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Abstract

Finding the so-called characteristic numbers of the complex projective plane CP 2 is a
classical problem of enumerative geometry posed by Zeuthen more than a century ago.
For a given d and g one has to find the number of degree d genus g curves that pass
through a certain generic configuration of points and at the same time are tangent to
a certain generic configuration of lines. The total number of points and lines in these
two configurations is 3d− 1 + g so that the answer is a finite integer number. In this
paper we translate this classical problem to the corresponding enumerative problem of
tropical geometry in the case when g = 0. Namely, we show that the tropical problem
is well posed and establish a special case of the correspondence theorem that ensures
that the corresponding tropical and classical numbers coincide. Then we use the floor
diagram calculus to reduce the problem to pure combinatorics. As a consequence, we
express genus 0 characteristic numbers of CP 2 in terms of open Hurwitz numbers.
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1. Introduction

Characteristic numbers were considered by nineteenth-century geometers among which are
Maillard [Mai71], who computed them in degree 3, Zeuthen [Zeu73], who did third-degree and
fourth-degree cases, and Schubert [Sch79]. Modern mathematicians confirmed and extended
their predecessors’ results, thanks, in particular, to intersection theory. Aluffi computed, for
instance, all characteristic numbers for plane cubics and some of them for plane quartics
(see [Alu88, Alu90, Alu91] and [Alu92]), and Vakil completed to confirm Zeuthen’s computation
of all characteristic numbers of plane quartics in [Vak99]. Pandharipande computed characteristic
numbers in the rational case in [Pan99], Vakil achieved the genus 1 case in [Vak01], and Graber,
Kock and Pandharipande computed genus 2 characteristic numbers of plane curves in [GKP02].
In this article, we provide a new insight to the genus 0 case and give new formulas via its tropical
counterpart and by reducing the problem to combinatorics of floor diagrams.

Before going into the details of the novelties of this paper, let us recall the classical problem
of computing characteristic numbers of CP 2.

Let d, g and k be non-negative integer numbers such that g 6 (d− 1)(d− 2)/2 and k 6
3d+ g − 1, and let d1, . . . , d3d+g−1−k be positive integer numbers. For any configurations
P = {p1, . . . , pk} of k points in CP 2, and L= {L1, . . . , L3d+g−1−k} of 3d+ g − 1− k complex
non-singular algebraic curves in CP 2 such that Li has degree di, we consider the set S(d, g, P, L)
of holomorphic maps f : C→ CP 2 from an irreducible non-singular complex algebraic curve of
genus g, passing through all points pi ∈ P, tangent to all curves Li ∈ L, and such that f(C) has
degree d in CP 2.

If the constraints P and L are chosen generically, then the set S(d, g, P, L) is finite, and the
characteristic number Nd,g(k; d1, . . . , d3d+g−1−k) is defined as

Nd,g(k; d1, . . . , d3d+g−1−k) =
∑

f∈S(d,g,P,L)

1
|Aut(f)|

where Aut(f) is the group of automorphisms of the map f : C→ CP 2, i.e. isomorphisms
Φ : C→ C such that f ◦ Φ = f . It depends only on d, g, k and d1, . . . , d3d+g−1−k (see for
example [Vak01]). In this text, we will use the shorter notation Nd,g(k; di11 , . . . , d

il
l ) which

indicates that the integer dj is chosen ij times. Let us describe the characteristic numbers in
some special instances.

Example 1.1. The number Nd,g(3d− 1 + g) is the usual Gromov–Witten invariant of degree d
and genus g of CP 2.
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Example 1.2. The numbers N2,0(5), N2,0(4; 1), and N2,0(3; 12) are easy to compute by hand, and
thanks to projective duality we have

N2,0(k; 15−k) =N2,0(5− k; 1k) = 2k for 0 6 k 6 2.

Example 1.3. All characteristic numbers N3,0(k; 18−k) for rational cubic curves have been
computed by Zeuthen [Zeu72] and confirmed by Aluffi [Alu91]. We sum up part of their results
in the following table.

k 8 7 6 5 4 3 2 1 0
N3,0(k; 18−k) 12 36 100 240 480 712 756 600 400

Example 1.4. The number N2,0(0; 25) has been computed independently by Chasles [Cha64] and
De Jonquiere. More than one century later, Ronga, Tognoli, and Vust showed in [RTV97] that it
is possible to choose five real conics in such a way that all conics tangent to these five conics are
real. See also [Ghy08] and [Sot] for a historical account and digression on this subject. See also
Example 7.2 for a tropical version of the arguments from [RTV97]. We list below the numbers
N2,0(k; 25−k):

N2,0(4; 2) = 6, N2,0(3; 22) = 36, N2,0(2; 23) = 184,
N2,0(1; 24) = 816, N2,0(0; 25) = 3264.

More generally, the characteristic numbers Nd,g(k; 13d−1+g−k) of CP 2 determine all the
numbers Nd,g(k; d1, . . . , d3d−1+g−k). Indeed, by degenerating the non-singular curve Ld3d−1+g−k

to the union of two non-singular curves of lower degrees intersecting transversely, we obtain the
following formula (see for example [RTV97, Theorem 8]):

Nd,g(k; d1, . . . , d3d−1+g−k) = 2d′3d−1+g−kd
′′
3d−1+g−kNd,g(k + 1; d1, . . . , d3d−2+g−k)

+ Nd,g(k; d1, . . . , d
′
3d−1+g−k) +Nd,g(k; d1, . . . , d

′′
3d−1+g−k), (1)

where d3d−1+g−k = d′3d−1+g−k + d′′3d−1+g−k.
This paper contains three main contributions. First we identify tropical tangencies

between two tropical morphisms. Then we deduce from the location of tropical tangencies a
correspondence theorem which allows one to compute characteristic numbers of CP 2 in genus 0.
Finally, using the floor decomposition technique, we provide a new insight on these characteristic
numbers and their relation to Hurwitz numbers.

Thanks to a series of correspondence theorems initiated in [Mik05] (see also [Nis10, NS06,
Mik, Shu05, Tyo12]), tropical geometry turned out to be a powerful tool to solve enumerative
problems in complex and real algebraic geometry. However, until now, correspondence theorems
dealt with problems only involving simple incidence conditions, i.e. with enumeration of curves
intersecting transversally a given set of constraints. Correspondence theorems, Theorems 3.8
and 3.12, in this paper are the first ones concerning plane curves satisfying tangency conditions
to a given set of curves. In the case of simple incidences, the (finitely many) tropical curves
arising as the limit of amoebas of the enumerated complex curves could be identified considering
the tropical limit of embedded complex curves. This is no longer enough to identify the
tropical limit of tangent curves, and we first refine previous studies by considering the tropical
limit of a family of holomorphic maps to a given projective space. This gives rise to the notion of
phase-tropical curves and morphisms. For a treatment of phase-tropical geometry more general
than the one in this paper, we refer to [Mik]. Using tropical morphisms and their approximation
by holomorphic maps, we identify tropical tangencies between tropical morphisms, and prove
Theorems 3.8 and 3.12. Note that Dickenstein and Tabera also studied in [DT12] tropical
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tangencies but in a slightly different context, i.e. tangencies between tropical cycles instead
of tropical morphisms.

As in the works cited above, Theorems 3.8 and 3.12 allow us to solve our enumerative problem
by exhibiting some special configurations of constraints for which we can actually find all complex
curves satisfying our conditions. In particular we obtain more information than using only the
intersection theoretical approach from complex geometry. As a consequence, when all constraints
are real we are also able to identify all real curves matching our constraints. This is the starting
observation in applications of tropical geometry in real algebraic geometry, which already turned
out to be fruitful (see for example [Ber, Ber08, BP, IKS03, Mik05]). In this paper we just provide
a few examples of such applications to real enumerative geometry in § 7.2. However, there is no
doubt that Theorems 3.8 and 3.12 should lead to further results in real enumerative geometry.

The next step after proving our correspondence theorems is to use generalized floor diagrams
to reduce the computations to pure combinatorics. In the particular case where only incidence
conditions are considered they are equivalent to those defined in [BM07] (see also [BM09]), and
used later in several contexts (see for example [AB13, ABL11, Ber, BGM12, BP, FM10]). Note
that the floor decomposition technique has strong connections with the Caporaso and Harris
method (see [CH98]) extended later by Vakil (see [Vak00]), and with the neck-stretching method
in symplectic field theory (see [EGH00, IP04]). This method allows one to solve an enumerative
problem by induction on the dimension of the ambient space, i.e. to reduce enumerative problems
in CPn to enumerative problems in CPn−1. In the present paper, the enumerative problem
we are concerned with is to count curves which interpolate a given configuration of points
and are tangent to a given set of curves. On the level of maps, tangency conditions are
naturally interpreted as ramification conditions. In particular, the one-dimensional analogues of
characteristic numbers are Hurwitz numbers, which are the number of maps from a (non-fixed)
genus g curve to a (fixed) genus g0 curves with a fixed ramification profile at some fixed
points. Hence, using floor diagrams, we express characteristic numbers of CP 2 in terms of
Hurwitz numbers. Surprisingly, other one-dimensional enumerative invariants also appear in
this expression. These are the so-called open Hurwitz numbers, a slight generalization of Hurwitz
numbers defined and computed in [BBM11]. Computations of characteristic numbers of CP 2

performed in [Pan99, GKP02], and [Vak01], were done by induction on the degree of the
enumerated curves. To our knowledge, this is the first time that characteristic numbers are
expressed in terms of their analogue in dimension 1, i.e. in terms of (open) Hurwitz numbers.

Here is the plan of the paper. In § 2 we review standard definitions we need from tropical
geometry. In § 3 we define tropical tangencies and state our correspondence theorems. Even
though we can reduce all degrees di of the constraints to one by (1), we still leave d1, . . . , d3d−1−k
in the statement of correspondence Theorem 3.8, in view of possible application to real geometry
(see e.g. Example 7.2). Section 4 is devoted to the proof of technical lemmas on generic
configurations of constraints. The multiplicity of a tropical curve in Theorems 3.8 and 3.12
are defined by a determinant, and we give in § 5 a practical way of computing this determinant
which will be used in § 8. We introduce in § 6 the notion of phase-tropical curves and morphisms,
and the tropical limit of a family of holomorphic maps, and we prove Theorems 3.8 and 3.12
in § 7. In § 8, floor diagrams are introduced, formulas for characteristic numbers in which they
appear are proved, and examples given.

We end this introduction elaborating on possible natural generalizations of the techniques
presented in this paper. All definitions, statements, and proofs should generalize with no
difficulty to the case of rational curves in CPn intersecting cycles and tangent to non-singular
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hypersurfaces. The resulting floor diagrams would then be a generalization of those defined
in [BMa] and [BM07]. The enumeration of plane curves with higher-order tangency conditions
to other curves should also be doable in principle using our methods. This would first necessitate
identifying tropicalizations of higher-order tangencies between curves, generalizing the simple
tangency case treated in § 3.1. However, this identification might be intricate, and will certainly
lead to much more different cases than for simple tangencies (third-order tangencies to a line are
dealt with in [BL12]). In turn, the use of tropical techniques in the computation of higher-genus
characteristic numbers requires some substantial additional work. The main difficulty is that
superabundancy appears for positive genus: some combinatorial types appearing as solution
of the enumerative problem might be of actual dimension strictly bigger than the expected
one (see Remark 2.5). Hence, before enumerating tropical curves, in addition to the balancing
condition one has first to understand extra necessary conditions for a tropical morphism to
be the tropical limit of a family of algebraic maps (see § 6). Using the techniques developed
in [BMb], we succeeded to compute genus 1 characteristic numbers of CP 2. These results will
appear in a separate paper. Also for a small number of tangency constraints, it is possible to
find a configuration of constraints for which no superabundant curve shows up. In this case
Theorem 3.8 applies, the proof only requiring minor adjustments.

2. Tropical curves and morphisms

In this section, we define abstract tropical curves, their morphisms to Rn, and tropical cycles
in R2.

2.1 Tropical curves
Given a finite graph C (i.e. C has a finite number of edges and vertices) we denote by Vert(C) the
set of its vertices, by Vert0(C) the set of its vertices which are not 1-valent, and by Edge(C)
the set of its edges. By definition, the valency of a vertex v ∈Vert(C), denoted by val(v), is the
number of edges in Edge(C) adjacent to v. Throughout the text we will identify a graph and any
of its topological realization. The next definition is taken from [BBM11]. Tropical curves with
boundary will be needed in § 8.

Definition 2.1. An irreducible tropical curve C with boundary is a finite compact connected
graph with Edge(C) 6= ∅, together with a set of 1-valent vertices Vert∞(C) of C, such that:

• C\Vert∞(C) is equipped with a complete inner metric;

• the vertices of Vert0(C) have non-negative integer weights, i.e. C is equipped with a map

Vert0(C) −→ Z>0

v 7−→ gv;

• any 2-valent vertex v of C satisfies gv > 1.

If v is an element of Vert0(C), the integer gv is called the genus of v. The genus of C is defined
as

g(C) = b1(C) +
∑

v∈Vert0(C)

gv

where b1(C) denotes the first Betti number of C.
An element of Vert∞(C) is called a leaf of C, and its adjacent edge is called an end of C. A

1-valent vertex of C not in Vert∞(C) is called a boundary component of C.
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(a) (b) (c) (d) (e)

Figure 1. A few rational tropical curves.

Definition 2.1 might appear very general, whereas we essentially deal with rational tropical
curves, i.e. of genus 0, in the rest of the paper. The reason for us to give such a general definition is
that the general framework for correspondence theorems between complex algebraic and tropical
curves we set up in § 6.1 is valid for tropical curves as in Definition 2.1, and may be used in
future correspondences between complex algebraic and tropical curves of any genus.

It follows immediately from Definition 2.1 that the leaves of C are at the infinite distance
from all the other points of C. We denote by ∂C the set of the boundary components of C, by
Edge∞(C) the set of ends of C, and by Edge0(C) the set of its edges which are not adjacent to
a 1-valent vertex.

A punctured tropical curve C ′ is given by C\P where C is a tropical curve, and P is a subset
of Vert∞(C). Note that C ′ has a tropical structure inherited from C. Elements of P are called
punctures. An end of C ′ is said to be open if it is adjacent to a puncture, and closed otherwise.

Example 2.2. In Figure 1 we depict some examples of the simplest rational tropical curves.
Boundary components and vertices of Vert0(C) are depicted as black dots and vertices of
Vert∞(C) are omitted so that an edge not ending at a black vertex is of infinite length
and that no difference is made on the picture between punctured and non-punctured tropical
curves.

Given C a tropical curve, and p a point on C which is not a 1-valent vertex, we can construct
a new tropical curve C̃p by attaching to C a closed end ep (i.e. an end with a leaf point at
infinity) at p, and by setting gp = 0 if p /∈Vert0(C). The natural map π : C̃p→ C which contracts
the edge ep to p is called a tropical modification. If we denote by v the 1-valent vertex of C̃p
adjacent to ep, the restriction of the map π to the punctured tropical curve C̃p\{v} is called an
open tropical modification.

Example 2.3. The closed curve depicted in Figure 1(d) can be obtained by a tropical modification
from the curve of Figure 1(c) which in turn can be obtained modifying the infinite closed segment
of Figure 1(a). More generally, every rational tropical curve without boundary can be obtained
from the infinite closed segment (Figure 1(a)) by a finite sequence of tropical modifications.

2.2 Tropical morphisms
Given e an edge of a tropical curve C, we choose a point p in the interior of e and a unit vector ue
of the tangent line to C at p (recall that C is equipped with a metric). Of course, the vector
ue depends on the choice of p and is well defined only up to multiplication by −1, but this will
not matter in the following. We will sometimes need ue to have a prescribed direction, and we
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will then specify this direction. The standard inclusion of Zn in Rn induces a standard inclusion
of Zn in the tangent space of Rn at any point of Rn. A vector in Zn is said to be primitive if the
greatest common divisor of its coordinates equals 1.

Definition 2.4. Let C be a punctured tropical curve. A continuous map f : C→ Rn is a tropical
morphism if the following hold.

• For any edge e of C, the restriction f|e is a smooth map with df(ue) = wf,euf,e where
uf,e ∈ Zn is a primitive vector, and wf,e is a non-negative integer.

