TRIVIALIZING RIBBON LINKS BY KIRBY MOVES

JONATHAN A. HILLMAN

In this note it is shown that any ribbon link is a sublink of a ribbon link for which surgery on the longitudes gives a connected sum of copies of $S^1 \times S^2$. In particular there are many links for which the analogue of the knot theoretic Property R fails, and sublinks of homology boundary links need not be homology boundary links. Higher dimensional analogues of these results are also given and it is shown that if $n \ge 2$ the group of a μ -component ribbon *n*-link has a presentation of deficiency μ . Hence there are high dimensional slice knots which are not ribbon knots.

DEFINITION. A μ -component *n*-link is a locally flat embedding $L: \mu S^n \rightarrow S^{n+2}$. It is a ribbon link if it extends to an immersion $R: \mu D^{n+1} \rightarrow S^{n+2}$ with no triple points and such that the components of the singular set are *n*-discs whose boundary (n-1)-spheres either lie on $\mu S^n = \partial (\mu D^{n+1})$ ("throughcut") or are disjoint from μS^n ("slit").

It is well known and easy to see that ribbon links are null concordant [3]. The converse remains an open conjecture when n = 1, even for knots $(\mu = 1)$ [3], but is false in higher dimensions [8], [19], as will be shown below.

DEFINITION. A μ -component *n*-link *L* is an homology boundary link if there an epimorphism $\pi : G(L) \rightarrow F(\mu)$, where $G(L) = \pi_1(S^{n+2}-imL)$ is

Received 28 June 1979.

the link group and $F(\mu)$ is the free group of rank μ . It is a boundary link if it extends to an embedding of μ disjoint orientable (n+1)-manifolds, each with one boundary component.

Smythe had conjectured that if the first Alexander ideal of a 2-component 1-link were zero, then the link would have to be an homology boundary link [15]. In [6] I gave an example of a 2-component ribbon 1-link which was not an homology boundary link, thus refuting this conjecture (for the first $\mu - 1$ Alexander ideals of a null concordant μ -component link must vanish [7]). This example and the following theorem show that a sublink of an homology boundary link need not be an homology boundary link, although a sublink of a boundary link is clearly a boundary link.

THEOREM 1. Let L be a μ -component ribbon n-link. Then L is a sublink of a ν -component ribbon n-link \hat{L} for which surgery on the longitudes gives $\overset{\vee}{\#} S^{1} \times S^{n+1}$. In particular \hat{L} is an homology boundary link.

Proof. Let $R: \mu D^{n+1} \to S^{n+2}$ be a ribbon extending L. Let S_i , $1 \leq i \leq \sigma$, be the slits of R and for each slit choose a regular neighbourhood N_i contained in the interior of the corresponding disc and such that $N_i \cap N_j = \emptyset$ for $i \neq j$. Let $\nu = \mu + \sigma$ and let

 $\hat{L} = R \mid \begin{pmatrix} \sigma \\ \mu S^{1} & 0 \\ i = 1 \end{pmatrix} \cdot \text{ Clearly } \hat{L} \text{ is a } \mu \text{ -component ribbon } n\text{-link}$

with L as a sublink. If n > 1 the normal bundle of \hat{L} in S^{n+2} has an essentially unique framing; if n = 1 give each component of \hat{L} the 0-framing. Let $W(\hat{L}) = D^{n+3} \bigcup_{T} \vee D^{n+1} \times D^2$ where $T : \vee S^n \times D^2 + S^{n+2}$ is

an embedding of a regular neighbourhood of $\hat{L} = T | vS^n \times \{0\}$ determined by this framing. Then $\partial W(\hat{L})$ is the result of surgery on S^{n+2} along the longitudes of \hat{L} .

