions at smaller scales, down to 20η, progressively
determine their intensity and the position of their core. The amplification of vorticity due
to small-scale interactions provides an important fraction of the total enstrophy production
in intense vortices, and most probably determines the scaling of their radius, but we have
shown that this mechanism does not control their evolution. These results shed light on
why the circulation of intense vortices is not appropriately described by two-scale models
such as the Burgers’ vortex (Jiménez et al. 1993).

In view of the spatial structure of synchronisation, we suggest that synchronisation
is most probably not homogeneous in time. An intriguing question is whether
synchronisation is particularly strong at any time during the lifetime of intense vortices. As
reported by Douady et al. (1991), intense vortices have an asymmetric temporal evolution,
with a sudden birth and a slow decay. This suggests that synchronisation may be stronger
at their birth than during their lifetime. A temporal analysis of the synchronisation pattern
would further clarify the mechanisms of vortex formation, and allow the identification of
the precise events involved.

In this work we have also reported the synchronisation of the average dissipation signal
to dynamics above the dissipative range, which points to the energy cascade process,
and suggests that the strong synchronisation of intense vorticity reflects the action of
the last steps of the inertial range on the dissipative scales. This evidence, together with
the comparatively asynchronous behaviour of weak vorticity, points to the separation
of the flow in active, cascade-driven regions, and in a weak and cascade-independent
turbulent background. Although the cascade-independent background develops its own
chaotic structure (Tsinober 1998), its asynchronous behaviour suggests that it is only
loosely coupled to the fluctuations at scales above the dissipative range. On the other hand,
the cascade-driven regions may be more effective in capturing the fluctuations at the last
inertial scales, connecting them with the dissipative range.

These results reveal a more relevant role of intense vorticity than suggested by its
contribution to the total enstrophy – not by directly participating in the dissipation budget,
but by helping to transmit the information of inertial fluctuations to the dissipative
range (Cardesa et al. 2015). Our results suggest that this information is more efficiently
transmitted through the intense vorticity due to large-scale stretching than through the
weak vorticity background.
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