• For any vertex v in Vert0(C) whose adjacent edges are e1, . . . , ek, one has the balancing
condition

k∑
i=1

wf,eiuf,ei = 0

where uei is chosen so that it points away from v.

The integer wf,e is called the weight of the edge e with respect to f . When no confusion is
possible, we simply speak about the weight of an edge, without referring to the morphism f . If
wf,e = 0, we say that the morphism f contracts the edge e. The morphism f is called minimal
if f does not contract any edge. If the morphism f is proper then an open end of C has to
have a non-compact image, while a closed end has to be contracted. Hence if a proper tropical
morphism f : C→ Rn is minimal, then Vert∞(C) = ∅. The morphism f is called an immersion
if it is a topological immersion, i.e. if f is a local homeomorphism on its image.

Remark 2.5. Definition 2.4 is a rather coarse definition of a tropical morphism when C has
positive genus. Indeed, in contrast to the case of rational curves, one can easily construct tropical
morphisms from a positive-genus tropical curve which are superabundant, i.e. whose space of
deformation has a strictly bigger dimension that the expected one (see [Mik05, § 2]). In particular,
when the corresponding situation in classical geometry is regular (i.e. with no superabundancy
phenomenon) as in the case of projective plane curves, such a superabundant tropical morphism
is unlikely to be presented as the tropical limit of a family of holomorphic maps (see § 6.1 for
the definition of the tropical limit).

One may refine Definition 2.4, still using pure combinatoric, to get rid of many of these
superabundant tropical morphisms. One of these possible refinements, explored in [BMb], is
to require in addition that the map f : C→ Rn should be modifiable: the map f has to be
liftable to any sequence of tropical modifications of Rn with smooth center (see [Mik06]). This
definition of modifiable tropical morphisms relies on the more general definition of a tropical
morphism f : C→X where X is any non-singular tropical variety. In addition to the balancing
condition, a tropical morphism f : C→X has to satisfy some combinatorial conditions coming
from complex algebraic geometry, such as the Riemann–Hurwitz condition at points of C mapped
to the skeleton of codimension one of X (see [BBM11] for the case when X is a tropical curve).

However, since this paper is about enumeration of rational curves, Definition 2.4, even if
coarse, is sufficient for our purposes here.

Example 2.6. We represent morphisms from a curve to R as in Figure 2. The weights of the
edges with respect to the morphism label the edge if they exceed 1. Figure 2(a) represents a
double cover of the real line by a tropical curve without boundary, and Figure 2(b) represents
an open cover of R (see §Appendix) by a tropical curve with one boundary component.
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(a) (b)

Figure 2. Example of tropical morphisms f : C→ R.

Figure 3. Example of a morphism: a plane conic.

Example 2.7. In contrast to the one-dimensional case, for morphisms from a curve to R2, we
label the image of an edge with the corresponding weight as it often allows us to omit the
source of the morphism which is then implicit. In Figure 3 we depicted a plane conic C, which is
the image in R2 of a morphism from a trivalent punctured curve with four vertices in Vert0(C).

Two tropical morphisms f1 : C1→ Rn and f2 : C2→ Rn are said to be isomorphic if there
exists an isometry φ : C1→ C2 such that f1 = f2 ◦ φ and gφ(v) = gv for any v ∈Vert0(C1). In this
text, we consider tropical curves and tropical morphisms up to isomorphism.

A less restrictive equivalence relation is the one associated to combinatorial types. Two
tropical morphisms f1 : C1→ Rn and f2 : C2→ Rn are said to have the same combinatorial type
if there exists a homeomorphism of graphs φ : C1→ C2 inducing two bijections Vert∞(C1)→
Vert∞(C2) and ∂C1→ ∂C2, and such that for all edges e of C1 and all vertices v ∈Vert0(C) one
has

wf1,e = wf2,φ(e), uf1,e = uf2,φ(e) and gφ(v) = gv.

Given a combinatorial type α of tropical morphisms, we denote by Mα the space of all such
tropical morphisms having this combinatorial type. Given f ∈Mα, we say that Mα is the rigid
deformation space of f .
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Lemma 2.8 (Mikhalkin, [Mik05, Proposition 2.14]). Let α be a combinatorial type of tropical
morphisms f : C→ Rn where C is a rational tropical curve with ∂C = ∅. Then the space Mα is
an open convex polyhedron in the vector space Rn+|Edge0(α)|, and

dimMα = |Edge∞(α)|+ n− 3−
∑

v∈Vert0(α)

(val(v)− 3).

Proof. We recall the proof in order to fix notations we will need later in § 5. If Vert0(α) 6= ∅,
choose a root vertex v1 of α, and an ordering e1, . . . , e|Edge0(α)| of the edges in Edge0(α). Given
f : C→ Rn in Mα, we write f(v1) = (x1, . . . , xn) ∈ Rn, and we denote by li ∈ R∗ the length of
the edge ei ∈ Edge0(C). Then

Mα = {(x1, . . . , xn, l1, . . . , l|Edge0(α)|) | l1, . . . , . . . , l|Edge0(α)| > 0}= Rn × R|Edge0(α)|
>0 .

If Vert0(C) = ∅, then Mα = Rn/Ruf,e, where e is the only edge of α. 2

Other choices of v1 and of the ordering of elements of Edge0(α) provide other coordinates on
Mα, and the change of coordinates is given by an element of GLn+|Edge0(α)|(Z). 2

Example 2.9. In the simplest case when α is the combinatorial type of tropical morphisms
f : C→ R2 with Vert0(C) = {v}, the space Mα is R2 and the coordinates are given by f(v).

If α is the morphism depicted in Figure 3, Mα is the unbounded polyhedron R2 × R3
>0 with

coordinates {x1, x2, l1, l2, l3} where x1 and x2 are the coordinates of the image of the lowest
vertex and l1, l2 and l3 are the lengths of the bounded edges at the source ordered from bottom
to top.

2.3 Tropical cycles
Here we fix notations concerning standard facts in tropical geometry. We refer for example
to [IMS07, Mik06, RST05], or [BPS08] for more details.

An effective tropical 1-cycle in R2 is the tropical divisor defined by some tropical polynomial
P (x, y), whose Newton polygon is denoted by ∆(P ). Given a positive integer d, we denote by
Td the triangle in R2 with vertices (0, 0), (0, d) and (d, 0).

The number 1 in 1-cycle stands for dimension 1 as such a cycle is necessarily a graph. Since
any smaller-dimensional cycles in R2 can only be 0-cycles which are just linear combinations of
points in R2, in this paper we will be just saying ‘cycles in R2’ for 1-cycles.

Definition 2.10. An effective tropical cycle in R2 defined by a tropical polynomial P (x, y) is
said to have degree d> 1 if ∆(P )⊂ Td and ∆(P ) * Td−1.

Recall that a tropical polynomial induces a subdivision of its Newton polygon.

Definition 2.11. An effective tropical cycle in R2 of degree d defined by a tropical polynomial
P (x, y) is said to be non-singular if ∆(P ) = Td and the subdivision of ∆(P ) induced by P (x, y)
is primitive, i.e. contains only triangles of Euclidean area 1

2 .
The tropical cycle is said to be simple if this subdivision of ∆(P ) contains only triangles and

parallelograms.

Two effective tropical cycles are said to be of the same combinatorial type if they have the
same Newton polygon, and the same dual subdivision. As in the case of tropical morphisms, we
denote by Mα the set of all effective tropical cycles of a given combinatorial type α.

Lemma 2.12. If α is a combinatorial type of non-singular effective tropical cycles, then Mα is
an open convex polyhedron in R|∆(α)∩Z2|−1.
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If f : C→ R2 is a non-constant tropical morphism, then the image f(C) is a balanced
polyhedral graph in R2, and hence is defined by some tropical polynomial P (x, y) (see [Mik04,
Proposition 2.4]). The Newton polygon of the morphism f : C→ R2, denoted by ∆(f), is defined
as the Newton polygon of P (x, y). The polygon ∆(f) is well defined up to translation by a vector
in Z2, and in particular the degree of f is well defined.

The genus of a tropical cycle A is the smallest genus of a tropical immersion f : C→ R2 such
that f(C) =A. Note that if A is simple and f : C→ R2 is such a tropical immersion of minimal
genus then the tropical curve C contains only 3-valent vertices, which are called the vertices
of A.

We can refine the notion of Newton polygon of a tropical cycle A (or of an algebraic curve in
(C∗)2) by encoding how A intersect the toric divisors at infinity. Namely, we define the Newton
fan of A to be the multiset of vectors weue where e runs over all unbounded edges of A, we is
the weight of e (i.e. the integer length of its dual edge), and ue is the primitive integer vector
of e pointing to the unbounded direction of e. The definition in the case of algebraic curves in
(C∗)2 works similarly.

Remark 2.13. Note that our simple effective cycles are in 1–1 correspondence with 3-valent
immersed tropical curves such that their self-intersections are isolated points that come as
intersection of different edges at their interior points. We call them tropical cycles (instead
of calling them tropical curves) to emphasize their role as constraints.

3. Tangencies

3.1 Tropical pretangencies in R2

Our definition of tropical pretangencies between tropical morphisms is motivated by the study
of tropical tangencies in [BMb], to which we refer for more details. We also refer to [DT12] for
the notion of tropical tangencies between two tropical cycles in R2. Let f : C→ R2 be a tropical
morphism, and L be a simple tropical cycle in R2.

Definition 3.1. The tropical morphism f is said to be pretangent to L if there exists a connected
component E of the set theoretic intersection of f(C) and L which contains either a vertex of L
or the image of a vertex of C.

The set E ⊂ R2 is called a pretangency set of f and L. A connected component of f−1(E)⊂ C
is called a pretangency component of f with L if E contains either a vertex of C or a point p
such that f(p) is a vertex of L.

Example 3.2. In Figure 4 we depicted several examples of the image of a morphism pretangent
to a cycle which is represented by dotted lines.

It is clear that not any pretangency set corresponds to some classical tangency point. For
example, the two tropical lines in Figure 4(b) are pretangent, but this pretangency set does
not correspond to any tangency point between two complex algebraic lines in CP 2. However,
given any approximation of f (if one exists) and any approximation of L by algebraic curves,
the accumulation set of tangency points of these approximations must lie inside the pretangency
sets of f and L (see § 7, or [BMb]).

3.2 Correspondence
As in § 1 let d> 1, k > 0, and d1, . . . , d3d−1−k > 0 be some integer numbers, and choose
P = {p1, . . . , pk} a set of k points in R2, and L= {L1, . . . , L3d−1−k} a set of 3d− 1− k non-
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(a) (b) (c)

(d) (e)

Figure 4. Pretangent morphisms.

singular effective tropical cycles in R2 such that Li has degree di. We denote by ST(d, P, L) the
set of minimal tropical morphisms f : C→ R2 of degree d, where C is a rational tropical curve
with ∂C = ∅, passing through all points pi and pretangent to all curves Li.

We suppose now that the configuration (P, L) is generic. The precise definition of this word
will be given in § 4, Definition 4.7. For the moment, it is sufficient to have in mind that the
set of generic configurations is a dense open subset of the set of all configurations with a given
number of points and tropical cycles. The proof of the next three statements will be given in § 4.
Proposition 3.3 and Lemma 3.5 are direct consequences of Corollary 4.6.

Proposition 3.3. The set ST(d, P, L) is finite, and any of its elements f : C→ R2 satisfy:

• C is a 3-valent curve with exactly 3d leaves, all of them of weight 1;

• f(Vert0(C))
⋂

(
⋃
L∈L Vert0(L) ∪ P) = ∅, i.e. no vertex of C is mapped to a vertex of a curve

in L nor to a point in P;

• given p ∈ P, if x and x′ are in f−1(p), then the (unique) path γ in C from x to x′ is mapped
to a segment in R2 by f ;

• given L ∈ L, there exists a connected subgraph Γ⊂ C which contains all pretangency
components of f with L, and such that f(Γ) is a segment in R2.

Let f : C→ R2 be an element of ST(d, P, L), and let us denote by α its combinatorial type.
Given p ∈ P (respectively L ∈ L), we denote by λp (respectively λL) the set of elements of Mα

in a small neighborhood Uf of f which pass through p (respectively are pretangent to L).

Lemma 3.4. If Uf is small enough, then λq spans a classical affine hyperplane Λq defined over
Z in Mα for any q in P ∪ L.

Proof. This is an immediate consequence of the Z-linearity of the evaluation and forgetful maps
ev and ft (see § 4). 2
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Lemma 3.5. We have ⋂
q∈P∪L

Λq = {f}.

Let us associate a weight to the (classical) linear spaces Λq. Given p ∈ P, we denote by E(p)
the set of edges of C which contain a point of f−1(p) and we define

wp =
∑
e∈E(p)

wf,e.

Given L ∈ L, we denote by EL the union of all pretangency components of f with L, by µ the
cardinal of EL ∩Vert0(C), and by λ the number of ends of C contained in EL. If v ∈Vert0(L),
we denote by E(v) the set of edges of C which contain a point of f−1(v), and we define

wL =
( ∑
v∈Vert0(L)

∑
e∈E(v)

wf,e

)
+ µ− λ. (2)

Equivalently, we can define wL as follows:

wL =
∑
e∈E(v)

wf,e if f(EL) = v ∈Vert0(L),

wL =
( ∑
v∈Vert0(L)

∑
e∈E(v)

(wf,e + 1)
)

+ κ− 2b0(EL) otherwise,

where κ is the number of edges of C\EL adjacent to a vertex of C in EL.

Definition 3.6. The (P, L)-multiplicity of f : C→ R2, denoted by µ(P,L)(f), is defined as the
tropical intersection number inMα of all the tropical hypersurfaces µqΛq divided by the number
of automorphisms of f . That is to say,

µ(P,L)(f) =
|det(Λp1 , . . . , Λpk , ΛL1 , . . . , ΛL3d−1−k)|

|Aut(f)|
∏

q∈P∪L
wq.

The morphism f is said to be tangent to L if µP,L(f) 6= 0.

Example 3.7. For the morphism of Figure 5, in the coordinate system described in Example 2.9,
let y = α1 and x= α2 be the equations respectively of the horizontal and vertical lines and
(a1, b1), (a2, b2), and (a3, b3) be the coordinates of the three points from bottom to top. Then
the hyperplanes Λ1, . . . , Λ5 have equations

y = α1,
x= a1,
y + 2l1 + a2 − a1 = b2,
y + l2 = α2,
y + 2l1 + l2 + l3 + a3 − α2 = b3,

and

|det(Λ1 . . . Λ5)|=

∣∣∣∣∣∣∣∣∣∣
0 1 0 1 0
1 0 1 0 1
0 0 2 0 2
0 0 0 1 1
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
= 2.
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Figure 5. A conic tangent to two lines and passing through three points.

All the weights are 1 except the ones associated to the bottom-most point and the one
associated to the tangency to the vertical line, which are 2, and thus the formula of Definition 3.6
becomes µ(f) = 2

2 × 22 = 4.

Theorem 3.8 (Correspondence theorem). With the hypothesis above, we have

Nd,0(k; d1, . . . , d3d−1−k) =
∑

f∈ST(d,P,L)

µ(P,L)(f).

Example 3.9. For the configuration of points and lines considered in Example 3.7, there is only
one morphism in ST(2, P, L), and N2,0(3; 1, 1) is indeed 4. Other examples are given in § 5.2.

Remark 3.10. In the proof of Theorem 3.8 (see § 7), we establish not only equality of both
numbers, but we also give a correspondence between phase-tropical curves (see § 6 for the
definition) and complex curves close to the tropical limit in the sense of § 6.1. In particular,
if we choose real phases, in the sense of Definition 6.1 and Remark 6.3, for all constraints in
(P, L), it is possible to recover all real algebraic curves passing through a configuration of real
points and tangent to a configuration of real lines when these points and lines are close to the
tropical limit. See § 7.2 for a few examples.

The definition of µ(P,L)(f) we have given so far is not very convenient for actual computations.
We will give in § 5 a practical way to compute this tropical multiplicity. We first clarify the notion
of generic configurations in § 4.

