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Abstract Recent research of the author has studied edge-labelled directed trees under a natural mul-
tiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic inter-
pretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of
these trees, defined by placing a restriction on edge orientations, and show that the resulting algebraic
structure is a free object in the class of left adequate semigroups. Through this correspondence we
establish some structural and algorithmic properties of free left adequate semigroups and monoids, and
consequently of the category of all left adequate semigroups.
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1. Introduction

In [10] we introduced and studied an intriguing multiplication operation on a class of
edge-labelled, directed combinatorial trees. This multiplication will be described in detail
below but, roughly speaking, two trees are combined by identifying a distinguished end
vertex on the first tree with a distinguished start vertex on the second and then taking
a minimal retract (or core, in the language of graph theory).

We showed in [10] that the set of all such trees (with labels from some fixed alphabet)
is a naturally arising algebraic structure: it is a free object (of rank the cardinality of the
labelling alphabet) in the class of adequate semigroups. Adequate semigroups, which were
introduced by Fountain [5] in the 1970s, are semigroups in which the cancellation proper-
ties of elements in general are encapsulated in the cancellation properties of idempotent
elements. They form a common generalization of inverse semigroups and cancellative
monoids, and their study is a key focus of the York School of semigroup theory. They are
usually viewed as algebras of signature (2, 1, 1), with the binary operation of multiplica-
tion augmented with unary operations taking each element to an idempotent sharing its
cancellation properties on the left or right respectively.

The author’s explicit representation of free adequate semigroups by labelled trees,
which may be viewed as analogous to Munn’s celebrated representation of the free inverse
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monoid [11], immediately yields detailed structural information about free adequate
semigroups, and hence also considerable information about the entire class of adequate
semigroups. For example, since multiplication of trees is an effective process, it gives a
solution to the word problem for free adequate semigroups, and hence an algorithm to
decide whether any given identity is satisfied by every adequate semigroup.

We restrict our attention here to a certain natural subset of labelled trees: those in
which every vertex is orientated away from the start vertex. Our main result is that the
class of such trees forms a free object in the class of left adequate semigroups (roughly
speaking, semigroups in which each element shares its right cancellation properties with
an idempotent, usually viewed as (2, 1)-algebras). As in the two-sided case, this descrip-
tion yields a great deal of information about free left adequate semigroups. An additional
corollary is that each free left adequate semigroup embeds into the corresponding free
adequate semigroup, from which it follows that every (2, 1)-identify satisfied by all ade-
quate semigroups is also satisfied by all left adequate semigroups. All of our results about
free left adequate semigroups have immediate duals for free right adequate semigroups
(which can be represented by those trees in which every vertex is orientated towards the
end vertex ).

An alternative approach to free left and right adequate semigroups is given by recent
work of Branco et al . [1,8]. Their construction arose from the fact that free left and right
adequate semigroups are proper in the sense introduced in [1].

The remainder of this paper comprises three sections. In § 2 we recall the tree multi-
plication operations introduced in [10]; we also recall some definitions and elementary
properties of adequate semigroups, and the results of [10] characterizing free adequate
semigroups as semigroups of trees under multiplication. Section 3 is devoted to the proof
that certain subalgebras of the free adequate semigroup are in fact the free left adequate
and free right adequate semigroups on the given generating set. Finally, in § 4 we collect
together some remarks on and corollaries of our main results.

2. Preliminaries

In this section we briefly recall some definitions and key results from [10]; a more detailed
exposition may be found in that paper. We also recall the definitions and basic properties
of left, right and two-sided adequate semigroups, more details of which can be found in [5].

We are concerned with labelled directed trees, by which we mean edge-labelled directed
graphs whose underlying undirected graphs are trees. If e is an edge in such a tree, we
denote by α(e), ω(e) and λ(e) the vertex at which e starts, the vertex at which e ends
and the label of e, respectively.

Let Σ be an alphabet. A Σ-tree (or just a tree if the alphabet Σ is clear) is a directed
tree with edges labelled by elements of Σ, and with two distinguished vertices (the start
vertex and the end vertex) such that there is a (possibly empty) directed path from
the start vertex to the end vertex. Figure 1 shows some examples of Σ-trees where
Σ = {a, b}; in each tree, the start and end vertices are marked by an arrowhead and a
cross, respectively.
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Figure 1. Some examples of {a, b}-trees.

A tree with only one vertex is called trivial, while a tree with start vertex equal to
its end vertex is called idempotent. A tree with a single edge and distinct start and end
vertices is called a base tree; we identify each base tree with the label of its edge. In any
tree, the (necessarily unique) directed path from the start vertex to the end vertex is
called the trunk of the tree; the vertices of the graph which lie on the trunk (including
the start and end vertices) are called trunk vertices and the edges which lie on the trunk
are called trunk edges. If X is a tree, we write θ(X) for the set of trunk edges of X.