Now by adding a pushoff of $\hat{L}|\partial N_i$ to the component of L bounding the (n+1)-disc containing N_i , \hat{L} may be replaced by a ribbon link with

one less singularity; moreover if n = 1 each component of the newlink still has the 0-framing. Continuing thus \hat{L} may be replaced by a ribbon link \tilde{L} for which the only singularities are those corresponding to the components ∂N_i . Clearly these components may be slipped off the ends of the other components of the new ribbon and so \tilde{L} is a trivial V-component link. Now adding pushoffs of link components to one another (a Kirby move of type 2 [10]) corresponds to sliding (n+1)-handles of $W(\hat{L})$ across one another, which leaves unchanged the topological type of $W(\hat{L})$ and hence of $\partial M(\hat{L})$. Thus $\partial W(\hat{L})$ is homeomorphic to $\partial W(\tilde{L})$,

 $\partial W(\tilde{L}) = \overset{\vee}{\#} S^{1} \times S^{n+1}$ and $G(\hat{L}) = \pi_{1}(S^{n+2}-im\hat{L})$ maps onto $\pi_{1}(\partial W(\hat{L})) \approx F(v)$. //

If n = 1 the kernel of the map $G(\hat{L}) \rightarrow F(v)$ is necessarily $G(\hat{L})_{\omega} = \bigcap_{n \geq 1} G(\hat{L})_{n}$, the intersection of the terms of the lower central series for G(L) [17], and is trivial if and only if \hat{L} is trivial. in which case L is also trivial. If n > 1 the map $G(\hat{L}) \rightarrow F(v)$ is an isomorphism, but need not carry meridians to a generating set. (Poenaru gave the first examples of this phenomenon in [13].) This is the case if and only if \hat{L} is a boundary link [4]. In the latter case, since moreover $\pi_i(S^{n+2}-\mathrm{im}\hat{L}) \approx \pi_i(S^{n+2}-\mathrm{im}\tilde{L}) = 0 \quad \text{for} \quad 2 \leq i < n \text{, so if } n > 2 \text{,} \quad \hat{L} \quad (\text{and} n) \leq i < n \text{, so if } n > 2 \text{,} \quad \hat{L} \quad (\text{and} n) \leq i < n \text{,} \quad n \in \mathbb{N}$ hence L) is trivial, by Gutiérrez' unlinking theorem [4]. The above theorem is not the best possible, in that fewer new components may suffice to trivialize L thus. For instance, if L is the square knot, it is a component of a 2-component homology boundary link with the above property. Recalling that a 1-knot is said to have Property R if surgery on a longitude of the knot does not give $S^1 \times S^2$, and that is has been conjectured that all nontrivial 1-knots have Property R ([11], Problem 1.16), this example shows that the most direct analogue of Property R for links fails already for a 2-component 1-link. However I know of no example of a boundary 1-link for which 0-framed surgery gives a connected sum of copies of $S^1 \times S^2$. If such a link exists, the subgroup $G_{\mu\nu}$ of the link group must be perfect $\left({G_\omega = G_\omega '}
ight)$ for the longitudes of a boundary link always lie in G'_{ω} , as the ω -cover X^{ω} of the link complement X

may be constructed by splitting along Seifert surfaces [4]. In general, call an homology boundary link with group G intractable if G_{ω} is perfect. For an intractable homology boundary link the longitudes are trivially in G'_{ω} . If L is an intractable boundary link, then all sublinks of L are intractable, and in particular all component knots have Alexander polynomial 1. Conversely if all the component knots of a boundary link have Alexander polynomial 1, and if all its 2-component sublinks are 2-split [16] then it is intractable. In particular the links denoted $k \cup k_n$ in [16], which are iterated doubles of the Whitehead link for $n \ge 1$, are intractable if $n \ge 3$. For a presentation matrix for $G_{\omega}/G'_{\omega} = H_1(X^{\omega}; \mathbb{Z})$ as a module over $\mathbb{Z}[G/G_{\omega}]$ may be determined from the linking numbers of cycles on the Seifert surfaces as in [5]; the above assumption then implies that these linking numbers are like those of a trivial link. (However for the iterated doubles of the Whitehead link the normal closure of the longitudes in G may be a *proper* subgroup of G_{ω} .)

Kirby and Melvin showed that any knot which does not have property R is (TOP) null concordant [12], and this suggests the following complement to the above result.

THEOREM 2. If $n \ge 2$ and L is a v-component n-link such that surgery on the longitudes of L gives $\stackrel{\vee}{\#}(S^1 \times S^{n+1})$, then L is an homology boundary link and is null concordant. (Hence also any sublink of L is null concordant.)