3.3 Generalization to immersed constraints
In this section we generalize Theorem 3.8 to the case when the constraints are not necessarily
non-singular tropical or complex curves but any immersed curves. Instead of considering curves
of degree d in the projective plane we now consider curves with a given Newton fan N in the
two-dimensional torus (C∗)2.
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We first pose the problem in complex geometry. Let s> 2, k 6 s− 1, g1, . . . , gs−1−k be some
non-negative integer numbers, and N , N1, . . . ,Ns−1−k some Newton fans such that the number
of elements of N is s (recall that a Newton fan is a multiset). Choose a set P = {p1, . . . , pk} of
k points in (C∗)2, and a set L= {L1, . . . , Ls−1−k} of s− 1− k immersed complex curves such
that Li is of genus gi and has Newton fan Ni.

We denote by S(N , P, L) the set of all rational complex algebraic maps f : CP 1\{s points}→
(C∗)2 with Newton fan N , passing through all points pi ∈ P and tangent to all curves Li ∈ L.
The cardinal of the set S(N , P, L) is finite as long as P and L are chosen generically, and we
define

NN ,P,L(k;N1, g1, . . . ,N3d−1−k, g3d−1−k) =
∑

f∈S(N ,P,L)

1
|Aut(f)|

.

The problem in the tropical set-up is similar. Choose now PT = {pT
1 , . . . , p

T
k} a set of k points

in R2, and LT = {LT
1 , . . . , L

T
s−1−k} a set of s− 1− k simple effective tropical cycles in R2 such

that LT
i has Newton fan Ni and genus gi. We denote by ST(N , PT, LT) the set of minimal

tropical morphisms f : C→ R2 with Newton fan N , where C is a rational tropical curve with
∂C = ∅, passing through all points pT

i and pretangent to all curves LT
j . Next proposition is a

direct consequence of Corollary 4.6.

Proposition 3.11. The set ST(N , PT, LT) is finite and its elements are extreme in the sense
of Definition 4.4.

Moreover, Lemmas 3.4 and 3.5 still hold in this situation. If pT ∈ PT, we define wp in the
same way as in § 3.2. If LT ∈ LT, we define wL as follows:

wLT =
( ∑
v∈Vert0(LT)

∑
e∈E(v)

wf,e

)
+ δ(µ− λ)

where δ is the weight of the edge of L containing the tangency set of f and LT (if any, otherwise
µ= λ= 0). The (PT, LT)-multiplicity of a tropical morphism f in ST(d, PT, LT) is given by
Definition 3.6.

Theorem 3.12 (Correspondence theorem in (C∗)2). Let N , s, k, g1, . . . , gs−1−k, N1, . . . ,
Ns−1−k, LT and PT be as above.

There exists a generic configuration of points P = {p1, . . . , pk} and immersed complex curves
L= {L1, . . . , Ls−1−k} in (C∗)2 having respective Newton fans N1, . . . ,Ns−1−k and genera
g1, . . . , gs−1−k such that

NN ,P,L(k;N1, g1, . . . ,N3d−1−k, gs−1−k) =
∑

f∈ST(N ,PT,LT)

µ(PT,LT)(f).

Theorem 3.12 we will be proved in § 7.

4. Generic configurations of constraints

4.1 Marked tropical curves
In order to prove Proposition 3.3, it is convenient to consider marked tropical curves as a technical
tool.

Definition 4.1. A tropical curve with n marked points is a (n+ 1)-tuple (C, x1, . . . , xn) where
C is a tropical curve and the xi are n points on C.
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A marked tropical morphism with n marked points is a (n+ 2)-tuple (C, x1, . . . , xn, f) where
(C, x1, . . . , xn) is a tropical curve with n marked points, and f : C→ R2 is a tropical morphism.

Note that we do not require the marked points to be distinct. As in the case of unmarked
tropical curves, we have the notion of isomorphic marked tropical morphisms and combinatorial
types of marked tropical morphisms. The definition is the same as in § 2.1, where we require in
addition that the map φ : C1→ C2 sends the ith marked point of C1 to the ith marked point
of C2.

Lemma 2.8 has a straightforward extension to the case of marked tropical morphisms.

Lemma 4.2. Let α be a combinatorial type of marked tropical morphisms f : C→ R2 with nα
marked points, mα of which lie on edges of C, and where C is a rational curve with ∂C = ∅.
Then the space Mα is an open convex polyhedron in the vector space R2+|Edge0(α)|+mα , and

dimMα = |Edge∞(α)| − 1−
∑

v∈Vert0(α)

(val(v)− 3) +mα.

Let α be a combinatorial type of marked minimal tropical morphisms f : C→ R2 where C
is a rational tropical curve with ∂C = ∅, with s (open) ends, and with nα marked points, mα of
which lie on edges of C. We denote by α the combinatorial type of unmarked tropical morphisms
underlying α. We define the evaluation map ev and the forgetful map ft by

ev : Mα −→ (R2)nα
(C, x1, . . . , xnα , f) 7−→ (f(x1), . . . , f(xnα))

,
ft : Mα −→ Mα

(C, x1, . . . , xnα , f) 7−→ (C, f).

Lemma 4.3. The maps ev and ft are Z-affine linear on Mα, and

dim ev(Mα) 6 s− 1 +mα.

Moreover, if equality holds, then α is 3-valent, and the evaluation map is injective on Mα.

Proof. The proof of the Z-linearity is the same as [GM07, Proposition 4.2], and the dimension
is given by Lemma 4.2. 2

4.2 Generic configurations
A parameter space is a space of the form

Par(k, β1, . . . , βs−1−k) = (R2)k ×Mβ1 × · · · ×Mβs−1−k

where s> 2 and 0 6 k 6 s− 1 are two integer numbers, and β1, . . . , βs−1−k are s− 1− k
combinatorial types of simple effective tropical cycles in R2. According to Lemma 2.12,
Par(k, β1, . . . , βs−1−k) is an open convex polyhedron in some Euclidean vector space. In
particular, it has a natural topology induced by this Euclidean space. Note that if Vert0(βi) = ∅
(i.e. βi is just a ray), then Mβi = R.

Given an element (P, L) of Par(k, β1, . . . , βs−1−k), where P = {p1, . . . , pk} and L=
{L1, . . . , Ls−1−k}, we denote by C(s, P, L) the set of all minimal tropical morphisms f : C→ R2

where C is a rational tropical curve with s ends and ∂C = ∅, and f passes through all points pi,
and is pretangent to all curves Lj .

Definition 4.4. A tropical morphism f : C→ R2 in C(s, P, L) is said to be extreme if it satisfies
the four following properties:

(i) C is a 3-valent curve;
(ii) f(Vert0(C))

⋂
(
⋃
L∈L Vert0(L) ∪ P) = ∅, i.e. no vertex of C is mapped to a vertex of a curve

in L nor to a point in P;
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https://doi.org/10.1112/S0010437X13007409 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007409


(iii) given p ∈ P, if x and x′ are in f−1(p), then the path γ in C from x to x′ is mapped to a
segment by f ;

(iv) given L ∈ L, there exists a connected subgraph Γ⊂ C which contains all pretangency
components of f with L, and such that f(Γ) is a segment in R2.

Note that in the case where Vert0(L) = ∅, property (iv) is equivalent to the fact that EL is
connected.

Proposition 4.5. Suppose that Vert0(βi) = ∅ for all i. Then there exists a dense open subset

P̂ar(k, β1, . . . , βs−1−k) in the parameter space Par(k, β1, . . . , βs−1−k) = Rs−1+k such that the
set C(s, P, L) is finite and contains only extreme tropical morphisms.

Proof. Denote by C′(s, P, L) the set of all marked minimal tropical morphisms f :
(C, x1, . . . , xs−1)→ R2 where (C, x1, . . . , xs−1) is a rational tropical curve with s leaves, with
∂C = ∅, and with s− 1 marked points, xk+1, . . . , xs−1 being on vertices of C, such that f(xi) = pi
for 1 6 i6 k and f(xi) ∈ Li−k for k + 1 6 i6 s− 1. By Definition 3.1, the set C(s, P, L) is
contained in the set ft(C′(s, P, L)). Hence, it is sufficient to prove that there exists a dense
open subset of the parameter space such that the set C′(s, P, L) is finite and contains only
extreme tropical morphisms.

Let α be a combinatorial type of marked tropical morphisms f : (C, x1, . . . , xs−1)→ R2

where (C, x1, . . . , xs−1) is a rational tropical curve with s leaves, with ∂C = ∅, and with s− 1
marked points, xk+1, . . . , xs−1 being on vertices of C. Let us define the incidence variety
Iα ⊂Mα × Rs−1+k containing elements (f, p1, . . . , pk, L1, . . . , Ls−1−k) where f is a tropical
morphisms with combinatorial type α such that:

(a) for j 6 k, f(xi) = pi;

(b) for k + 1 6 j 6 s− 1, f(xj) ∈ Lj−k.

Any of the above conditions (a) (respectively (b)) demands 2 (respectively 1) affine conditions
on elements of Iα. Moreover, all these conditions are independent since any variable pi or Li is
contained in exactly one of these equations. Hence, the set Iα is an open polyhedral complex of
dimension at most dimMα. Let us consider the two natural projections π1 : Iα→Mα and π2 :
Iα→ Par(k, β1, . . . , βs−1−k). For each 1 6 i6 s− 1− k, there is a natural linear isomorphism
between Mβi and the quotient of R2 by the linear direction of elements of βi. This provides a
natural map ψ : (R2)s−1→ Par(k, β1, . . . , βs−1−k) by taking the quotient of the s− 1− k lasts
copies of R2 by the direction of the corresponding βi. We have π2 = ψ ◦ ev ◦ π1. Hence according
to Lemma 4.3, if dim π2(Iα) = s+ k − 1, then α is necessarily trivalent, the evaluation map is
injective on Mα, and xi /∈Vert0(C) for i6 k.

We define P̃ar(k, β1, . . . , βs−1−k) as the complement in Par(k, β1, . . . , βs−1−k) of the union of
the sets π2(Iα) where α ranges over all combinatorial types such that dim π2(Mα)< s− 1 + k.
This is an open and dense subset of Par(k, β1, . . . , βs−1−k). Moreover, by injectivity of the
evaluation map, if (P, L) is in P̃ar(s, k, β1, . . . , βs−1−k), then the fiber π−1

2 (P, L) consists of at
most one point for any combinatorial type. The number of possible combinatorial types α is
finite, and so is the set C′(s, P, L). Moreover, all its elements satisfy properties (i) and (ii) of
Definition 4.4.

Let us now find an open dense subset of P̃ar(k, β1, . . . , βs−1−k) which will ensure properties
(iii) and (iv). Let α be a combinatorial type considered above of marked tropical morphisms, and
let α′ be a combinatorial type of marked tropical morphisms consisting of α with an additional
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marked point xs. We also fix 1 6 i6 s− 1, and we suppose that the path γ in C joining xs to
xi is not mapped to a segment by f .

If i6 k, we define Iα′,i ⊂Mα′ × Rs−1+k × R2 by the conditions (a) and (b) above and
the condition f(xs) = ps (ps is the coordinate corresponding to the copy of R2 we added
to Par(k, β1, . . . , βs−1−k)). We still have the two projections π1 : Iα′,i→Mα′ and π2 : Iα′,i→
Par(k, β1, . . . , βs−1−k)× R2, in addition to the projection π : Par(k, β1, . . . , βs−1−k)× R2→
Par(k, β1, . . . , βs−1−k). According to the previous study, the set π2(Iα′,i) has codimension at
least 1 in Par(k, β1, . . . , βs−1−k)× R2, and none of the two sets π2(Iα′,i) and {pi = ps} contains
the other. Since the latter has codimension 2 in Par(k, β1, . . . , βs−1−k)× R2, the intersection
Xα′,i of π2(Iα′,i) and {pi = ps} has codimension at least 3, and π(Xα′,i) has codimension at least
1 in Par(k, β1, . . . , βs−1−k).

If k + 1 6 i6 s− 1, we define Iα′,i ⊂Mα′ × Rs−1+k ×Mβi−k by the conditions (a) and
(b) above and the condition f(xs) ∈ Ls (Ls is the coordinate corresponding to the copy
of Mβi−k we added to Par(k, β1, . . . , βs−1−k)). We still have the two projections π1 :
Iα′,i→Mα′ and π2 : Iα′,i→ Par(k, β1, . . . , βs−1−k)×Mβi−k , in addition to the projection π :
Par(k, β1, . . . , βs−1−k)×Mβi−k → Par(k, β1, . . . , βs−1−k). According to the previous study, the
set π2(Iα′,i) has codimension at least 1 in Par(k, β1, . . . , βs−1−k)×Mβi−k . Moreover, since the
path γ in C joining xs to xi is not mapped to a segment by f , none of the two sets π2(Iα′,i) and
{Li−k = Ls} contains the other. Since the latter has codimension 1 in Par(k, β1, . . . , βs−1−k)×
Mβi−k , the intersectionXα′,i of π2(Iα′,i) and {Li−k = Ls} has codimension at least 2, and π(Xα′,i)
has codimension at least 1 in Par(k, β1, . . . , βs−1−k).

We define

P̂ar(k, β1, . . . , βs−1−k) = P̃ar(k, β1, . . . , βs−1−k)\
(⋃
α′,i

π(Xα′,i)
)

where α′ and i range over all possible choices in the preceding construction. Since the number
of choices is finite, P̂ar(k, β1, . . . , βs−1−k) is a dense open subset of Par(k, β1, . . . , βs−1−k), and
for (P, L) in this set, the set C′(s, P, L) is finite and all its elements are extreme. 2

Corollary 4.6. There exists a dense open subset P̂ar(k, β1, . . . , βs−1−k) in the parameter
space Par(k, β1, . . . , βs−1−k) such that the set C(s, P, L) is finite and only contains extreme
tropical morphisms.

Proof. Choose 0 6 k′ 6 s− 1− k, and 1 6 i1 < · · ·< ik′ 6 k. We denote by {j1, . . . , js−1−k−k′}
the complement of {i1, . . . , ik′} in {1, . . . , s− 1− k}. Choose a vertex vin on each βin , and an
edge ejn on each βjn . Given an element Ljn in Mβjn , we denote by L′jn the effective tropical
cycle in R2 spanned by ejn (this is just the classical line of R2 spanned by ejn), and denote by
δj,n its combinatorial type. Then we have a natural surjective linear map

χ : Par(k, β1, . . . , βs−1−k) −→ Par(k + k′, δj1 , . . . , δjs−1−k−k′ )
(p1, . . . , pk, L1 . . . , Ls−1−k) 7−→ (p1, . . . , pk, vi1 , . . . , vik′ , L

′
j1
. . . , L′js−1−k−k′

).

We define

P̃ar(k, β1, . . . , βs−1−k) =
⋂

χ−1(P̂ar(k + k′, δj1 , . . . , δjs−1−k−k′ ))

where k′, i1, . . . , ik′ , vi1 , . . . , vik′ , ej1 , . . . , ejs−1−k−k′ run over all possible choices. Note that
this number of choices is finite, and that P̃ar(k, β1, . . . , βs−1−k) is open and dense in
Par(k, β1, . . . , βs−1−k).
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Let (P, L) ∈ P̃ar(k, β1, . . . , βs−1−k), and f : C→ R2 an element of C(s, P, L). By
Definition 3.1, the tropical morphism f : C→ R2 is also an element of some set

C(s, {p1, . . . , pk, vi1 , . . . , vik′}, {L
′
j1 . . . , L

′
js−1−k−k′

})

constructed as above. Hence, according to Proposition 4.5, the set C(s, P, L) is finite and all its
elements satisfy properties (i)–(iii) of Definition 4.4.

Moreover, for any tangency component E of f with an element L of L, the set f(E) is
contained in a classical line of R2. Indeed, otherwise there would exist v ∈Vert0(C) such that
f(v) ∈Vert0(L), in contradiction with the fact that f satisfies property (ii) of Definition 4.4.
Hence, we can use the same technique we used at the end of the proof of Proposition 4.5
to construct an open dense subset P̂ar(k, β1, . . . , βs−1−k) of P̃ar(k, β1, . . . , βs−1−k) such that
if (P, L) ∈ P̂ar(k, β1, . . . , βs−1−k), then all elements of C(s, P, L) satisfy property (iv) of
Definition 4.4. That is to say, all elements of C(s, P, L) are extreme. 2

Definition 4.7. Let p1, . . . , pk be k points in R2 and L1, . . . , Ll be l simple effective tropical
cycles in R2 of combinatorial types β1, . . . , βl. The (k + l)-tuple (p1, . . . , pk, L1, . . . , Ll) is called
weakly generic if it is an element of P̂ar(k, β1, . . . , βl).