A subtree of a tree X is a subgraph of X containing the start and end vertices, the
underlying undirected graph of which is connected. A morphism ρ : X → Y of Σ-trees X

and Y is a map taking edges to edges and vertices to vertices, such that ρ(α(e)) = α(ρ(e)),
ρ(ω(e)) = ω(ρ(e)) and λ(e) = λ(ρ(e)) for all edges e in X, and which maps the start
and end vertices of X to the start and end vertices of Y , respectively. Morphisms have
the expected properties that the composition of two morphisms (where defined) is again
a morphism, while the restriction of a morphism to a subtree is also a morphism. A
morphism maps the trunk edges of its domain bijectively onto the trunk edges of its
image.

An isomorphism is a morphism which is bijective on both edges and vertices. The set of
all isomorphism types of Σ-trees is denoted UT 1(Σ), while the set of isomorphism types
of non-trivial Σ-trees is denoted UT (Σ). The set of isomorphism types of idempotent
trees is denoted UE1(Σ), while the set of isomorphism types of non-trivial idempotent
trees is denoted UE(Σ). Much of the time we shall be formally concerned not with trees
themselves but rather with isomorphism types. However, where no confusion is likely, we
shall for the sake of conciseness ignore the distinction and implicitly identify trees with
their respective isomorphism types.

A retraction of a tree X is an idempotent morphism from X to X; its image is a
retract of X. A tree X is called pruned if it does not admit a non-identity retraction.
The set of all isomorphism types of pruned trees (respectively, non-trivial pruned trees)
is denoted T 1(Σ) (respectively, T (Σ)). Just as with morphisms, it is readily verified
that the restriction of a retraction to a subtree is again a retraction. Unlike morphisms,
a composition of two retractions need not be a retraction, but it will be a retraction,
provided the domain of the second is exactly the image of the first. A key foundational
result from [10] is the following.

Proposition 2.1 (confluence of retracts). For each tree X there is a unique (up
to isomorphism) pruned tree which is a retract of X.
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Figure 2. Examples of unpruned operations on {a, b}-trees.
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Figure 3. Examples of pruned operations on {a, b}-trees.

The unique pruned retract of X is called the pruning of X and is denoted X̄.
We now define some unpruned operations on (isomorphism types of) trees. If X, Y ∈

UT 1(Σ), then X × Y is (the isomorphism type of) the tree obtained by glueing together
X and Y , identifying the end vertex of X with the start vertex of Y and keeping all
other vertices and all edges distinct. If X ∈ UT 1(Σ), then X(+) is (the isomorphism
type of) the tree with the same labelled graph and start vertex of X, but with end vertex
the start vertex of X. Dually, X(∗) is the isomorphism type of the idempotent tree with
the same underlying graph and end vertex as X, but with start vertex the end vertex of
X. It was shown in [10] that the unpruned multiplication operation × is a well-defined
associative binary operation on UT 1(Σ); the (isomorphism type of the) trivial tree is
an identity element for this operation, and UT (Σ) forms a subsemigroup. The maps
X �→ X(+) and X �→ X(∗) are well-defined idempotent unary operations on UT 1(Σ),
and the subsemigroup generated by their images is commutative. Figure 2 shows some
examples of unpruned operations.

We define corresponding pruned operations on T 1(Σ) by XY = X × Y , X∗ = X(∗)

and X+ = X(+). These inherit the properties noted above for unpruned operations, and
have the additional property that the images of the ∗ and + operations are composed
entirely of elements which are idempotent under the multiplication. Figure 3 shows some
examples of pruned operations. Notice that the tree for a+(ab) is a proper retract of the
tree for a(+) × (a × b) from Figure 2. Notice also that the tree for (ab)+a is simply that
for (a × b)(+) × a; it does not admit a non-identity retract.

We recall a key result from [10].
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Theorem 2.2. The pruning map

UT 1(Σ) → T 1(Σ), X �→ X̄

is a surjective (2, 1, 1, 0)-morphism from the set of isomorphism types of Σ-trees under
unpruned multiplication, unpruned (∗) and unpruned (+) with distinguished identity
element to the set of isomorphism types of pruned trees under pruned multiplication, ∗
and + with distinguished identity element.

If X is a tree and S is a set of non-trunk edges and vertices of X, then X \ S denotes
the largest subtree of X (recalling that a subtree must be connected and contain the
start and end vertices, and hence the trunk) which does not contain any vertices or edges
from S. If s is a single edge or vertex we write X \ s for X \ {s}. If u and v are vertices
of X such that there is a directed path from u to v, then we shall denote by X|uv the
tree which has the same underlying labelled directed graph as X but start vertex u and
end vertex v. If X has start vertex a and end vertex b, then we define X|u = X|ub and
X|v = X|av where applicable.