Proof. That L is an homology boundary link is clear. Let U(L) be the trace of the surgeries on L, so $\partial U(L) = S^{n+2} \coprod \# (S^1 \times S^{n+1})$. Then $D(L) = U(L) \cup (\bigvee_{P}^{V} D^2 \times S^{n+1})$ is a contractible (n+3)-manifold with boundary S^{n+2} , and so is an (n+3)-disc. The link L clearly bounds vdisjoint (n+1)-discs in D(L). //

REMARK. If n = 1 it can be proven that L bounds v embedded discs in a contractible 4-manifold W_0 , by imitating the first part of the theorem of Kirby and Melvin [12]. Whether the Mazur trick may be used to show that W_0 is D^4 may be related to the Andrews-Curtis conjecture ([11], Problem 5.7). For this comment I am indebted to Rubinstein, who has also recently proven that if 0-framed surgery on the longitudes of the first ρ components of L gives $\stackrel{\rho}{\#} (S^1 \times S^2)$, for each $\rho \in \{1, \ldots, \nu\}$,

first ρ components of L gives $\#(S^1 \times S^2)$, for each $\rho \in \{1, ..., \nu\}$ then L is TOP null concordant [14].

In higher dimensions links which are not homology boundary links but which are sublinks of homology boundary links may be constructed as a consequence of the following theorem.

THEOREM 3. A finitely presentable group G is the group of a μ -component sublink of a locally flat m-link $L: \nu S^m + S^{m+2}$ (for some ν) with group free, if and only if deficiency $G = \text{weight } G = \mu$. (If m = 2 the ambient space may be merely a homotopy 4-sphere.)

Proof. The necessity of the condition is obvious. Suppose that G has a presentation $\langle X_i, 1 \leq i \leq \nu | r_j, 1 \leq j \leq \nu - \mu \rangle^{\phi}$ and that S_k , $1 \leq k \leq \mu$, are words in $F(\nu)$ such that the normal closure of $\{\phi(S_i) \mid 1 \leq i \leq \mu\}$ in G is G. The fundamental group of $\stackrel{\vee}{\#} (S^1 \times S^{m+1})$ is naturally isomorphic to $F(\nu)$, and the words r_j and S_k may be represented by embeddings $\rho_j : S^1 \rightarrow \stackrel{\vee}{\#} (S^1 \times S^{m+1})$ and $\sigma_k : S^1 \rightarrow \stackrel{\vee}{\#} (S^1 \times S^{m+1})$ respectively. If surgery is performed on all the ρ_j , $1 \leq j \leq \nu - \mu$ and σ_k , $1 \leq k \leq \mu$, then the resulting manifold is a homotopy (m+2)-sphere, and

$$\overset{\vee}{\#} (S^{1} \times S^{m+1}) - \overset{\vee-\mu}{\bigcup} \rho_{j} (S^{1} \times D^{m+1}) - \overset{\mu}{\bigcup} \sigma_{k} (S^{1} \times D^{m+1})$$

is the complement of a v-component *m*-link in this homotopy sphere with fundamental group F(v) (if $m \ge 2$) [9]. Therefore if surgery is performed only on the ρ_j , $1 \le j \le v-\mu$, the space

$$\left(\begin{pmatrix} v \\ \# (S^{1} \times S^{m+1}) & - & v \end{pmatrix} \rho_{j}(S^{1} \times D^{m+1}) \right) \cup \bigcup \cup \bigcup (D^{2} \times S^{m}) = \bigcup \sigma_{k}(S^{1} \times D^{m+1})$$

is the complement of a μ -component sublink with group presented by $\langle X_{i}, 1 \leq i \leq \nu | r_{i}, 1 \leq i \leq \nu - \mu \rangle$, that is, with group G. //

If for instance G has a presentation

$$\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{-1} \begin{bmatrix} x_{3}^{i}, x_{1} \end{bmatrix} \begin{bmatrix} x_{3}^{j}, x_{1} \end{bmatrix} \right\rangle$$

where $ij \neq 0$, then according to Baumslag [1], G is parafree but not free, and so cannot map onto F(2). Thus the link constructed as above from this presentation is not an homology boundary link, although it is a sublink of a 3-component homology boundary link.