The (k + l)-tuple (p1, . . . , pk, L1, . . . , Ll) is called generic if any of its sub-tuple is weakly
generic.

Automorphisms of elements of C(s, P, L) are pretty simple when dealing with generic
configurations.

Lemma 4.8. Let (P, L) be a generic configuration of s points and simple effective tropical cycles,
and let f : C→ R2 be an element of C(s, P, L). Denote by (e1

1, e
1
2), . . . , (el1, e

l
2) all pairs of open

ends of C with uf,ei1 = uf,ei2 and adjacent to a common vertex in Vert0(C). Denote also by φei1,ei2
the automorphism of C such that φei1,ei2(ei1) = ei2 and φei1,ei2|C\{ei1,ei2} = Id. Then Aut(f) is the
abelian group generated by the automorphisms φei1,ei2 , i.e.

Aut(f) = 〈φei1,ei2 , i= 1, . . . , l〉 ' (Z/2Z)l.

Proof. It is clear that the automorphisms φei1,ei2 commute and are of order 2. We just have to
prove that they generate Aut(f). Suppose that this group is non-trivial and let φ 6= Id be an
element of Aut(f). Since φ is non-trivial, there exist two distinct edges e1 and e2 in Edge(C)
such that φ(e1) = e2. Since two vertices of C cannot have the same image by f , the edges e1 and
e2 must be adjacent to the same vertices. The tropical curve C is rational, so e1 and e2 must be
adjacent to exactly one vertex, which means that they are open ends of C. 2

5. Practical computation of tropical multiplicities

5.1 Combinatorial multiplicity
Here we give a practical way to compute the determinant in Definition 3.6 by a standard
cutting procedure (see for example [GM08]). Let us fix a generic configuration (P, L) ∈
Par(k, β1, . . . , β3d−1−k) and an element f : C→ R2 of ST(d, P, L) tangent to L. We choose a
marking of C such that f : (C, x1, . . . , x3d−1)→ R2 is an element of one of the sets C′(3d, P ′, L′)
defined in the proof of Proposition 4.5, and we define

◦
C = C\{x1, . . . , x3d−1}.

First, we define an orientation on
◦
C. Let x be a point on an edge of

◦
C. Since C is rational,

C\{x} has two connected components C1 and C2 containing respectively s1 and s2 ends, and
s1 + s2 = 3d+ 2. Moreover, since (P, L) is generic, C1 (respectively C2) contains k1 6 s1 − 1
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(respectively k2 6 s2 − 1) marked points. Since k1 + k2 = 3d− 1 = s1 + s2 − 3, up to exchanging

C1 and C2, we have k1 = s1 − 1 and k1 = s2 − 2. We orient
◦
C at x from C1 to C2. Note that

◦
C

and its orientation depends on the choice of the marking of C we have chosen, but this will not
play a role in what follows.

Now we define a multiplicity µ(P,L)(v) for each vertex v in Vert0(C). If f(v) /∈
⋃
L∈L L, then

the genericity of (P, L) implies that there exist two edges e1, e2 ∈ Edge(C) adjacent to v and
oriented toward v. We define

µ(P,L)(v) = |det(uf,e1 , uf,e2)|.

If f(v) ∈ Li, we denote by uLi the primitive integer direction of the edge of Li containing f(v). If
f(v) ∈ Li\

⋃
L6=Li L, then the genericity of (P, L) implies that there exists exactly one edge

e ∈ Edge(C) oriented toward v with uf,e 6= uLi , and we define

µ(P,L)(v) = |det(uf,e1 , uLi)|.

If f(v) ∈ Li ∩ Lj , we define

µ(P,L)(v) = |det(uLi , uLj )|.

Proposition 5.1. For any tropical morphism f : C→ R2 in ST(d, P, L), we have

µ(P,L)(f) =
1

|Aut(f)|
∏

q∈P∪L
wq

∏
e∈Edge0(C)

wf,e
∏

v∈Vert0(C)

µ(P,L)(v).

We prove Proposition 5.1 by writing down explicitly the linear part of the equations of
the hyperplanes Λq. Before going deeper into the details, we remark that the definition of the

multiplicity of a tropical morphism in ST(d, P, L) and of the orientation of
◦
C are based only

on the fact that all elements of C(3d, P, L) are extreme. Hence, we can extend Definition 3.6

and the orientation of
◦
C to any tropical morphism in C(s, P, L) for any s, as long as (P, L) is

generic.
For the rest of this section, we fix some positive integer s, a generic configuration (P, L)

of constraints containing s elements, and an element f : C→ R2 of C(s, P, L) tangent to L. In
particular, µ(P,L)(f) 6= 0. Let us choose a vertex v1 ∈Vert0(C), and some ordering of edges in
Edge0(C). If v ∈Vert0(C), we denote by (v1v) the path joining v1 to v in C. In particular we
have

f(v) = f(v1) +
∑

e∈(v1v)

lewf,euf,e (3)

where the vectors uf,e are oriented toward v1 (recall that wf,e and le are respectively the weight
and the length of e).

Given p ∈ P, we choose v ∈Vert0(C) adjacent to an edge e of C such that e ∩ f−1(pi) 6= ∅.
Then, in the coordinate used in the proof of Lemma 2.8, the linear part of the equation of Λp is
given by

|det(f(v), uf,e)|= 0. (4)

Let L be an element of L. If there exist v0 ∈Vert0(L), e ∈ Edge(C) adjacent to v ∈Vert0(C),
such that e ∩ f−1(v0) 6= ∅, then the linear part of the equation of ΛL is given by

|det(f(v), uf,e)|= 0. (5)
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If there exists a vertex v ∈Vert0(C) such that f(v) ∈ L, then the linear part of the equation of
ΛL is given by

|det(f(v), uL)|= 0 (6)
where uL is the primitive integer direction of the edges of L containing f(v).

Equations (4)–(6) do not depend on the choice of e and v thanks to properties (iii) and (iv)
in Definition 4.4.

To sum up, if q ∈ P ∪ L, the linear part of the equation of Λq is always of the form
|det(f(vq), uq)|= 0, for some vq ∈Vert0(C) and uq = (uq,1, uq,2) ∈ R2. Thus, the coefficients of
the matrix M(f) of intersection of all the Λq are given by (3), as follows.
• The coefficient corresponding to the hyperplane Λq and xv1 is uq,2.
• The coefficient corresponding to the hyperplane Λq and yv1 is −uq,1.
• The coefficient corresponding to the hyperplane Λq and e ∈ Edge0(C) is

wf,e det(uf,e, uq), if e ∈ (v1vq),
0 otherwise.

Clearly, the matrix M(f) depends on the choice of the coordinates we choose on the
deformation space of f . However, M(f) is well defined up to a multiplication by a matrix in
GLs−1(Z), hence the absolute value of its determinant does not depend on this choice.

Lemma 5.2. Suppose that there exists L ∈ L such that we are in one of the two following
situations.

• There exists a vertex v ∈Vert0(C) adjacent to two edges e1, e2 ∈ Edge0(C) with uf,e1 = uL
and uf,e2 6= uL, and such that f(v) ∈ L; in this case, choose p in f(e1) ∩ L.

• There exists a point x ∈ C such that f(x) ∈Vert0(L); in this case, put p= f(x).
Define P ′ = P ∪ {p} and L′ = L\{L}. Then

µ(P,L)(f) =
wL
wp

µ(P ′,L′)(f).

In particular, Proposition 5.1 for µ(P,L)(f) follows from Proposition 5.1 applied to µ(P ′,L′)(f).

Proof. The linear part of the equations of ΛL and Λp are the same. 2

Let us now explain the cutting procedure to compute µ(P,L)(f) in general. Suppose that
there exist e ∈ Edge0(C) and x ∈ e such that f(x) /∈ P

⋃
L∈L L. Recall that we have defined an

orientation on C at x. The space C\{x} has two connected components, C1 and C2, containing
respectively s1 and s2 ends. We choose C1 and C2 so that C is oriented from C1 to C2 at x.
It is clear that s1 + s2 = s+ 2. The graph Ci inherits a tropical structure from the tropical
curve C, and there is a unique way to extend Ci to a rational tropical curve Ci without
boundary components. Note that the tropical morphism f : C→ R2 induces tropical morphisms
fi : Ci→ R2.

Let Pi ⊂ P be the points of P through which fi passes, and Li ⊂ L be the curves of L which
are pretangent to fi. The configuration (P, L) is generic, so we have |Pi|+ |Li|6 si − 1. Since
we also have s1 + s2 = s+ 2 and |P|+ |L|= s− 1, we deduce that |(P1 ∪ L1) ∩ (P2 ∪ L2)|6 1.

If (P1 ∪ L1) ∩ (P2 ∪ L2) = ∅, then |P2|+ |L2|= s2 − 2 because of the orientation of C at x.
In this case we define P ′2 = P2 ∪ {f(x)} and ν = 1.

If |(P1 ∪ L1) ∩ (P2 ∪ L2)|= {q0}, then we define P ′2 = P2 and

ν =
wq0(f)wf,e

wq0(f2)wq0(f1)
.
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Since the three distinct tropical morphisms f , f1, and f2 pass through or are tangent to q0, we
specify to which morphism the quantity wq0 refers in the previous formula.

Lemma 5.3. We have

µ(P,L)(f) = νµ(P1,L1)(f1)µ(P ′2,L2)(f2).

In particular, Proposition 5.1 for µ(P,L)(f) follows from Proposition 5.1 applied to µ(P1,L1)(f1)
and µ(P ′2,L2)(f2).

Proof. For the coordinates of the deformation space of f1, we choose the root vertex to be
the vertex of C1 adjacent to e. For the deformation space of f2, we choose the root vertex to be the
vertex of C2 adjacent to e. We also suppose that the first line of M(f2) is given by Λf(x) or Λq0 .
Choose an order q2, . . . , qs2−1 on the other elements of P2 ∪ L1. Then we have

M(f2) =
(
ue,2 −ue,1 0
U1 U2 A

)
where A is a (s2 − 2)× (s2 − 3) matrix and

U1 =

 uq2,2
...

uqs2−1,2

 and U2 =

 −uq2,1
...

−uqs2−1,1

.
Hence, eliminating the coefficient −ue,1 by elementary operations on the column of M(f2) we
get

det(M(f2)) = det
((
U3 A

))
where

U3 =

 det(uf,e, uq2)
...

det(uf,e, uqs2−1)

.
We choose coordinates on the deformation space of f correspondingly to the one we chose

for f1 and f2: the root vertex is the root vertex we chose for f1, and the order on the edges
in Edge0(C) is given by first the edges in Edge0(C1), then e, and then the edges in Edge0(C2).
Then, we have

M(f) =
(
M(f1) 0 0
∗ wf,eU3 A

)
.

Hence det(M(f)) = wf,e det(M(f1)) det(M(f2)). To conclude, we remark that according to
Lemma 4.8, we have Aut(f) = Aut(f1)×Aut(f2). 2

Proof of Proposition 5.1 Applying recursively Lemmas 5.3 and 5.2, we reduce to cases when
Vert0(C) has at most one element, for which we can easily check by hand that Proposition 5.1
is true. 2

5.2 Examples of computations
Let us first compute again the multiplicity of the conic of Example 3.7 pictured in Figure 5 using
the combinatorial procedure described above.

The automorphism group of the morphism is isomorphic to Z/2Z, the multiplicities µq of
the constraints is 1 except for the point sitting on an edge of weight 2 and for the vertical line
in which case it is 2. There is an edge of weight 2 contributing for 2 in the multiplicity and

66

B. Bertrand, E. Brugallé and G. Mikhalkin
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Figure 6. Conic (with orientations) tangent to two lines.

the vertices all have multiplicity 1 as can be seen using the formula given at the beginning of
previous section and the orientations described in Figure 6. The multiplicity of this morphism
is thus µ(P,L)(f) = 1

2 × 22 × 2× 1 = 4 which is indeed the number of conics tangent to two lines
and passing through three points provided that the configuration is generic.

One can check using the same techniques and Figure 7 the number of conics tangent to 5− k
lines when k varies from 0 to 5. In each case there is only one tropical curve satisfying the
constraints on which all the classical conics degenerate. Their multiplicities are min(2k, 25−k).

Finally, we draw on Figure 8 one of the rational cubics tangent to seven lines and passing
through one point.

In this case the automorphism group is isomorphic to (Z/2Z)3, all multiplicities of constraints
are 1 except that of the point and of the line having its vertex on a vertical edge of weight 2 which
are 3. The product of the weights of interior edges is 24 × 3 and all vertices have multiplicity 1.
This morphism thus contributes µ(P,L)(f) = 54 to the seven hundred classical rational cubics
tangent to seven lines.

6. Phases and tropical limits

Our strategy is to approximate our tropical ambient space with constraints (R2, P, L) with a
family of corresponding classical ambient spaces. In order to prove correspondence theorems
with tangency conditions as some of the constraints, we introduce the notion of phase-tropical
structure on a tropical variety and that of tropical limit. For simplicity, in this paper we define
both concepts only in the special case we need, namely for points and curves in toric surfaces.
See [Mik] for a more general case. Such an approach allows us to generalize correspondence
statements started in [Mik05] and followed in [Nis10, NS06, Tyo12] to curves tangent to given
curves.
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Figure 7. Conics tangent to 5− k lines, k = 0, . . . , 5.

All tropical curves C considered in this section have no boundary component, i.e. ∂C = ∅
(see § 2.1). We do not make any assumption on the genus of the curves in § 6.1: the hypothesis
of being rational will be necessary only starting from § 6.2.

6.1 Phase-tropical structures and tropical limits

Let p ∈ Rn be a point.

Definition 6.1. The phase of p is a choice of a point φ(p) ∈ (S1)n. Alternatively, we may think
of it as a choice of point in (C∗)n as long as we identify two phases φ(p), φ(p′) ∈ (C∗)n whenever
they have the same argument

Arg(φ(p)) = Arg(φ′(p)) ∈ (S1)n.
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Figure 8. Cubic (with orientations) tangent to seven lines.

The phase of p is real if φ(p) ∈Arg((R∗)n) = {0, π}n. The phase of the collection P of points
is a choice of phase for each point of P.

Clearly, in the case of points the phase is nothing else but prescription of arguments to the
coordinates. In the case of curves we need to prescribe a phase for each vertex of the curve so
that this prescription is compatible at each edge.

Before defining the phase-tropical structure for curves we consider some motivations for it.
We refer to the upcoming paper [Mik] for a more thorough treatment, but as this paper has not
appeared yet we give below a preview relevant to our purposes here. A tropical curve can be
thought of as a certain degeneration of a sequence (or a family, which can be thought of as a
generalized sequence) of complex curves, i.e. Riemann surfaces Stj whose genus g and number
of punctures k do not depend on the parameter tj .

From the hyperbolic geometry viewpoint, each Stj is a hyperbolic surface and is completely
determined by the length of any collection of 3g − 3 + k disjoint closed embedded geodesics
(see [Thu97]). Such a collection defines a decomposition of Stj into pairs-of-pants. This means
that every connected component of the complement of this collection is homeomorphic to a
sphere punctured three times. Some of these punctures correspond to the punctures of S while
others correspond to a geodesic from our collection. Note that each geodesic corresponds to two
punctures of pairs-of-pants, cf. Figure 9. Conversely, each decomposition into pairs-of-pants gives
a collection of 3g − 3 + k disjoint closed embedded geodesics once we represent each cutting circle
by a geodesic in the hyperbolic metric of Stj . Once all surfaces Stj are marked (i.e. a homotopy
equivalence with a ‘standard surface’ S of genus g with k punctures is fixed) the pairs-of-pants
decomposition in Stj with different tj can be chosen in a compatible way.

There may not be more than 3g − 3 + k disjoint closed embedded geodesics, but we may
also consider collection consisting less than that number. The result can be thought of as a
generalized (or partial) pairs-of-pants decomposition. Some component of the complement of
such a collection are spheres punctures three times while the others have a greater number
of punctured or even a genus. Thus the conformal structure of some component is no longer
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Figure 9. Pairs-of-pants decomposition of a punctured Riemann surface and a tropical curve
realizing the dual graph.

determined by the lengths of the boundary geodesic and we need to specify it separately. As
we are preparing the framework for the tropical limit where the hyperbolic lengths of all these
boundary geodesics vanish we need only to consider conformal structures of finite type (i.e. such
that all the end components correspond to punctures conformally).