We now recall the definitions of (left, right and two-sided) adequate semigroups. On
any semigroup S, an equivalence relation L∗ is defined by a L∗ b if and only if

ax = ay ⇐⇒ bx = by

for every x, y ∈ S1. Dually, an equivalence relation R∗ is defined by a R∗ b if and only if

xa = ya ⇐⇒ xb = yb

for every x, y ∈ S1. A semigroup is called left adequate (right adequate) if every R∗-class
(respectively, every L∗-class) contains an idempotent, and the idempotents commute. A
semigroup is adequate if it is both left adequate and right adequate. It is easily seen
that in a left (right) adequate semigroup, each R∗-class (L∗-class) must contain a unique
idempotent. We denote by x+ (respectively, x∗) the unique idempotent in the R∗-class
(respectively, L∗-class) of an element x; this idempotent acts as a left (right) identity for
x. The unary operations x �→ x+ and x �→ x∗ are of such critical importance in the theory
of adequate (left adequate, right adequate) semigroups that it is usual to consider these
semigroups as algebras of signature (2, 1, 1) (or (2, 1) for left adequate and right adequate
semigroups) with these operations. In particular, one restricts attention to morphisms
that preserve the + and/or ∗ operations (and hence coarsen the R∗ and L∗ relations)
as well as the multiplication. Similarly, adequate (left or right adequate) monoids may
be viewed as algebras of signature (2, 1, 1, 0) [(2, 1, 0)] with the identity a distinguished
constant symbol.

The following proposition recalls some basic properties of left and right adequate semi-
groups; these are well known and full proofs can be found in [10].
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Proposition 2.3. Let S be a left adequate [respectively, right adequate] semigroup
and let a, b, e, f ∈ S with e and f idempotent. Then

(i) e+ = e [e = e∗],

(ii) (ab)+ = (ab+)+ [(ab)∗ = (a∗b)∗],

(iii) a+a = a [aa∗ = a],

(iv) ea+ = (ea)+ [a∗e = (ae)∗],

(v) a+(ab)+ = (ab)+ [(ab)∗a∗ = (ab∗)] and

(vi) if ef = f , then (ae)+(af)+ = (af)+ [(ea)∗(fa)∗ = (fa)∗].

Recall that an object F in a concrete category C is called free on a subset Σ ⊆ F

if every function from Σ to an object N in C extends uniquely to a morphism from F

to N . The subset Σ (which generates F ) is called a free generating set for F , and its
cardinality is the rank of F . The following theorem was the main result of [10].

Theorem 2.4. The monoid T 1(Σ) is a free adequate monoid, freely generated by the
set Σ of base trees.

Corollary 2.5. Any subset of T 1(Σ) closed under the operations of pruned mul-
tiplication and + (respectively, ∗) forms a left adequate (respectively, right adequate)
semigroup under these operations.

It is easily seen that classes of left and right adequate semigroups form a quasivariety,
and it follows from general results (see, for example, [4, Proposition VI.4.5]) that free left
and right adequate semigroups and monoids exist. Branco et al . [1,8] have recently made
the first significant progress in the study of these semigroups. In the present paper we shall
give an explicit geometric representation of them. We shall need a proposition, the essence
of which is that the distinction between semigroups and monoids is unimportant. The
proof is essentially the same as for the corresponding result in the (two-sided) adequate
case, which can be found in [10].

Proposition 2.6. Let Σ be an alphabet. The free left adequate (free right adequate)
monoid on Σ is isomorphic to the free left adequate (free right adequate) semigroup on
Σ with a single adjoined element which is an identity for multiplication and a fixed point
for + (respectively, ∗).

3. Free left adequate monoids and semigroups

In [10] we saw that the monoids T 1(Σ) and semigroups T (Σ) are precisely the free objects
in the quasivarieties of adequate monoids and semigroups, respectively. In this section,
we prove the main results of the present paper by establishing a corresponding result for
left adequate and right adequate monoids and semigroups. The spirit and outline of the
proof are similar to those of [10], but the technical details are in places rather different.
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Definition 3.1 (left and right adequate trees). A Σ-tree X is called left adequate
if for each vertex v of X there is a directed path from the start vertex to v or, equivalently,
if every non-trunk edge in X is orientated away from the trunk. The sets of isomorphism
types of left adequate Σ-trees and left adequate pruned Σ-trees are denoted by LUT 1(Σ)
and LT 1(Σ), respectively.

Dually, a Σ-tree X is called right adequate if for each vertex v of X there is a directed
path from v to the end vertex or, equivalently, if every non-trunk edge in X is orientated
towards the trunk. The sets of isomorphism types of right adequate Σ-trees and right
adequate pruned Σ-trees are denoted RUT 1(Σ) and RT 1(Σ), respectively.

Returning to our examples in Figure 1, the left-hand and middle tree are left adequate,
while the right-hand tree is not, because of the presence of the rightmost edge which is
orientated towards the start vertex. None of the trees shown are right adequate.

From now on we shall work with left adequate trees and left adequate monoids, but
of course duals for all of our results apply to right adequate trees and right adequate
monoids.

Proposition 3.2. The set LUT 1(Σ) of left adequate Σ-trees contains the trivial tree
and the base trees, and is closed under unpruned multiplication, unpruned (+) and taking
retracts.

Proof. It follows immediately from the definitions that the trivial tree and base trees
are left adequate.