An immediate consequence of Theorems 1 and 3 is that if n > 1 the group of a µ-component ribbon *n*-link has a presentation of deficiency µ. Therefore for instance Fox's 2-knot with nonprincipal Alexander ideal [2] is slice [9] but not ribbon. (This was shown earlier by Hitt [8] and Yanagawa [19].)

It is not hard to see that a group G is the group of a μ -component ribbon *n*-link for $n \ge 2$ if and only if G has a Wirtinger presentation of deficiency μ and $G/G' = \mathbb{Z}^{\mu}$. (This was proven for n = 2, $\mu = 1$ by Yajima [18].) The argument is similar to that of the related result characterizing certain quotients of the groups of ribbon 1-links given in [6]: the generators correspond to meridional loops transverse to the components of the complements of the throughcuts, and there is one relation for each throughcut.

If L is a v-component sublink of an homology boundary link (in any dimension) then the inclusion of the meridians into the link group G induces isomorphisms on all the nilpotent quotients $F(v)/F(v)_n \rightarrow G/G_n$ [17]. It would be interesting to know whether this condition were sufficient for L to be a sublink of an homology boundary link, in particular whether every high dimensional link be a sublink of an homology boundary link.

26

References

- [1] Gilbert Baumslag, "Groups with the same lower central series as a relatively free group. II. Properties", Trans. Amer. Math. Soc. 142 (1969), 507-538.
- [2] R.H. Fox, "A quick trip through knot theory", Topology of 3-manifolds and related topics, 120-167 (Proc. University of Georgia Institute, 1961. Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
- [3] R.H. Fox, "Some problems in knot theory", Topology of 3-manifolds and related topics, 168-176 (Proc. University of Georgia Institute, 1961. Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
- [4] M.A. Gutiérrez, "Boundary links and an unlinking theorem", Trans. Amer. Math. Soc. 171 (1972), 491-499.
- [5] M.A. Gutiérrez, "Polynomial invariants of boundary links", Rev. Colombiana Mat. 8 (1974), 97-109.
- [6] Jonathan A. Hillman, "A non-homology boundary link with Alexander polynomial zero", Bull. Austral. Math. Soc. 16 (1977), 229-236.
- [7] Jonathan A. Hillman, "Alexander ideals and Chen groups", Bull. London Math. Soc. 10 (1978), 105-110.
- [8] L.R. Hitt, "Examples of higher-dimensional slice knots which are not ribbon knots", preprint.
- [9] Michael A. Kervaire, "Les nœuds de dimensions supérieures", Bull. Soc. Math. France 93 (1965), 225-271.
- [10] Robion Kirby, "A calculus for framed links in S³", Invent. Math. 45 (1978), 35-56.
- [11] Rob. Kirby, "Problems in low dimensional manifold theory", Algebraic and geometric topology, Part 2, 273-312 (Proc. Symposia in Pure Mathematics, 32. American Mathematical Society, Providence, Rhode Island, 1978).

- [12] Robion Kirby and Paul Melvin, "Slice knots and property R", Invent. Math. 45 (1978), 57-59.
- [13] Valentin Poenaru, "A note on the generators for the fundamental group of the complement of a submanifold of codimension 2 ", Topology 10 (1971), 47-52.
- [14] J.H. Rubinstein, "Dehn's lemma and handle decomposition of some 4-manifolds" (Mathematics Research Report, 1-1979. University of Melbourne, Parkville, Victoria, 1979).
- [15] N. Smythe, "Boundary links", Topology Seminar, Wisconsin, 1965, 69-72 (Annals of Mathematics Studies, 60. Princeton University Press, Princeton, New Jersey, 1966).
- [16] N. Smythe, "n-linking and n-splitting", Amer. J. Math. 92 (1970), 272-282.
- [17] John Stallings, "Homology and central series of groups", J. Algebra 2 (1965), 170-181.
- [18] Takeshi Yajima, "On a characterization of knot groups of some spheres in R₁, ", Osaka J. Math. 6 (1969), 435-446.
- [19] Takaaki Yanagawa, "On ribbon 2-knots. The 3-manifold bounded by the 2-knots", Osaka J. Math. 6 (1969), 447-464.

Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT 2600, Australia.

Present Address:

Department of Mathematics,

University of Durham,

Durham,

England.