Any non-compact Riemann surface S of finite type is obtained from a closed Riemann surface
S̃ by puncturing it in finitely many points. It is convenient to define a compact surface S̄ obtained
by an oriented real blowup of S̃ at the points of puncture as in [MO07, § 6]. Then each puncture
ε of S gets transformed to a boundary component bε ⊂ ∂S̄ that is naturally oriented as the
boundary of S̄. We refer to the resulting bε ≈ S1 as the boundary circles of ε.

Similar considerations work in the case of so-called nodal surfaces S. Topologically, such a
surface S is obtained from a (possibly disconnected) punctured Riemann surface by choosing
some number of distinct pairs of points and identifying the points in these pairs. The points
resulting in this procedure are called the nodes. The surface S◦ is defined from S by removing
all nodes. Thus, in addition to the punctures, S◦ gets new punctures. A nodal Riemann surface
consists of S and the choice of a conformal structure of finite type on S◦.

We set S̄ = S̄◦ by oriented blowup of the closed (possibly disconnected) Riemann surface S̃
obtained by attaching back a point to each puncture. Each node δ contributes to two boundary
components b′δ, b

′′
δ ⊂ ∂S̄ which we call the vanishing boundary circles of δ.

We call a map Φ : S◦→ (S1)n pluriharmonic if it can be obtained from a holomorphic map
Φ̃ : S◦→ (C∗)n by composing it with the argument map Arg : (C∗)n→ (S1)n. It is easy to see
(cf., for example, [Mik, § 2] and [MO07, § 6.2]) that any pluriharmonic map Φ : S◦→ (S1)n which
is proper in a neighborhood of a boundary circle b induces a map

Φb : b→ (S1)n. (7)

Its image is a geodesic on the flat torus (S1)n = (R/2πi)n. The map Φb comes as a limit of the
map Φ restricted to a small simple loop around the corresponding puncture or node when this
loop tends to b (in the Hausdorff topology on closed subsets of S̄). This map allows us to define
a natural translation-invariant metric of circumference 2π on each such b (cf. [Mik]).

If a pluriharmonic map Φ : S◦→ (S1)n has a removable singularity at some puncture with
corresponding boundary circle b, then Φb(b) is a point of (S1)n. We can treat such point as a
degenerate geodesic of slope 0. Otherwise we say that b is an essential boundary circle for Φ.

Recall that a tropical morphism f : C→ Rn is called minimal if no edge of C is contracted
to a point by f . From now on we assume that f is minimal to simplify our definitions (we will
only use minimal morphisms in the applications of this paper, and refer to [Mik] for the general
case).
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Definition 6.2. The phase φ of f is the following data:
• a choice of nodal Riemann surface Γv of genus gv with k punctures for each inner vertex
v ∈Vert0(C) of valence k;

• a one-to-one correspondence between the punctures of Γv and the edges of C adjacent to v;
• an orientation-reversing isometry

ρe : bvε ≈ bv
′

ε (8)
between the boundary circles of the punctures corresponding to e for any edge e connecting
vertices v, v′ ∈Vert0;

• a pluriharmonic map
Φv : Γ◦v→ (S1)n

for each v ∈Vert0(C), where Γ◦v is obtained from Γv by removing all nodes;
• an orientation-reversing isomorphism

ρδ : b′δ ≈ b′′δ (9)

between the vanishing boundary circles for each node δ of Γv,
subject to the following properties.

(i) For any edge e adjacent to v ∈Vert0(C) and the puncture ε corresponding to e we have the
following identity for the homology class [Φbε

v (bε)] ∈H1((S1)n) = Zn

[Φbε
v (bε)] = wf,euf,e ∈ Zn.

Here uf,e ∈ Zn is the outgoing (from v) primitive integer vector parallel to f(e)⊂ Rn.
(ii) For any edge e connecting v, v′ ∈Vert0(C) we have

Φbε
v = Φbε

v′ ◦ ρe : bvε → (S1)n,

where ε is the puncture corresponding to e.
(iii) For any node δ of Γv we have

Φb′δ
v = Φb′′δ

v ◦ ρδ : b′δ→ (S1)n,

where the node δ is considered as puncture for the components of Γ◦v whose closures intersect
at δ.

(iv) Any node δ of Γv with essential boundary circle is adjacent to two distinct connected
components of Γ◦v.

A tropical morphism f equipped with a phase φ is called the phase-tropical morphism (f, φ).

Note that by the last property the dual graph of Γv does not have edges adjacent to the same
vertex (loop-edges) corresponding to a node with essential boundary circle. Such a case may be
equivalently treated via perturbing v into several vertices via inserting a corresponding length 0
edge for each node of Γv. The slopes of the new edges are determined by the homology classes of
the geodesics Φb′δ

v (bδ) and are allowed to be zero. In the simplification considered in this paper
(restricting to minimal tropical morphisms and coarse phase-tropical limits) we always treat such
edges as having zero length, though in a refined version a length of such an edge may be positive
if it has a zero slope.

Remark 6.3. As in the case of points, one has the notion of real phase of a tropical morphism: a
phase is real if there exists a continuous involution σ : C→ C such that Φv has a real algebraic
lift if σ(v) = v, and Φv =−Φσ(v) if v 6= σ(v).
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Figure 10. Parameterization of a four-valent node.

Example 6.4. Consider a tropical curve C that consists of four lines emanating from the same
point and a tropical morphism f : C→ R2 that maps this curve onto the union of the x- and y-
coordinate axes, see Figure 10. To specify the phase of f we need to choose a conformal structure
on Γv, a sphere punctured four times corresponding to the only vertex v ∈ C and a pluriharmonic
map Φv : Γ◦v→ S1 × S1. If Γv is irreducible then this defines the phase φ completely.

The choice of a conformal structure on Γv is the choice of an element in M0,4 ' CP 1, the
compactified moduli space of rational curves with four marked points. Exactly three of these
structures correspond to a reducible surface Γv = Γ′ ∪ Γ′′ made of two components intersecting
at a node δ. If Γ′ contains two punctures corresponding to the horizontal rays of C then the
boundary circles b′δ and b′′δ are contracted by Φb′δ

v and Φb′′δ
v and define a point in S1 × S1. The

orientation-reversing isometry ρδ can be chosen arbitrarily. For all other reducible cases these
boundary circles define closed geodesics on S1 × S1 which should coincide and thus induce an
orientation-reversing isomorphism ρδ.

Now we are ready to define tropical limits. As usual, it is especially easy to do for
the case of points. For t > 0 we define the renormalization isomorphism Ht : (C∗)n ≈ (C∗)n
(cf. [Mik04, Mik05]) by

Ht(z1, . . . , zn) =
(
|z1|1/log t z1

|z1|
, . . . , |zn|1/log t zn

|zn|

)
. (10)

Let ptj ∈ (C∗)n, tj > 0, j ∈ N be a sequence of points indexed by a sequence of real numbers
tj →+∞.

Definition 6.5. We say that a sequence ptj converges tropically if the limit limj→+∞ Htj (ptj )
exists as a point of (C∗)n. The phase-tropical limit of this sequence is the point p enhanced with
the phase φ(p), where

p= Log
(

lim
j→+∞

Htj (ptj )
)
, φ(p) = lim

j→+∞
Arg(Htj (ptj )) = lim

j→+∞
Arg(ptj ).

Also we say that the point p itself is the tropical limit of ptj .

It is easy to see that in this case p= limj→+∞ Logtj ptj , where Logt(z1, . . . , zn) =
(logt |z1|, . . . , logt |zn|), since

Logt = Log ◦Ht.

Note that the limit depends not only on the sequence of points ptj ∈ (C∗)n, but also on the
parameterizing sequence tj ∈ R.

Let f : C→ Rn be a minimal tropical morphism enhanced with a phase φ. Let U ⊂ Rn be
a convex bounded open set with connected intersection f(C) ∩ U , containing not more than a
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single vertex of f(C) (this vertex may be an image of more than one vertex of C) and such that
its boundary does not contain any such vertex of f(C). Each connected component W of f−1(U)
contains not more than a single vertex v. For any such vertex the phase φ of f associates to v a
Riemann surface Γv and a pluriharmonic map Φv : Γ◦v→ (S1)n. In the case Γv is smooth, we let
ΓW = Γv and ΦW = Φv.

If Γv is not smooth but has nodal points, then we prepare a new smooth surface Γ̂v by
resolving each node, i.e. replacing each node δ with the boundary circle bδ corresponding to this
node, i.e. either side of the isometry (9). In other words Γ̂v is obtained from Γ̄v by identifying
all pairs of vanishing boundary circles with (9). Naturally we have an inclusion Γ◦v ⊂ Γ̂v and a
surjective map

Γ̂v→ Γv
that collapses each boundary circle to a point. Also we have a map

Φ̂v : Γ̂v→ (S1)n

that extends the map Φv from Γ◦v to Γ̂v with the help of the boundary circle isomorphism (9).
In this case we let ΓW = Γ̂v and ΦW = Φ̂v. Note that, in this case, ΓW is not a Riemann surface
in the conventional sense, but Γ◦W = Γ◦v is.

If the connected component W does not contain a vertex then it is an open arc of an edge
e⊂ C. Let v be an endpoint vertex of e. Consider the boundary circle bε ⊂ Γ̄v corresponding to the
edge e. The map Φε : bε→ (S1)n induces a holomorphic map C∗ ≈ bε × R→ (C∗)n by identifying
C∗ with the tangent space of bε and (C∗)n with the tangent space of (S1)n. Composing this
map with Arg, we obtain a pluriharmonic map Φe : C∗→ (S1)n. Note that Φe(C∗) = Φε(bε). We
denote bε × R enhanced with this complex structure (of C∗) by Γe. Note that also we have an
embedding of bε to Γe as well as to Γv for any endpoint v of e. In this case we let ΓW = Γ◦W = Γe
and ΦW = Φe.

Let ftj : Ctj → (C∗)n be a sequence of holomorphic maps from Riemann surfaces Ctj of finite
type. Note that the inverse image f−1

tj (Log−1
tj (U)) is a Riemann surface with finitely many ends

(as we can enlarge U and extend the map f |f−1
tj

(Log−1
tj

(U))).

A map τ : (C∗)n→ (C∗)n defined by (z1, . . . , zn) 7→ (a1z1, . . . , anzn) for some a1, . . . , an > 0
is called a positive multiplicative translation in (C∗)n.

Definition 6.6. We say that f : C→ Rn enhanced with the phase φ is the coarse phase-tropical
limit of ftj if for any choice of open set U ⊂ Rn as above and all sufficiently large tj there is a
one-to-one correspondence between connected components Wtj of f−1

tj (Log−1
tj (U)) and connected

components W of f−1(U) with the following properties of the corresponding components.

• There exists an open embedding ΞWtj :Wtj → ΓW and, for each connected component Γ◦ of
Γ◦W , a holomorphic map

Φ̃Γ◦ : Γ◦→ (C∗)n

such that Arg ◦Φ̃Γ◦ = ΦW |Γ◦ and a sequence of positive multiplicative translations τtj :
(C∗)n→ (C∗)n such that for any z ∈ Γ◦

lim
tj→+∞

τtj ◦ ftj ◦ (ΞWtj )−1(z) = Φ̃Γ◦(z).

In particular, we require that z ∈ ΞWtj (Wtj ) for large tj .

• For any pair of boundary circles b and b′ identified by (8) (in the case when these pair
correspond to an edge of C, i.e. b and b′ are boundary circles for Γ = Γv and Γ′ = Γv′ for
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distinct vertices v, v′) or (9) (in the case when they are vanishing boundary circles for
components Γ and Γ′ of Γ◦v for the same vertex v = v′), any point z ∈ b, any η > 0 and a
sufficiently large tj there exist:

– a point zη ∈ Γ and a point z′η ∈ Γ′;
– a path γη ⊂ Γ̄ connecting zη and z and a path γ′η ⊂ Γ̄′ connecting z′η and z′ = ρe(z) (see

(8)) such that the diameter of Φ̂v(γη)⊂ (S1)n and that of Φ̂v′(γ′η)⊂ (S1)n are less than
η (in the standard product metric on (S1)n);

– a path γtj ⊂ Ctj connecting (Ξvtj )
−1(zη) and (Ξv

′

tj )
−1(z′η) such that the diameter of

Arg(ftj (γtj ))⊂ (S1)n is less than η and the path Logtj ◦ftj ◦ γtj is contained in a small
neighborhood of the interval connecting Logtj (ftj (v)) and Logtj (ftj (v

′)) in Rn.

In plain words, if our open set U ⊂ Rn is disjoint from f(C) then it should not intersect
Logtj (ftj (Ctj )) for large tj . If it intersects f(C) along an interval that is simply covered by
an edge e⊂ C then Log−1

tj (U) ∩ ftj (Ctj ) should be an annulus whose image by Arg is close to
Φe(Γe). Similarly, if this interval is covered by several edges then we should see an annulus for
each such edge. Finally, if U contains a neighborhood of a vertex v ∈ C then there should exist
holomorphic maps Φ̃Γ◦ : Γ◦→ (C∗)n whose argument agrees with the argument of the map to
which Log−1

tj (U) ∩ ftj (Ctj ) accumulates. All these components should glue in accordance with
(8) and (9).

Altogether we may think of Ctj as decomposed into generalized pairs-of-pants (cf. the
discussion preceding Definition 6.2) made from pairs-of-pants (or more general Riemann surfaces)
close to Γv that are glued along embedded circles dual to the edges of C. Existence of paths γδ
ensures that the gluing of these pairs-of-pants agrees with the orientation reversing isometries
specified by the phase φ in the case when these geodesics represent a divisible class in H1((S1)n),
i.e. when the weight of the corresponding edge is greater than 1. If this class is primitive then
this condition holds automatically.

Remark 6.7. In Definition 6.6 we use the term coarse tropical limit as for simplicity we ignore
the issue of non-minimal morphisms by implicit identification of the limit with the corresponding
minimal morphism. This procedure can actually be refined (although we do not need it for this
paper) so that the lengths and the phases of the contracted edges will also be well defined in the
limit, see [Mik].

Example 6.8. Let us consider the tropical morphism f : C→ R2 from Example 6.4, equipped
with a phase Φv : Γ◦v→ S1 × S1 at the only vertex v of C.

We may present this phase-tropical morphism as a phase-tropical limit of a generalized
sequence of holomorphic maps ft : St→ (C∗)2 with St a Riemann surface of genus 0 with four
punctures. For simplicity we rather present (f, φ) as the limit of a family of embedded curves
in (C∗)2 defined by an implicit equation, the passage from one point of view to the other
being straightforward. Note that by definition of Φv, we can see Γ◦v as embedded in (C∗)2 and
Φv = Arg|Γ◦v .

If Γv is irreducible, then Γv = Γ◦v and we choose St = Γv.
Suppose that now Γv is reducible and made of two components Γ′ and Γ′′ intersecting at

a node δ. Both Γ′ and Γ′′ are spheres with two punctures, and we may assume without loss
of generality that Γ′ (respectively Γ′′) has one puncture corresponding to the left-horizontal
(respectively a vertical) ray of C.

If the boundary circle of δ has slope 0, then the pluriharmonic map Φv : Γ◦v→ S1 × S1 extends
to the whole curve Γv = Γ′ ∪ Γ′′. In this case we can still assume that Γv ⊂ (C∗)2, and that it is

74

B. Bertrand, E. Brugallé and G. Mikhalkin
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given by the equation (x− x0)(y − y0) = 0 with (x0, y0) ∈ (C∗)2. We then choose St to be the
algebraic curve given by the equation (x− x0)(y − y0) + t−1 = 0.

If the boundary circle of δ has a non-zero slope, then one cannot extend Φv at the node δ.
If the other puncture of Γ′ corresponds to the down-vertical ray of C, then Γ′\δ (respectively
Γ′′\δ) has an equation of the form 1 + c1x+ c2y = 0 (respectively c1x+ c2y + c3xy = 0) with
c1, c2, c3 ∈ C∗. In this case we choose St to be the algebraic curve given by the equation
1 + c1x+ c2y + e−tc3xy = 0.

In the other case Γ′\δ (respectively Γ′′\δ) has an equation of the form 1 + c1y + c2xy = 0
(respectively 1 + c2xy + c3x= 0) with c1, c2, c3 ∈ C∗, and we choose St to be the algebraic curve
given by the equation 1 + c1y + c2xy + e−tc3x= 0.