Let X and Y be left adequate trees with start vertices u and v, respectively. Then u

is the start vertex of X × Y , and X × Y has a directed path from u to v. Now, for any
vertex w ∈ X × Y , either w is a vertex of X or w is a vertex of Y . In the former case,
there is a directed path from u to w in X, and hence in X × Y . In the latter case, there
is a directed path from v to w in Y , and hence in X ×Y , which, composed with the path
from u to v, yields a directed path from u to w. Thus, X × Y is left adequate.

Consider next the tree X(+). This has the same underlying directed graph as X and
the same start vertex, so it is immediate that it is left adequate.

Finally, let π : X → Y be a retraction with image Y a subtree of X. Now for any
vertex w in Y there is a directed path from the start vertex of X to w in X; since Y is a
subtree it is connected and has the same start vertex as X, so this must also be a path
in Y . Thus, Y is left adequate. �

Proposition 3.3. The set LT 1(Σ) of pruned left adequate trees is generated as a
(2, 1, 0)-algebra (with operations pruned multiplication and pruned + and a distinguished
identity element) by the set Σ of base trees.

Proof. The proof is similar to the corresponding one in [10], so we describe it only
in outline. Let 〈Σ〉 denote the (2, 1, 0)-subalgebra of LT 1(Σ) generated by Σ. We show
that every left adequate Σ-tree is contained in 〈Σ〉 by induction on number of edges. The
tree with no edges is the identity element of LT 1(Σ) and so by definition is contained in
〈Σ〉. Now suppose for induction that X ∈ LT 1(Σ) has at least one edge, and that every
tree in LT 1(Σ) with strictly fewer edges lies in 〈Σ〉.
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If X has a trunk edge, then let v0 be the start vertex of X, e be the trunk edge
incident with v0, a = λ(e) and v1 = ω(e). Let Y = X|v0

v0
\ e and Z = X|v1 \ e. Then Y

and Z are pruned trees with strictly fewer edges than X, and so by induction lie in 〈Σ〉.
Now, clearly, from the definitions we have Y × a × Z = X, and since X is pruned using
Theorem 2.2 we have

Y aZ = Y × a × Z = X̄ = X,

so that X ∈ 〈Σ〉 as required.
If, on the other hand, X has no trunk edges, then let e be any edge incident with the

start vertex v0, and suppose e has label a. Since the tree is left adequate, e must be
orientated away from v0; let v1 = ω(e). We define Y = X|v0

v0
\ e and Z = X|v1

v1
\ e, and

a similar argument to that above shows that X = Y (aZ)+, where Y, Z ∈ 〈Σ〉, so that
again X ∈ 〈Σ〉. �

Now suppose M is a left adequate monoid and χ : Σ → M is a function. Our objective
is to show that there is a unique (2, 1, 0)-morphism from LT 1(Σ) to M which extends χ.
Following the strategy of [10], we begin by defining a map τ from the set of idempotent
left adequate Σ-trees to the set E(M) of idempotents in the monoid M . Let X be an
idempotent left adequate Σ-tree with start vertex v. If X has no edges, then we define
τ(X) = 1. Otherwise, we define τ(X) recursively, in terms of the value of τ on left
adequate trees with strictly fewer edges than X, as follows. Let E+(X) be the set of
edges in X which start at the start vertex v and define

τ(X) =
∏

e∈E+(X)

[χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+.

It is easily seen that each X|ω(e)
ω(e) \ e is a left adequate tree with strictly fewer edges than

X, so this gives a valid recursive definition of τ . Moreover, the product is non-empty and,
because idempotents commute in the left adequate monoid M , its value is idempotent
and independent of the order in which the factors are multiplied. Note that if the left
adequate monoid M is in fact adequate, then the function τ defined here takes the same
values on left adequate trees as the corresponding map defined in [10].

Proposition 3.4. Let X be an idempotent left adequate tree with start vertex v, and
suppose X1 and X2 are subtrees of X such that X = X1 ∪ X2 and X1 ∩ X2 = {v}. Then
τ(X) = τ(X1)τ(X2).

Proof. Clearly, we have E+(X) = E+(X1) ∪ E+(X2), and for i ∈ {1, 2} and e ∈
E+(Xi) we have

τ(X|ω(e)
ω(e) \ e) = τ(Xi|ω(e)

ω(e) \ e)

so it follows that

[χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+ = [χ(λ(e))τ(Xi|ω(e)

ω(e) \ e)]+.

The claim now follows directly from the definition of τ . �
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Corollary 3.5. Let X be an idempotent left adequate tree with start vertex v, and
let e be an edge incident with v. Then

τ(X) = τ(X \ ω(e))[χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+.

Proof. Let X1 = X \ e = X \ ω(e), let S be the set of edges in X which are incident
with v and let X2 = X \ (S \{e}) be the maximum subtree of X containing e but none of
the other edges incident with v. Now, clearly, we have E+(X2) = {e}, so by the definition
of τ we have

τ(X2) = [χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+.