In all cases, the phase-tropical morphism (f, φ) is the phase-tropical limit of the curves
St ⊂ (C∗)2.

Also it is worth noting that the tropical limit we define here is defined for convergence in
compact sets in (C∗)n. Thus the limit may have strictly smaller degree than the terms in the
sequence. It is possible to compactify (C∗)n to a toric variety and define convergence there so
that the total degree will be preserved under the limit (some components of the limit will be
contained in the toric divisors). Nevertheless we have the following compactness property once
we allow the limit to have smaller degree.

Proposition 6.9. Let ftj : Ct→ (C∗)n be a (generalized) sequence of holomorphic curves with
tj →+∞, j→+∞. Then there exists a tropical morphism f : C→ Rn and a subsequence of tj
such that f is the coarse phase-tropical limit of the subsequence.

Proof. The proposition is essentially contained in [Mik05, Proposition 8.7]. Indeed, by [Mik05,
Proposition 3.9 and Corollary 8.6] we can extract from the family ft a sequence ftj such that
Logtj (ftj (Ctj )) converges in the Hausdorff metric on compact sets in Rn to a set A that is an
image of a tropical curve.

However, we need convergence not only to a set in Rn but also to a tropical morphism
f : C→ Rn whose image is A. Thus we need to construct such a morphism. For that we need to
know the vertices and the edges of C.

Let p= (p1, . . . , pn) ∈A⊂ Rn be a point and U 3 p be a convex open set such that the closure
Ū is compact, does not contain vertices of A other than p and its intersection with A is connected.
Let p(tj) ∈ Rn

>0 be a sequence whose tropical limit is p, i.e. such that limj→∞ Logtj p
(tj) = p.

For each j we have a positive multiplicative translation

τtj : (z1, . . . , zn)→
(
z1

p
(tj)
1

, . . . ,
zn

p
(tj)
n

)
that is a biholomorphic automorphism of the torus (C∗)n. The projective compactifications of
the curves

τtj ◦ ftj : Ctj → CPn

must contain a converging subsequence. Its limit may be reducible and some of the components
may be contained in the boundary divisors CPn\(C∗)n. The restriction of the limit to (C∗)n
produces a holomorphic map Γ{p(tj)}→ (C∗)n which we can use for Φ̃Γ◦ for every component Γ◦

of Γ◦{p(tj)}. The boundary circles of ΦΓ◦ must be geodesics in (S1)n whose homology classes are
proportional to the slope vectors of the edges of A adjacent to p with positive proportionality
coefficients as any non-proportional class would contradict to the maximum principle. Indeed,
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otherwise we choose a codimension 1 subtorus of (S1)n parallel to the boundary circle, but
transverse to the corresponding edge adjacent to p in Rn. Then some multiplicative translate
of the corresponding codimension 1 complex subgroup of (C∗)n would have to have a negative
intersection point with our curve.

Thus we just need to find sequences {p(tj)} that produce meaningful (in particular, non-
empty) curves Log−1

tj (U) Note that for all but finitely many p the Riemann surface Γ{p(tj)} is a
collection of annuli if U is sufficiently small, no matter what is the approximation {p(tj)} of p.

Indeed, if Γ{p(tj)} has a non-annulus component then by the maximum principle its Euler
characteristic is negative and its image under a character χa1,...,an : (C∗)n→ C∗, (z1, . . . , zn) 7→
za1

1 . . . zann , must have a critical point whenever (a1, . . . , an) is transverse to the edges of A.
However, the algebraic map χa1,...,an ◦ ftj may only have finitely many critical points, so after
passing to a (diagonal) subsequence of tj so that we get a convergence to infinitely many non-
annulus surfaces Γ{p(tj)} we get a contradiction. Since non-annulus irreducible components of
surfaces in (C∗)n have negative Euler characteristic we call them hyperbolic components.

By passing to even smaller open neighborhoods U 3 p if needed we may ensure that each
component of Log−1

tj (U) is an annulus except for finitely many p for sufficiently large tj .
Furthermore, once tj is sufficiently large and U 3 p is sufficiently small we have a natural one-
to-one correspondence between the annuli components of Log−1

tj (U) and the annuli components
of Γ{p(tj)}. In the same time a hyperbolic component of Log−1

tj (U) may correspond to more than
one hyperbolic component of Γ{p(tj)} as it may converge to a reducible curve.

To reconstruct the limiting curve C and the tropical map f : C→A⊂ Rn we take a vertex
v for each hyperbolic component of Log−1

tj (U), and we define f(v) = p and gv as the genus of
this hyperbolic component. The edges of C are obtained by gluing the corresponding annulus
components of Log−1

tj (U) along paths in A. The tropical length on the edges of C comes from
the length of the corresponding edges of A divided by the proportionality coefficient between the
homology class of the boundary circle and the slope vector of the edge of A (a positive integer
number).

This procedure gives the limiting tropical morphism f : C→ Rn for a subsequence ftj :
Ctj → (C∗)n. The limits of hyperbolic components of Log−1

tj (U) in the Deligne–Mumford
compactifications of the corresponding moduli spaces give us (possibly nodal and reducible)
curves Γv. Consider a component Γ◦ of Γ◦v. Choosing a point q ∈ Γ◦ and a family of approximating
points q(tj) in the corresponding hyperbolic component of Log−1

tj (U) we ensure that the curve
Γ◦{ftj (q(tj))} contains Γ◦ as a component. This defines the map Φ̃Γ◦ for the limiting phase-tropical

curve. Note that punctures of Γ◦ with boundary circle of slope 0 are precisely the removable
singularities of the map Φ̃Γ◦ . In other words the boundary circles of a node of Γ has slope 0, and
condition (4) of Definition 6.2 is satisfied. 2

6.2 Rational tropical morphisms as tropical limits
Proposition 6.9 can be reversed in the rational case; any phase-tropical rational morphism can
be presented as a tropical limit of a family of holomorphic curves parameterized by a real
positive parameter. Furthermore, we can do this procedure consistently for all phase-tropical
curve in a neighborhood of (f, φ). For the purpose of this paper it suffices to consider tropical
curves supported on graphs with no vertices of valence higher than 3. With a slight abuse of
terminology (ignoring the ever-present 1-valent leaves) we call such curves 3-valent. For the sake
of shortness in definitions we restrict to this case.

76

B. Bertrand, E. Brugallé and G. Mikhalkin
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Let f : C→ Rn be a 3-valent rational tropical curve and φ be its phase. Choose a reference
vertex v ∈ C. Recall that a neighborhood of f is obtained by varying the image f(v) ∈ Rn as well
as the lengths of the bounded edges of C while keeping the slope vectors of all edges of f(C)
unchanged. Since C is a 3-valent tree, the image f(v) and the length of all edges define f and
so the space of deformation of f is locally Rb+n, where b is the number of the bounded edges.

To define a neighborhood of (f, φ) in the space of phase-tropical curves we take a neighborhood
of f in the space of tropical curves and add to it all phases obtained by sufficiently small
multiplicative translations of Φv : Γv→ (S1)n by (a1, . . . , an) ∈ (C∗)n, |a1|= · · ·= |an|= 1 as
well as small perturbations of the isometry (8) for all bounded edges e. Clearly we get another
b+ n real parameters.

Let us note that the length of each bounded edge e connecting vertices v and v′ has a
preferred direction for deformation, say increasing of its length. Similarly, the orientation-
reversing isometry ρε : bvε ≈ bv

′

ε given by the phase structure φ also has a preferred direction
for deformation. Namely, we may compose ρε with a small translation of the circle bv

′

ε in the
direction coherent with the orientation of bv

′

ε (induced from the complex orientation of Γv′). Note
that this direction of deformation of ρε stays the same if we exchange the roles of v and v′. We
call it the positive twist.

We can couple translation of f(v) in Rn with (arg a1, . . . , arg an) and also couple varying
the lengths of e with varying the isometry (8) so that the positive twist corresponds to increase
of the length. Thus a neighborhood of (f, φ) can be locally identified with Rb+n ⊕ iRb+n = Cb+n.
Recall that b is the number of bounded edges. For a 3-valent tree C it is equal to the number of
ends minus two.

Let us revisit the notion of the degree for a curve and generalize Definition 2.10 to arbitrary
dimension n. Recall (cf. [FM10, Mik, Mik07]) that the degree of f can also be defined by the
following formula:

d=
∑

e∈Vert∞(C)

wf,e
n

max
j=1
{0, sj(e)}, (11)

where s(e) = (sj(e))ns=1 is the slope vector of the end e in the outgoing direction.
As the degree is invariant with respect to permutations of the basic directions

−E1, . . . ,−En,
∑n

j=1 Ej , where (Ej)nj=1 is the standard basis for Rn that are used for the
compactification TPn, we have an alternative formula for computing the degree,

d=
∑

e∈Vert∞(C)

wf,e
n

max
j=1
{sj(e)− sk(e),−sk(e)}, (12)

that holds for any k = 1, . . . , n. It is easy to see that (11) and (12) are consistent for any curve
in Rn that satisfies the balancing condition and that for the case n= 2 these formulas give the
same number as Definition 2.10.

Note that each end of C has to contribute to at least one of these n+ 1 formulas for
degree. Therefore the maximal number of ends for a minimal curve of degree d is (n+ 1)d
and that in the case when we have (n+ 1)d ends the slope vectors of the ends are exactly
−E1, . . . ,−En,

∑n
j=1 Ej . Such curves are called generic at ∞ in Rn.

Let U be a neighborhood of (f : C→ Rn, φ) in the space of phase-tropical curves. Denote by
MC the space of all rational curves in (C∗)n whose collection of boundary circles realizes the
same classes in H1((S1)n) as the ends of the curve f . This means that the homology class of each
boundary circle agrees with the slope vector and the weight of the corresponding end, cf. the
first property imposed by Definition 6.2.
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Theorem 6.10. For all sufficiently large values t� 1 there exists an open embedding Λt : U →
MC such that for any sequence ftj ∈MC , tj →+∞, the following conditions are equivalent.

(i) The sequence ftj converges to a phase-tropical curve (f ′, φ′) ∈ U in the sense of
Definition 6.6.

(ii) For all sufficiently large tj we have ftj ∈ Λtj (U) and

lim
tj→+∞

Λ−1
tj (ftj ) = (f ′, φ′) ∈ U.

(Recall that U may be topologically viewed as an open set in CN for some N .)

In particular this proposition allows us to present any holomorphic curve sufficiently close
to (f, φ) in the tj-framework as Λtj (f ′, φ′) for a phase-tropical curve (f ′, φ′) close to (f, φ).
Proposition 6.10 is true also for curves in higher genus mapping to realizable tropical varieties
under the condition of regularity (which means that the dimension of the deformation space of
the curve is of expected dimension) and is proved in a more general case in [Mik] with some
intermediate generalizations proved in [Mik05, Nis10, NS06, Tyo12]. However, the assumptions
we make in this paper imply that the curve is rational and the target variety is a projective
space (even more specifically in dimension 2 but it does not make much difference). This is an
especially easy case and to prove it under these assumptions it suffices to consider the lines in Pn.

We say that π : (C∗)s−1→ (C∗)n is a multiplicatively affine map if it is obtained by
composition of a multiplicatively linear map (C∗)s−1→ (C∗)n (given by a (s− 1)× n matrix
with integer entries) and an arbitrary multiplicative translation in (C∗)n. Note that π induces a
map πR : Rs−1→ Rn such that Log ◦π = πR ◦ Log, and a map πArg : (S1)s−1→ (S1)n such that
Arg ◦π = πArg ◦Arg. Given a phase-tropical curve (f̃ : C→ Rs−1, φ̃) we may compose it with π
to obtain a phase-tropical curve (f : C→ Rn, φ) with f = πR ◦ f̃ by setting the phase maps Φv

at each vertex v to be the composition maps πArg ◦ Φ̃v. Note that we may assume that n < s,
otherwise all the ends of f(C) must be parallel to a (s− 1)-dimensional affine space in Rn,
so the whole curve f(C) is contained in such space and we may replace the target with this
smaller-dimensional space Rs−1.

We say that a tropical curve f : C→ Rn is a line if it has degree 1 in the natural
compactification TPn ⊃ Rn. A phase-tropical line is a phase-tropical curve of degree 1 (i.e. a
tropical line enhanced with any phase structure).

Lemma 6.11. Let (f : C→ Rn, φ) be a phase-tropical curve where C is a rational tropical curve
with s leaves. Then there exists a phase-tropical line (f̃ : C→ Rs−1, φ̃) generic at ∞ and a
multiplicatively affine map π : (C∗)s−1→ (C∗)n such that π ◦ (f̃ , φ̃) = (f, φ).

If f̃tj : Ctj → (C∗)s−1 is a family of holomorphic curves coarsely converging to (f̃ , φ̃) then

ftj = π ◦ f̃tj coarsely converges to (f, φ).
Furthermore, if U is a small neighborhood of (f, φ) in the space of phase-tropical curves to Rn

then we can find a locus Ũ 3 (f̃ , φ̃) inside the space of deformations of (f̃ , φ̃) and an isomorphism
U ≈ Ũ so that for any (f ′, φ′) ∈ U the corresponding point of Ũ is its lift in the above sense.

Proof. We start by lifting the tropical curve f : C→ Rn to Rs−1. To do this we choose a vertex
v in Vert0(C) and we arbitrarily associate the outgoing unit tangent vectors to the s leaves
of C with the s preferred vectors in Rs−1: E1 = (−1, 0, . . . , 0), . . . , Es−1 = (0, . . . , 0,−1), Es =
(1, . . . , 1). This identification defines slope vectors for the remaining (bounded) edges. Namely,
the tangent vector to a point inside an edge of C can be associated to the sum of the vectors
associated to the leaves of C in the direction of the edge (recall that C is a tree).
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Let us choose a multiplicatively affine map π : (C∗)s−1→ (C∗)n such that πR sends the vector
Ej to the corresponding outgoing unit tangent vector multiplied by its weight. Then we choose
f̃(v) to be an arbitrary point of π−1(f(v)). The slope vectors of the edges along with the tropical
structure on C define f̃ : C→ Rs−1. To lift the phase we choose an arbitrary pluriharmonic map
Φ̃v : Γv→ (S1)s−1 that lifts Φv : Γv→ (S1)n. The isometry (8) defines the lifts of the phases on
the vertices connected to v with a single edge. Inductively we get the lift of the phase.

Note that the only ambiguities in the choice of (f̃ , φ̃) is the choice of a point in π−1(f(v))≈
Rs−1−n and the translation of the phase Φ̃v by the corresponding (s− 1− n)-dimensional
subgroup of the torus (S1)s−1. Taken together these ambiguities form (C∗)s−1−n. 2

Lemma 6.12. Theorem 6.10 holds if U is a small neighborhood of (f : C→ Rn, φ), where
f : C→ Rn is a 3-valent line generic at ∞.

Proof. We prove the lemma by induction on n. Note that for n6 1 the lemma holds trivially.
Consider the multiplicative affine map π : (C∗)n→ (C∗)n−1 (z1, . . . , zn) 7→ (z1, . . . , zn−1). By the
induction hypothesis π(f, φ) is realizable. The map πR|f(C) contracts an end E ⊂ f(C) adjacent to
a leaf (1-valent vertex) u ∈ C. By the 3-valency assumption the point π(f(u)) ∈ π(f(C))⊂ Rn−1

is inside an edge of π(f(C)). Thus it can be obtained as a transverse intersection point of π(f(C))
and a hyperplane {xj = c} ⊂ Rn−1 for some j = 1, . . . , n− 1. Since f(C)⊂ Rn has degree 1 so
has π(f(C)) ∈ Rn−1. Therefore

{π(f(u))}= π(f(C)) ∩ {xj = c}

and the intersection in the right-hand side has tropical intersection number 1.

Let fπt : Cπt → (C∗)n−1 be a sequence of holomorphic curves that converges to π(f, φ). Let
fπ,jt : Cπt → C∗ be the jth coordinate of fπt . We are looking for the family ft converging to (f, φ)
in the form

(fπt , αt
a(fπ,jt − βtc)) : Cπt \{f

π,j
t = βtc}→ (C∗)n,

α, β ∈ C∗, |α|= |β|= 1, a ∈ R.