We also have X = X1 ∪ X2 and X1 ∩ X2 = {v}, so, by Proposition 3.4,

τ(X) = τ(X1)τ(X2) = τ(X \ ω(e))[χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+

as required. �

Next we define a map ρ : LUT 1(Σ) → M , from the set of isomorphism types of left
adequate Σ-trees to the left adequate monoid M . Suppose a tree X has trunk vertices
v0, . . . , vn in sequence. For 1 � i � n let ai be the label of the edge from vi−1 to vi. For
0 � i � n let Xi = X|vi

vi
\ θ(X). We define

ρ(X) = τ(X0)χ(a1)τ(X1)χ(a2) · · ·χ(an−1)τ(Xn−1)χ(an)τ(Xn).

Note that in the case i = 0 (that is, where X is an idempotent tree) we have ρ(X) =
τ(X0) = τ(X). Clearly, the value of ρ depends only on the isomorphism type of X, so ρ

is indeed a well-defined map from LUT 1(Σ) to M . Again, if M is right adequate as well
as left adequate, then the function ρ takes the same value on left adequate trees as its
counterpart in [10].

Proposition 3.6. Let X be a left adequate tree with trunk vertices v0, . . . , vn in
sequence, where n � 1. Let a1 be the label of the edge from v0 to v1. Then

ρ(X) = τ(X|v0
v0

\ v1)χ(a1)ρ(X|v1 \ v0).

Proof. Let X0, . . . , Xn be as in the definition of ρ, so that

ρ(X) = τ(X0)χ(a1)τ(X1)χ(a2) · · ·χ(an−1)τ(Xn−1)χ(an)τ(Xn).

It follows straight from the definition that

ρ(X|v1 \ v0) = τ(X1)χ(a2) · · ·χ(an−1)τ(Xn−1)χ(an)τ(Xn),

so we have

ρ(X) = τ(X0)χ(a1)ρ(X|v1 \ v0)

= τ(X|v0
v0

\ v1)χ(a1)ρ(X|v1 \ v0)

as required. �
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Proposition 3.7. The map ρ : LUT 1(Σ) → M is a morphism of (2, 1, 0)-algebras.

Proof. Let X and Y be trees with, say, trunk vertices u0, . . . , um and v0, . . . , vn in
sequence, respectively. For each 1 � i � m let ai be the label of the edge from ui−1 to ui,
and for each 1 � i � n let bi be the label of the edge from vi−1 to vi. For each 0 � i � m

let Xi = X|ui
ui

\ θ(X), and, similarly, for each 0 � i � n define Yi = Y |vi
vi

\ θ(Y ).
Consider now the unpruned product X × Y . It is easily seen that for 0 � i < m we

have
(X × Y )|ui

ui
\ θ(X × Y ) = Xi,

while for 0 < i � n we have

(X × Y )|vi
vi

\ θ(X × Y ) = Yi.

Considering now the remaining trunk vertex um = v0 of X × Y , we have

(X × Y )|um
um

\ θ(X × Y ) = (X × Y )|v0
v0

\ θ(X × Y ) = Xm × Y0.

By Proposition 3.4 and the definition of unpruned multiplication we have τ(Xm × Y0) =
τ(Xm)τ(Y0). So using the definition of ρ we have

ρ(X × Y ) = τ(X0)χ(a1)τ(X1) · · ·χ(am)τ(Xm × Y0)χ(b1)τ(Y1)χ(b2) · · ·χ(bn)τ(Yn)

= τ(X0)χ(a1)τ(X1) · · ·χ(am)τ(Xm)τ(Y0)χ(b1)τ(Y1)χ(b2) · · ·χ(bn)τ(Yn)

= ρ(X)ρ(Y ).

Next we claim that ρ(X(+)) = ρ(X)+. We prove this by induction on the number of
trunk edges in X. If X has no trunk edges, then X = X(+) and so, using the fact that
τ(X) ∈ E(M) is fixed by the + operation in M , we have

ρ(X(+)) = ρ(X) = τ(X) = τ(X)+ = ρ(X)+.

Now suppose for induction that X has at least one trunk edge and that the claim holds
for trees with strictly fewer trunk edges. Recall that

X0 = X|u0
u0

\ θ(X) = X|u0
u0

\ u1

and let Z = X|u1 \ u0. Now

ρ(X(+)) = τ(X(+)) (by the definition of ρ)

= τ(X0)[χ(a1)τ(Z(+))]+ (by Corollary 3.5)

= τ(X0)[χ(a1)ρ(Z(+))]+ (by the definition of ρ)

= τ(X0)[χ(a1)ρ(Z)+]+ (by the inductive hypothesis)

= τ(X0)[χ(a1)ρ(Z)]+ (by Proposition 2.3 (ii))

= [τ(X0)χ(a1)ρ(Z)]+ (by Proposition 2.3 (iv))

= ρ(X)+ (by Proposition 3.6)

as required.
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Finally, it follows directly from the definition that ρ maps the identity element in
LUT 1(Σ) (that is, the isomorphism type of the trivial tree) to the identity of M , and so
is a (2, 1, 0)-morphism. �

So far, we have closely followed the proof strategy from [10], but at this point it
becomes necessary to diverge. This is because the arguments employed in the two-sided
case involve operations on trees that do not preserve left adequacy, and hence use the
∗ operation in the monoid M even when starting with left adequate trees. Instead, the
following lemma about left adequate trees (which fails for general trees) allows us to
follow an alternative inductive strategy.

Lemma 3.8. Let µ : X → Y be a morphism of left adequate trees, let e be an edge
in X and let v be a vertex of X such that there is a directed path from ω(e) to v. Then

µ(X|ω(e)
v \ e) ⊆ Y |µ(ω(e))

µ(v) \ µ(e).

Proof. Let X ′ = X|ω(e)
v \ e and Y ′ = Y |µ(ω(e))

µ(v) \ µ(e). Notice first that the image
µ(X ′) is connected and contains µ(ω(e)). Since the underlying undirected graph of Y is
a tree, this means that µ(X ′) is either contained in Y ′ as required, or contains the edge
µ(e); suppose for a contradiction that the latter holds, say µ(e) = µ(f) for some edge f

in X ′. Now, since X is left adequate, there must be a directed path from the start vertex
to α(f). But again e is orientated away from the start vertex, and α(f) is in X ′, which
is a connected component of X including ω(e) but not e, so this path must clearly pass
through the edge e. Let P denote the suffix of this path which leads from ω(e) to α(f).
Then µ(eP ) is a non-empty directed path in Y from µ(α(e)) to µ(α(f)) = µ(α(e)), which
contradicts the fact that Y is a directed tree. �

Lemma 3.9. Suppose that µ : X → Y is a morphism of idempotent left adequate
trees. Then τ(Y )τ(X) = τ(Y ).

Proof. We use induction on the number of edges in X. If X has no edges, then we
have τ(X) = 1 so the result is clear. Now suppose X has at least one edge and for
induction that the result holds for trees X with strictly fewer edges. By the definition of
τ we have

τ(X) =
∏

e∈E+(X)

[χ(λ(e))τ(X|ω(e)
ω(e) \ e)]+,

while

τ(Y ) =
∏

f∈E+(Y )

[χ(λ(f))τ(Y |ω(f)
ω(f) \ f)]+.

Suppose now that e ∈ E+(X). Then, since µ is a morphism, the edge µ(e) lies in E+(Y ),
and the above expression from τ(Y ) contains a factor

[χ(λ(µ(e)))τ(Y |ω(µ(e))
ω(µ(e)) \ µ(e))]+.
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We claim that the factor corresponding to e in the above expression for τ(X) is absorbed
into this factor.

Let X ′ = X|ω(e)
ω(e) \e and Y ′ = Y |ω(µ(e))

ω(µ(e)) \µ(e). By Lemma 3.8, the morphism µ restricts
to a morphism µ′ : X ′ → Y ′. Since X ′ has strictly fewer edges than X, the inductive
hypothesis tells us that τ(X ′)τ(Y ′) = τ(Y ′). Now, by Proposition 2.3 (vi), we have

[χ(λ(e))τ(X ′)]+[χ(λ(e))τ(Y ′)]+ = [χ(λ(e))τ(Y ′)]+.

as required. �

Corollary 3.10. Let X be a subtree of an idempotent left adequate tree Y . Then
τ(Y )τ(X) = τ(Y ).

Proof. The embedding of X into Y satisfies the conditions of Lemma 3.9. �

Corollary 3.11. Let Y be a retract of an idempotent left adequate tree X. Then
τ(X) = τ(Y ).

Proof. Let π : X → X be a retract with image Y . Since π is a morphism, Lemma 3.9
tells us that τ(X)τ(π(X)) = τ(π(X)) = τ(Y ). But, since π(X) is a subgraph of X,
Corollary 3.10 yields τ(X)τ(π(X)) = τ(X). �

Lemma 3.12. Let X be a left adequate tree with trunk vertices v0, . . . , vn in sequence,
where n � 0. Then

ρ(X) = τ(X|v0
v0

)ρ(X).

Proof. We use induction on the number of trunk edges in X. Let X ′ = X|v0
v0

. Clearly,
if X has no trunk edges, then we have X = X ′ and from the definition of ρ we have
ρ(X) = τ(X ′), so the claim reduces to the fact that τ(X ′) is idempotent. Now suppose
that X has at least one trunk edge and that the claim holds for X with strictly fewer
trunk edges. Let Y = X|v1 \ v0, let Y ′ = Y |v1

v1
and let X0 = X|v0

v0
\ v1. Let a1 be the label

of the edge from v0 to v1. By Corollary 3.5 we have

τ(X ′) = [χ(a1)τ(Y ′)]+τ(X0).