We set a to be the maximum of the nth coordinate of the contracted edge E ⊂ f(C). This
maximum is attached at the vertex v ∈ C. This ensures the convergence of Logt ◦ft(Cπt \{f

π,j
t =

βtc}) to f as we have

ft(Cπt \{f
π,j
t = βtc})⊂ Pt = {zn = αta(zj − βtc)}

and clearly Logt(Pt) converges to the tropical hyperplane P given by the tropical polynomial
“zn + a(zj + c)” and we have P ⊃ f(C).

It remains to choose the arguments α and β to guarantee convergence at the phase level.
These unit complex numbers are determined by the phase structure φ, namely by its value
Φv : Γv→ (S1)n. As v is 3-valent the Riemann surface Γv is a standard pair-of-pants. The
argument β is determined by the boundary circle of Φv of slope vector −en while the argument
α is determined by the boundary circle of Φv of slope vector −ej . (Recall that we already have
π ◦ Φv compatible with the limit of fπt .) 2

Theorem 6.10 now follows by combining Lemmas 6.11 and 6.12 together.
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7. Tangency conditions in the phase-tropical world

7.1 Proof of Theorems 3.8 and 3.12
Note that the classical number Nd,0(k; d1, . . . , d3d−1−k) does not depend on the choice of
configuration of the k points and 3d− 1− k curves (as long as these constraints are generic
and all the curves we count are regular so that the corresponding enumerative problem is well
defined). Thus we can take a family of constraints Pt, Lt depending on the real parameter t > 1
to compute the (independent of t) number Nd,0(k; d1, . . . , d3d−1−k).

Recall that in the hypothesis of Theorem 3.8 the tropical constraints P, L are already fixed
and they are in tropical general position.

We choose any family Pt so that its tropical limit in the sense of Definition 6.5 is P. It is
easy to see that we can always make such choice. Indeed a point pt ∈ (C∗)2 is determined by
Logt(pt) ∈ Rn and Arg(pt) ∈ S1 × S1. Once we choose an arbitrary phase φ(p) the point pt is
determined by Logt(pt) = p and Arg(pt) = φ(p). We do this for every point p ∈ P.

Consider a tropical curve L from L. Even though this curve is not rational, since it is immersed
to R2, it can still be presented as the tropical limit of a 1-parametric real family of complex curves
in CP2, see [Mik05]. Namely, there exists a phase for L (viewed as an embedding L→ R2) in
the sense of Definition 6.2 and a family Lt ⊂ (C∗)2 such that L is the tropical limit of Lt in the
sense of Definition 6.6.

For construction of Lt in the case of general immersion we refer to [Mik05, Proposition
8.12]. Note that in the case when L→ R2 is an embedding it is especially easy to construct this
approximating family and this can be done directly by patchworking [Vir01] (see also [GKZ94,
Chapters 7 and 11]).

Namely, any embedded tropical curve L⊂ R2 is given by a tropical polynomial

F (x, y) = max
j,k∈Z
{ajk + jx+ ky}= “

∑
j,k∈Z

ajkx
jyk”

in two real variables x, y, where ajk ∈ [−∞,+∞) and ajk =−∞ except for some finitely many
values of (j, k) with j > 0 and k > 0, see [Mik04, Proposition 2.4]. The quotation marks here
signify tropical arithmetic operations, and the formula above can be viewed as the definition of
these operations (addition and multiplication). We set

Ft(z, w) =
∑
j,k∈Z

αjkt
ajkzjwk,

t > 1, where we choose αjk ∈ C with |αjk|= 1 arbitrarily. The function Ft is a polynomial in two
complex variables z, w. We define the curve Lt ⊂ (C∗)2 as the zero set of Ft.

Recall (see [GKZ94, ch. 7]) that the polynomial F defines a subdivision of the Newton polygon

∆F = Convex Hull{(j, k) ∈ Z2 | ajk 6= 0} ⊂ R2.

This subdivision is defined by projections of the faces of the extended Newton polygon ∆̃F of
which is the undergraph of (j, k) 7→ ajk, i.e. the set

∆̃F = Convex Hull
⋃

j,k|ajk 6=0

{(j, k, t) | t6 ajk}.

Recall that the tropical polynomial F is smooth if the projection of each finite face of ∆̃F is a
triangle of area 1

2 (it is easy to see that this area is the minimal possible for a lattice polygon).
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Let (x0, y0) ∈ R2 be a point. Each open set U ⊂ R2 defines a real 1-parametric family of open
sets in (C∗)2

U
(x0,y0)
t = (Logt ◦τ

(x0,y0)
t )−1(U),

where τ (x0,y0)
t : (C∗)2→ (C∗)2 is a coordinatewise multiplication (i.e. multiplicative translation)

by (t−x0 , t−y0). We set L(x0,y0)
t = τ

(x0,y0)
t (Lt).

By definition of tropical hypersurfaces we have (x0, y0) ∈ L if and only if there are at least
two tropical monomials in F that assume the same value at (x0, y0) and have value greater than
the other monomials of F . Note that L(x0,y0)

t is defined by a polynomial F (x0,y0)
t which is obtained

by multiplying the coefficients of the xjyk monomials of Ft by tx0j+y0k. Thus, if (x0, y0) /∈ L, then
for sufficiently large t the absolute value of one monomial in Ft is larger than the sum of the
absolute values of all the other monomials and Ux0,y0

t ∩ Lt = ∅ for any bounded open set U ⊂ R2.
Similarly, if U is bounded, t� 1 is large and (x0, y0) ∈ L, then we have more than one

dominating monomial for F (x0,y0)
t (after division by an appropriate power of t). Furthermore, if

L is smooth, all indices (j, k) ∈∆F of the dominating monomials for F (x,y)
t must be contained in

a lattice triangle of area 1
2 . Thus the convex hull ∆(x0,y0) of such indices is either such a triangle

itself or one of its sides which is an interval of integer length 1.
Consider the truncation

F
(x0,y0)
∆(x0,y0),t

(z, w) =
∑

(j,k)∈∆(x0,y0)

tjx0+ky0αjkt
ajkzjwk,

cf. [Vir01]. Clearly in U
(x0,y0)
t the polynomial F (x0,y0)

t is a small perturbation of F (x0,y0)
∆(x0,y0),t

for

large t. However, if L is smooth, then so is the hypersurface L(x0,y0)
∆(x0,y0),t

defined by F (x0,y0)
∆(x0,y0),t

. Thus

L
(x0,y0)
t ∩ U (x0,y0)

t is a small perturbation of L(x0,y0)
∆(x0,y0),t

∩ U (x0,y0)
t .

Proof of Theorem 3.8. Consider the constraints (Pt, Lt). As in the very beginning of this paper,
we set St = St(d, 0, Pt, Lt) to be the set of all degree d genus 0 curves that are passing through
Pt and tangent to Lt (see § 1). By Proposition 6.9 there exists a tropical limit for a (generalized)
subsequence of St. We note that it must be a curve from ST(d, P, L). To see this we assume
f : C→ R2 is such a limit. Since Pt ⊂ ft(Ct) for some ft : Ct→ (C∗)2 from St we see that
P ⊂ f(C). Let us assume that there exists a line L ∈ L such that f : C→ R2 is not pretangent
to it. In such a case every intersection of L and f(C) is disjoint from the vertices and thus
contained inside the edges of both L and C. Therefore, all intersection points p ∈ f(C) ∩ L must
be transverse intersections of the edges of C and L. However, this means that for sufficiently
large t the intersections of Lt and ft : Ct→ (C∗)2 in Log−1

t (U) are also transverse for any
bounded U 3 p; but therefore all intersection points of Lt and ft(Ct) are transverse, and we
get a contradiction.

Thus any accumulation point of St when t→+∞ must be contained in ST(d, P, L) which is a
finite set of 3-valent curves by Proposition 3.3. In turn, Proposition 6.10 describes all curves that
have a chance to converge to an element f : C→ R2 from ST(d, P, L) through its neighborhood
U in the space of all deformations of f in the class of phase-tropical morphisms. Thus it suffices
to describe those curves from Λt(U) that pass through Pt and are tangent to Lt. We do it below.

Consider a small neighborhood U of f in the space of tropical curves. Such a neighborhood
itself consists of 3-valent curves f ′ ∈ U , f ′ : C ′→ R2. As we have already seen, the curve f ′ ∈ U is
parameterized by R2 × Rb, where b is the number of bounded edges of C, once we fix a reference
vertex v ∈ C. In these coordinates we define the curve f ′ : C ′→ R2 to be such a curve that C ′ is
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isomorphic to the curve C as a graph, the first R2 coordinate corresponds to f ′(v)− f(v) ∈ R2,
and the remaining coordinates correspond to the difference in lengths of the corresponding edges
of C ′ and C. Note that, in these coordinates, f corresponds to the origin of R2 × Rb.

These coordinates are naturally coupled with the coordinates responsible for the phase
structure. For this we choose an arbitrary reference phase-structure φ for f . Namely, the first R2-
coordinates are coupled with the (S1 × S1)-coordinates of the arguments of the same coordinates
in (C∗)2. Each bounded edge defines a parameter for identifying the corresponding boundary
circles. This coordinate couples with the R-coordinate in R2 × Rb corresponding to the same
edge so that the increment in length corresponds to the positive direction of the twist. Together
the coupled coordinates form C∗. Thus the space of all phase-tropical curves corresponding to
tropical curves from U is

U = U × (S1 × S1)× (S1)b

that can be considered as a subspace of (C∗)2 × (C∗)b obtained as Log−1
t (U) for arbitrary t > 1.

By Lemma 3.4 each constraint q ∈ P ∪ L imposes a condition defining a hyperplane (in
the classical sense) Λp with a rational slope in U ⊂ R2 × Rb. Similarly, the space of all phase-
tropical curves that can be approximated by classical curves passing through pt (in the case
when q = p ∈ P) or tangent to Lt (in the case when q = L ∈ L) is defined by a subtorus
Nq ⊂ (S1 × S1)× (S1)b of the same slope as shown below.

Consider a point p ∈ P. The condition that f ′ passes through p is a linear condition on f ′ in
R2 × Rb. It defines a hyperplane (in the classical sense) with a rational slope. The phase φ(p)
must be contained in φ(e) = Φε

v(b
v
ε )⊂ S1 × S1, where e is an edge of C passing through p. This

imposes a linear condition in (S1 × S1)× (S1)b. Note that there might be several edges of C
passing through p but Proposition 3.3 ensures that all such edges have the same slope vector (as
they are connected by a chain in the same line). As φ(e) is an annulus covered wf,e times by bvε ,
the point φ(p) is covered wf,e times.

Let us choose a straight line Gp in U that is transversal to Λp in the sense that the primitive
integer vector parallel to Gp forms an (integer) basis of Z2 × Zb when taken with some integer
vectors parallel to Λp. Such a line can be equipped with a phase that is a geodesic of the same
slope vector in (S1)2 × (S1)b. Together with the phase, the line Gp defines a proper annulus
Gp ⊂ U . The image Λt(Gp) contains some holomorphic curves passing through pt. Their number
is determined by the edges of C passing through p ∈ R2.

We claim that this number is equal to the sum of the weights of all edges of C containing p.
Indeed, this number does not depend on the choice of Gp by topological reasons. Thus we may
choose for Gp the phased straight line obtained by multiplicative translation of (f, φ) by a given
C∗-subgroup of (C∗)2. The points of Λt(Gp) passing through pt will correspond to the points of
bvε covering φ(p).

Consider L ∈ L. First we suppose that the pretangency set consists of a single point v ∈ R2. If
v is a vertex of L we look at the coamoeba of L at v, i.e. the closure φ(v)⊂ S1 × S1 of Arg(Lv∆v

).
As the curve L is smooth, its coamoeba is an image of the coamoeba of a line in (C∗)2 under
a linear automorphism of the torus S1 × S1. This coamoeba consists of two triangles of equal
area cut by three geodesics in the torus whose slope vectors coincide with the slope vectors of
the edges of L adjacent to v. The two triangles share their three vertices; see Figure 11. We call
these three vertices the coamoeba vertices.

The interior of the triangles of the coamoeba correspond to the interior of amoeba of Lv∆v
;

see e.g. the Theorem of [Pas08]. In turn, the logarithmic Gauss map (i.e. the map taking each
point of L to the slope of its tangent space after applying a branch of the holomorphic logarithm
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(a) (b)

Figure 11. Two tangent tropical curves and their phases.

map) on this interior takes imaginary values, see [Mik00, Lemma 3], while the real values are
assumed on the boundary of the amoeba of the line. However, the three arcs of the boundary
of the amoeba are contracted to the coamoeba vertices while three points where the logarithmic
Gauss map takes values equal to the slope vector of the edges adjacent to v are blown up to the
three geodesics on the coamoeba.

However, if the pretangency set is a point, this means that any edge e of C that contains v
cannot be parallel to one of the edges adjacent to v. Therefore φ(e) and φ(v) must intersect in a
coamoeba vertex u, otherwise Ct and Lt cannot be tangent for large t� 1 as there are no nearby
points with the same value of the logarithmic Gauss map. Furthermore, locally near u ∈ S1 × S1,
φ(e) must be contained in the coamoeba Arg(Lv∆v

) as only this arc contains the real value of the
logarithmic Gauss map corresponding to the slope vector of e. This completely determines φ(e)
as well as making a linear condition on the space of phases for Λq ⊂ U .

As before we choose a straight line GL in U transversal to ΛL and a phase for GL that
forms GL ⊂ U . The image Λt(GL) contains some holomorphic curves tangent to Lt. By the same
argument as before, their number is the sum of the weights of all edges of C passing through v.

The situation is similar if v is an image of a vertex ṽ of C and f is an immersion near ṽ.
In this case the coamoeba of the corresponding edge of L must pass through one of the three
coamoeba vertices of the phase of ṽ, the one determined by the slope vector of the edge e of L
containing v. As we assume that L is smooth we have the weight of e as well as the weight of
ΛL equal to 1.

This reasoning can be easily modified to include the case when f is not necessarily an
immersion near ṽ. Consider the linear projection R2→ R such that its kernel is parallel to e.
The exponentiation of this map gives us a multiplicatively linear map π : (C∗)2→ C∗. Let
Ψṽ : Γ◦ṽ→ (C∗)2 be a holomorphic map such that Φṽ = Arg ◦Ψṽ (see Definition 6.2). By the
Riemann–Hurwitz formula, the holomorphic map π ◦Ψṽ : Γ◦ṽ→ C∗ has a unique ramification
point r ∈ Γ◦ṽ (recall that as the vertex ṽ is 3-valent the surface Γ◦ṽ is a pair of pants). Note
that Φṽ(r) must be contained in the phase-boundary circle corresponding to e in order for the
corresponding approximation curves to be tangent.

Let e⊂ C be any edge adjacent to ṽ. Varying the phase structure of C by slightly changing the
orientation-reversing isometry ρe (from Definition 6.2) and applying Λt (from Proposition 6.10)
for large but finite values of t we have a unique curve tangent to Lt, so that the weight of ΛL is
again 1.

Applying Proposition 5.1 inductively we see that the determinant det(Λp1 , . . . , Λpk , ΛL1 , . . . ,
ΛL3d−1−k) computes the number of different phase structures satisfying to the phase tangency
conditions at v. However, the same phase structure is counted several times, once for
every automorphism of our tropical curve f : C→ R2, as inducing a phase structure by an
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automorphism of f gives an isomorphic phase structure. Thus we have to divide the result
by |Aut(f)|.

Finally we consider the general case when the pretangency components are not necessarily
points. Let EL be a pretangency component. This component is a tree (as it is contained in
the tree C). Furthermore, the coamoeba of this component (by which we mean the union of
the argument of phases of all vertices and edges contained in EL) is a circle which we denote
φ(EL)⊂ S1 × S1. Indeed all edges adjacent to a vertex of EL are parallel to the same line, and
therefore the only possible change in coamoeba of an edge in EL is a number of times it runs
through the same circle φ(EL) while the number of times coincides in turn with the weight of
the edge. The same can be said about the coamoeba of the part of L corresponding to the same
pretangency set. To obtain tangencies for Lt and Ct these two coamoebas must coincide.

To compute the weight of ΛL we consider again the properly embedded annulus GL ⊂ U
obtained as a phased straight line in an integer direction transversal to ΛL as well as its image
under Λt for large t� 1.