Now by Proposition 3.6 we deduce that ρ(X) = τ(X0)χ(a1)ρ(Y ). Also, by the inductive
hypothesis, we have ρ(Y ) = τ(Y ′)ρ(Y ). Putting these observations together we have

τ(X ′)ρ(X) = ([χ(a1)τ(Y ′)]+τ(X0))(τ(X0)χ(a1)ρ(Y ))

= [χ(a1)τ(Y ′)]+τ(X0)χ(a1)[τ(Y ′)ρ(Y )]

= τ(X0)[χ(a1)τ(Y ′)]+[χ(a1)τ(Y ′)]ρ(Y )

= τ(X0)χ(a1)τ(Y ′)ρ(Y )

= τ(X0)χ(a1)ρ(Y )

= ρ(X)

as required. �
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Corollary 3.13. Let X be a left adequate tree with trunk vertices v0, . . . , vn in
sequence, where n � 1. Let a1 be the label of the edge from v0 to v1. Then

ρ(X) = τ(X|v0
v0

)χ(a1)ρ(X|v1 \ v0).

Proof. We have

ρ(X) = τ(X|v0
v0

)ρ(X) (by Lemma 3.12)

= τ(X|v0
v0

)τ(X|v0
v0

\ v1)χ(a1)ρ(X|v1 \ v0) (by Proposition 3.6)

= τ(X|v0
v0

)χ(a1)ρ(X|v1 \ v0) (by Corollary 3.10).

�

Proposition 3.14. Let X be a left adequate tree. Then ρ(X) = ρ(X̄).

Proof. Let π : X → X be a retraction with image X̄. Suppose X has trunk vertices
v0, . . . , vn. For 1 � i � n let ai be the label of the edge from vi−1 to vi. We prove the
claim by induction on the number of trunk edges in X. If X has no trunk edges, then by
the definition of ρ and Corollary 3.11 we have

ρ(X) = τ(X) = τ(π(X)) = ρ(π(X)).

Next suppose that X has at least one trunk edge, that is, that n � 1. Let Z = X|v1 \v0.
Then by Lemma 3.8 we have

π(Z) = π(X|v1 \ v0) ⊆ π(X)|v1 \ v0 = X̄|v1 \ v0

and, since π is idempotent with image X̄, the converse inclusion also holds and we have

π(Z) = X̄|v1 \ v0. (3.1)

Moreover, by Lemma 3.8 again, the retraction π restricts to a morphism π′ : Z → Z.
Clearly, this morphism must also be a retraction, and Z has strictly fewer edges than X,
so by the inductive hypothesis and Proposition 2.1 we have

ρ(Z) = ρ(Z̄) = ρ(π′(Z)) = ρ(π′(Z)) = ρ(π(Z)). (3.2)

It also follows easily from definitions that

π(X|v0
v0

) = X̄|v0
v0

. (3.3)

Now

ρ(X) = τ(X|v0
v0

)χ(a1)ρ(Z) (by Corollary 3.13)

= τ(X|v0
v0

)χ(a1)ρ(π(Z)) (by (3.2))

= τ(π(X|v0
v0

))χ(a1)ρ(π(Z)) (by Corollary 3.11)

= τ(X̄|v0
v0

)χ(a1)ρ(X̄|v1 \ v0) (by (3.1) and (3.3))

= ρ(X̄) (by Corollary 3.13).

�
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Now let ρ̂ : LT 1(Σ) → M be the restriction of ρ to the set of (isomorphism types of)
pruned left adequate trees.

Corollary 3.15. The function ρ̂ is a (2, 1, 0)-morphism from LT 1(Σ) (with pruned
operations) to the left adequate monoid M .

Proof. For any X, Y ∈ LT 1(Σ), by Theorem 2.2 and Propositions 3.7 and 3.14 we
have

ρ̂(XY ) = ρ(XY ) = ρ(X × Y ) = ρ(X × Y ) = ρ(X)ρ(Y ) = ρ̂(X)ρ̂(Y )

and, similarly,
ρ̂(X+) = ρ(X(+)) = ρ(X(+)) = ρ(X)+ = ρ̂(X)+.

Finally, that ρ̂ maps the identity of LT 1(Σ) to the identity of M is immediate from the
definitions. �

We are now ready to prove the main results of this paper, which give a concrete
description of the free left adequate monoid and free right adequate monoid on a given
generating set.

Theorem 3.16. Let Σ be a set. Then LT 1(Σ) (RT 1(Σ)) is a free object in the
quasivariety of left (right) adequate monoids, freely generated by the set Σ of base trees.

Proof. We prove the claim in the left adequate case, the right adequate case being
dual. By Corollary 2.5, LT 1(Σ) is a left adequate monoid. Now for any left adequate
monoid M and function χ : Σ → M , define ρ̂ : LT 1(Σ) → M as above. By Corollary 3.15,
ρ̂ is a (2, 1, 0)-morphism, and it is immediate from the definitions that ρ̂(a) = χ(a) for
every a ∈ Σ, so that ρ̂ extends χ. Finally, by Proposition 3.3, Σ is a (2, 1, 0)-algebra
generating set for LT 1(Σ); it follows that the morphism ρ̂ is uniquely determined by its
restriction to the set Σ of base trees, and hence is the unique morphism with the claimed
properties. �

Combining this result with Proposition 2.6, we also immediately obtain a description
of the free left adequate and free right adequate semigroups.

Theorem 3.17. Let Σ be a set. Then the LT (Σ) (RT (Σ)) is a free object in the
quasivariety of left (right) adequate semigroups, freely generated by the set Σ of base
trees.

We also have the following relationship between free adequate, free left adequate and
free right adequate semigroups and monoids.

Theorem 3.18. Let Σ be a set. The free left adequate semigroup (monoid) on Σ and
free right adequate semigroup (monoid) on Σ embed into the free adequate semigroup
(monoid) on Σ as the (2, 1)-subalgebras ((2, 1, 0)-subalgebras) generated by the free
generators under the appropriate operations. Their intersection is the free semigroup
(monoid) on Σ.
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4. Remarks and consequences

In this section we collect together some remarks on and consequences of the results in § 3
and their proofs.

In a left adequate tree, the requirement that there be a path from the start vertex
to every other vertex uniquely determines the orientation on every edge in the tree.
Conversely, every edge-labelled undirected tree with given start and end vertices admits
an orientation on the edges which makes it left adequate. It might superficially seem
attractive, then, to identify elements of LUT 1(Σ) with undirected edge-labelled trees with
distinguished start and end vertices. However, the reader may easily convince themselves
that not every retraction of such a tree defines a retraction of the corresponding directed
tree. So, in order to define pruning and multiplication it would be necessary to reinstate
the orientation on the edges, which negates any advantage in dropping the orientation
in the first place.

The construction in § 3 of a morphism from LT 1(Σ) to a monoid M depends only on
the facts that M is associative with commuting idempotents, and that the + operation
is idempotent with idempotent and commutative image and satisfies the six properties
given in the case of left adequate semigroups by Proposition 2.3. So a free left adequate
semigroup is also free in any class of (2, 1, 0)-algebras that contains it and satisfies these
conditions. This includes in particular the class of left Ehresmann semigroups.

As observed in [10], the classes of monoids we have studied can be generalized to give
corresponding classes of small categories. A natural extension of our methods can be
used to describe the free left adequate and free right adequate category generated by a
given directed graph. Just as in the previous remark, the free left adequate category will
also be the free left Ehresmann category. Left Ehresmann categories are generalizations
of the restriction categories studied by Cockett and Lack [3], which in the terminology of
semigroup theory are weakly left E-ample categories [9]. The generalization of our results
to categories thus relates to our main results in the same way that the description of the
free restriction category on a graph given in [2] relates to the descriptions of free left
ample monoids given by Fountain et al . [6,7].

To conclude, we note some properties of free left and right adequate semigroups and
monoids, which are obtained by combining Theorem 3.18 with results about free adequate
semigroups and monoids that were obtained in [10]. First of all, we saw in [10] that every
finitely generated free adequate semigroup has decidable word problem, so Theorem 3.18
implies the following.

Theorem 4.1. The word problem for any finitely generated free left or right adequate
semigroup or monoid is decidable.

As in the two-sided case, the exact computational complexity of this problem remains
unclear and deserves further study.

Notice that there is a natural correspondence between equations that hold in a free
algebra and identities (in the sense of universal algebra) that hold in the corresponding
category of algebras. Indeed, any identity which holds in all algebras in a category must
in particular hold in its free algebras, so replacing the variables with generators for a
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free algebra of the appropriate rank yields an equation that holds in the free algebra.
Conversely, if an equation holds in a free algebra, then we may obtain from it an identity
by replacing each generator with a variable; if this identity fails to hold in some algebra
A, then we have a map from the generators of the free algebra to A that does not extend
to a morphism, from which we conclude that A cannot lie in the appropriate category.
Combining this with Theorem 4.1 yields the following.

Corollary 4.2. There is an algorithm to decide whether a given (2, 1, 0)-identity holds
in every left adequate monoid.

The same reasoning applied to Theorem 3.18 gives the following consequence.

Theorem 4.3. Any (2, 1, 0)-identity which holds in every adequate monoid also holds
in every left adequate monoid.

Recall that an equivalence relation J is defined on any semigroup by aJ b if and only
if a and b generate the same principal two-sided ideal. A semigroup is called J -trivial if
no two elements generate the same principal two-sided ideal.

Theorem 4.4. Every free left adequate or free right adequate semigroup or monoid
is J -trivial.

Proof. If distinct left (right) adequate Σ-trees X and Y are J -related in LT 1(Σ)
(RT 1(Σ)), then they are J -related in the free adequate monoid T 1(Σ); but we saw
in [10] that T 1(Σ) is J -trivial. �

Theorem 4.5. No free left adequate or free right adequate semigroup or monoid on
a non-empty set is finitely generated as a semigroup or monoid.

Proof. We saw in [10] that finite subsets of T 1(Σ) generate subsemigroups whose trees
have a bound on the maximum distance of any vertex from the trunk. Since LT 1(Σ) and
RT 1(Σ) are subsemigroups containing trees with vertices arbitrarily far from the trunk,
it follows that they cannot even be contained in finitely generated subsemigroups of
T 1(Σ), let alone be finitely generated themselves. �
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