To compute the number of curves in Λt(GL) tangent to Lt we prepare an auxiliary phase
tropical curve from (f, φ) and EL. Namely we take the subtree CL ⊂ C formed by the closed
edges of C intersecting EL and continue the resulting new 1-valent edges to infinity. This defines
fL : CL→ R2. The phase φ induces a phase φL for fL.

Proposition 6.10 produces a real 1-parametric family of complex curves C(EL)
t whose tropical

limit is fL : CL→ R2. As φL is induced by φ we can compute the weight of ΛL with the help of
C

(EL)
t and a 1-parametric family obtained by multiplicative translation in a direction transversal

to ΛL.
Furthermore, in this computation we can replace the family Lt with the family L(EL)

t obtained
in a similar way as C(EL)

t . Namely we take the subtree EL ⊂ L formed by the closed edges of L
intersecting EL and continue the new 1-valent edges to infinity. Denote the resulting (rational
immersed) tropical curve by LL. Then we take the approximating family L

(EL)
t provided by

Proposition 6.10 for the phase structure induced by that of L.

Then the number of tangencies of C(EL)
t and τλ(L(EL)

t ), the multiplicative translation of L(EL)
t

by λ ∈ GL, can be computed by Euler characteristic calculus as follows. Projection of C(EL)
t and

L
(EL)
t along GL to C∗ allows one to define the fiber product of C(EL)

t and L(EL)
t , which we denote

by At. As there exists infinitely many directions Z-transversal to EL, we may assume that the
direction of GL is not parallel to any edge of L or C.

Note that minus the Euler characteristic of At is equal to the number of tangencies between
C

(EL)
t and τλ(L(EL)

t ), λ ∈ GL, plus a correction term δ at infinity, by the Fubini theorem for the
calculus based on the Euler characteristic (see [Vir88, Theorem 3.A]). The correction at infinity
is computed for each end of L contained in the (classical) line D ⊂ R2 extending the pretangency
set EL. Whenever L has an end contained in D, we add to δ the number of the ends of CL
contained in D and going in the same direction. Since there are two possible infinite directions
in D, δ is the sum of two possible corrections.

Indeed, unless the point of the target C∗ is an image of a tangency point for some λ ∈ GL,
the number of inverse images in the projection At→ C∗ is equal to the product of the degrees
of the projections C(EL)

t → C∗ and L
(EL)
t → C∗. Thus the Euler characteristic of At is equal to

a multiple of χ(C∗) = 0 minus the number of the tangency points in the family parameterized
by λ.
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The Euler characteristic of the fiber product At for large t� 1 can be computed from C
and L. Indeed, each vertex v of L or C (respectively) that belongs to D gives a contribution
to this Euler characteristic of the fiber product At. The contribution is equal to the degree of
projection of C(EL)

t → C∗ or L(EL)
t → C∗ (respectively). In turn this degree can be computed

from f : C→ R2 and L (respectively) and it is equal to the number of intersections of the edges
E of CL and LL (respectively) and the line GvL parallel to GL and passing through v. Each point
of E ∩GvL contributes the corresponding tropical intersection number, i.e. the absolute value of
the determinant of the matrix formed by a primitive integer vector parallel to E and a primitive
integer vector parallel to GL multiplied by the weight of E.

Note that, if E is not contained in D, the corresponding contribution can be excluded from
the Euler characteristic by passing to a smaller surface C(EL)

t or L(EL)
t (respectively) by taking

an intersection with Log−1
t (V ) for a small neighborhood V ⊃D. Indeed this contribution corre-

sponds to tangencies with τλ(L(EL)
t ) for large λ for large t� 1 and λ cannot tend to zero when

t→+∞. Summarizing all contributions together, we get wL from § 3 as the sum of the weights
of the vertices v of L such that v ∈ C, where each weight is equal to the sum of the weights of
CL passing through it plus the number of vertices of C that are mapped on L (as L is embedded
and all its weights are 1) minus the contribution δ at infinity.

To conclude the proof we note that the intersection number of proper submanifolds

Λq ×Nq ⊂ (C∗)2 × (C∗)b = (R2 × Rb)× ((S1 × S1)× (S1)b)

for all q ∈ P ∪ L is determined by their homology classes with closed support and thus coincides
with the corresponding tropical intersection number as both coincide with the same intersection
numbers in H∗((S1 × S1)× (S1)b). Thus each f ∈ ST(d, P, L) contributes µ(P,L)(f) to the
Zeuthen number. 2

Proof of Theorem 3.12. To prove Theorem 3.12 we need to construct a suitable configuration of
immersed complex curves Lj of genus gj starting from our configuration LT

j . Such construction
can be provided by Proposition 6.10 (with large value of t) once we equip each tropical curve LT

j

with the phase structure in the case when the tropical curves LTj are rational, i.e. all gj = 0. In
the general case a family of immersed complex curves Ltj for large t converging to LT

j in the sense
of Definition 6.6 is provided by [Mik05, proof of Theorem 1], more precisely by Proposition 8.23.

The rest of the proof is similar to the proof of Theorem 3.8. The only difference is that the
constraints LT

j no longer have to be smooth near their 3-valent vertices. However, since the curve
is immersed there is always a linear map R2→ R2 such that near that vertex LT

j is the image
of a tropical line in R2. Here the determinant m of this linear map is the multiplicity of our
vertex, cf. [Mik05, Definition 2.16]. The exponent of this map is a multiplicatively linear map
M : (C∗)2→ (C∗)2 of degree m. Note that the genus of the part of Ltj approximating LT

j is zero
by [Mik05, Proposition 8.14]. Taking the pull-back by M we reduce the problem to the case of
smooth curves which is already considered in the proof of Theorem 3.8. 2

7.2 Enumeration of real curves
As already mentioned, the proof of Theorem 3.8 establishes a correspondence between phase-
tropical curves and complex curves close to the tropical limit. In particular, if we choose real
phases for all constraints in (P, L), it is possible to recover all real algebraic curves passing
through a configuration of real points and tangent to a configuration of real lines when these
points and lines are close to the tropical limit.
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Example 7.1. Let us revisit Example 3.7 from a real point of view. For example, if all the three
points in Example 3.7 have phase (1, 1), then the tropical curve in Figure 5 ensures that there
exists a configuration of three points and two lines in RP 2 such that all four conics passing
through these points and tangent to these lines are real. On the other hand, if the middle point
has phase (−1, 1) and the two other points have phase (1, 1), then there exists a corresponding
configuration of three points and two lines in RP 2 such that none of the four conics passing
through these points and tangent to these lines are real.

Example 7.2. One can interpret in tropical terms the method used in [RTV97] to construct a
configuration of five real conics such that all 3264 conics tangent to these five conics are real.
The main step in this construction is to find five real lines L1, . . . , L5 in RP 2 and five points
p1 ∈ L1, . . . , p5 ∈ L5 such that for any set I ⊂ {1, . . . , 5}, all the conics passing through the
points pi, i ∈ I, and tangent to the lines Lj , j ∈ {1, . . . , 5}\I are real. As in [RTV97], let us start
with the configuration depicted in Figure 12(a), whose tropical analog is depicted in Figure 12(b)
(without phase) and Figure 12c (equipped with the appropriate real phases). Next, we perturb
the double lines L2

i as depicted in Figure 12(d) (without phase, the cycle defined by the image
is a twice a line) and Figure 12e (equipped with the appropriate real phases). Then there exist
five families of real conics converging to our five phase conics and producing 3264 real conics as
in [RTV97].

It would be interesting to explore the possible numbers of real conics tangent to five real
conics, in connection to [Ber08] and [Wel06]. In particular, does there exist a configuration of
five real conics, any one of which lying outside the others, such that exactly 32 real conics are
tangent to them?

Note that once the lines and points Li and pi are chosen as above, arguments used in
Example 7.2 also prove the next proposition.

Proposition 7.3. For any 0 6 k 6 5, any d1, . . . , d5−k > 1, and any g1, . . . , g5−k > 0, there
exists a generic configuration of k points p1, . . . , pk in RP 2 and 5− k immersed real algebraic
curves C1, . . . , C5−k with Ci of degree di and genus gi such that all conics passing through
p1, . . . , pk and tangent to C1, . . . , C5−k are real.

For other examples of totally real enumerative problems concerning conics in RPn, see [BP].

8. Floor decompositions

8.1 Motivation
In this section we give a purely combinatorial solution to the computation of characteristic
numbers. To obtain totally combinatorial objects we stretch our configuration of constraints
in the vertical direction, i.e. we only consider configurations (P, L) for which the difference of
the y-coordinates of any two elements of the set P ∪L∈L Vert(L) is very big compared to the
difference of their x-coordinates. For a sufficiently stretched configuration (P, L), tropical
morphisms f : C→ R2 in ST(d, P, L) will have a very simple decomposition into floors linked
together by shafts. Marked floor diagrams and their multiplicities will encode the combinatoric of
these decompositions together with the distribution of f−1(P) and the tangency components of f
with elements of L. In the case where no tangency condition is imposed, these new floor diagrams
get simplified to an equivalent of those introduced in [BM07] and [BM09]. The floor diagrams we
define here allow us to compute characteristic numbers of the plane in terms of a slight
generalization of Hurwitz number. Indeed the multiplicity of a marked floor diagram will be
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(a) (b)

(c)

(e)

(d)

Figure 12. 3264 real conics tangent to five real conics.

expressed in terms of open Hurwitz numbers which appear in two distinct ways in the count of
Nd,0(k; d1, . . . , d3d−1−k). These numbers were introduced in [BBM11]. We give in Appendix the
definitions and result from [BBM11] we need in this paper.

Definition 8.1. An elevator of a tropical morphism f : C→ R2 is an edge e of C with
uf,e =±(0, 1). A shaft of f is a connected component of the topological closure of the union
of all elevators of f . The set of shafts of f : C→ R2 is denoted by Sh(f).

A floor of a tropical morphism f : C→ R2 is a connected component of the topological closure
of C\ Sh(f). The degree of a floor F of f , denoted by deg(F), is the tropical intersection number
of f(F) with a generic vertical line of R2.

Let us illustrate our approach on a simple case. Let us consider L the set composed of the
five tropical lines depicted in Figure 13. The set ST(2, ∅, L) is then reduced to the tropical
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L5

L4

L3

L2

L1

(a) (b)

(c) (d)

Figure 13. A tropical conic tangent to five lines, and its associated marked floor diagram.

morphism f : C→ R2 depicted in Figure 13(b), which is of multiplicity 1. This morphism has
one floor of degree 2, and one shaft made of three elevators. Let us represent the morphism f by
the graph depicted in Figure 13(c), where the black vertex represents the shaft of f , the white
vertex represents the floor of f , and the edge represents the weight 2 elevator of f which join
the shaft and the floor of f . By remembering on this graph how are distributed the tangency
components of f with the lines Li, we obtain the labeled graph depicted in Figure 13(d).

Let us define the two projections πx and πy as follows:

πx : R2 → R and πy : R2 → R
(x, y) 7→ x (x, y) 7→ y.

Our main observation is the following pair of properties.
• The map πx ◦ f restricted to the floor of f is a tropical ramified covering of R of degree 2;

its critical values correspond to the vertical edge of the lines L4 and L5 (see Figure 14).
• The map πy ◦ f restricted to the shaft of f is a tropical morphism with source a tropical

curve with one boundary component; its critical value correspond approximatively to the
horizontal edge of L1; the image of its boundary component corresponds approximatively
to the horizontal edge of L3.

Vice versa, the morphism f : C→ R2 can be reconstructed out of the labeled diagram of
Figure 13(d) in the following way: we first find the tropical solutions of two tropical open Hurwitz
problems, one for the floor of f and one for its shaft; next we glue them according to the elevator
joining this floor and this shaft, and the lines L2 and L3.

The floor of f leads to the Hurwitz number H(2) = 1
2 ; we have two possibilities to attach

the weight 2 elevator; making the floor tangent to L3 gives a factor 1; the Hurwitz number we
have to compute to reconstruct the shaft of f is H(δ, n) = 1

2 where δ(0) = 2, δ(1) = n(1) = 0, and
n(0) = 1 (see Appendix for the definition of Hurwitz numbers); making the shaft tangent to L2

gives us a factor 1; gluing the floor and the shaft along the weight 2 elevator gives an extra factor
2. Hence, the total multiplicity of f is

1
2 × 2× 1× 1

2 × 1× 2 = 1

as expected.
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https://doi.org/10.1112/S0010437X13007409 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007409


2

2

2

2

Figure 14. From characteristic numbers to open Hurwitz numbers.

The next section is devoted to the generalization of the previous computation to arbitrary
degree and set of constrains.

8.2 Floor diagrams
Here we define floor diagrams and their markings. Our definitions are similar in the spirit of those
given in [BM07, BM09], and [FM10], but are somewhat different since our enumerative problems
also involve tangency conditions. For simplicity, we only explain in detail how to turn the problem
of computing the numbers Nd,0(k; 13d−1−k) into the enumeration of marked floor diagrams. The
general computation of the numbers Nd,0(k; d1, . . . , d3d−1−k) in terms of floor diagrams require
no more substantial efforts, but makes the exposition heavier. Hence we restrict ourselves to the
case of tangency with lines, which by (1) is enough to recover all genus 0 characteristic numbers
of CP 2.

The floor diagrams we deal with in this paper underlie bipartite trees, whose vertices are
divided between white and black vertices. As usual, the divergence of a vertex v of D, denoted
by div(v), is the sum of the weight of all its incoming adjacent edges minus the sum of the weight
of all its outgoing adjacent edges.

Definition 8.2. A floor diagram (of genus 0) is an oriented bipartite tree D equipped with a
weight function w : Edge(D)→ Z>0 such that white vertices have positive divergence, and black
vertices have non-positive divergence.

The sum of the divergence of all white vertices is called the degree of D. We denote by
Vert◦(D) the set of white vertices of D, and by Vert•(D) the set of its black vertices.

As explained in § 8.1, a white vertex represents a floor of a tropical morphism, whereas a
black vertex represents one of its shafts.

Example 8.3. All floor diagrams of degree 2 are depicted in Figure 15. We specify the weight of
an edge of D only if this latter is not 1.

Given a vertex v of D, we denote by Vert(v) the set of vertices of D adjacent to v.
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Figure 15. Floor diagrams of degree 2.

Definition 8.4. Let Lcomb t Pcomb be a partition of the set {1, . . . , 3d− 1}. A Lcomb-marking
of a floor diagram D of degree d is a surjective map m : {1, . . . , 3d− 1}→Vert(D) such that.

• For any v ∈Vert(D), the set m−1(v) contains at most one point in Pcomb; moreover, if
v ∈Vert◦(D) and m−1(v) ∩ Pcomb = {i}, then i= min(m−1(v)).

• For any v ∈Vert◦(D), |m−1(v)|= 2 div(v)− 1.

• For any v ∈Vert•(D), |m−1(v)|= val(v)− div(v)− 1; moreover there exists at most one
element i in m−1(v) such that i >maxv′∈Vert(v) min(m−1(v′)), and if such an element exists
then we have m−1(v) ∩ Pcomb = ∅.

Two Lcomb-markings m : {1, . . . , 3d− 1}→Vert(D) and m′ : {1, . . . , 3d− 1}→Vert(D′) are
isomorphic if there exists an isomorphism of bipartite graphs φ :D→D′ such that m=m′ ◦ φ.
In this text, Lcomb-marked floor diagrams are considered up to isomorphism.

The set {1, . . . , 3d− 1} represents the configuration of constraints in the increasing height
order (see § 8.1), the set Lcomb represents the lines in the configuration, and the set Pcomb

represents the points. Note that, unlike [BM07, BM09, FM10], we do not consider the partial
order on D defined by its orientation. In particular, it makes no sense here to require the marking
m to be an increasing map.

In order to define the multiplicity of an Lcomb-marked floor diagram, we first define the
multiplicity of a vertex of D. Recall that the definitions of open Hurwitz numbers H(δ, n) and
Hurwitz numbers H(d) =H(d, 0) are given in Definition A.1.

Definition 8.5. The multiplicity of a vertex v in Vert◦(D) is defined as follows.

• If min(m−1(v)) ∈ Pcomb, then

µLcomb(v) = div(v)val(v)+1H(div(v)).

• Otherwise,

µLcomb(v) = (div(v)− 2 + val(v)) div(v)val(v)H(div(v)).

Example 8.6. We give in Figure 16 some examples of multiplicities of white vertices of a marked
floor diagram. The corresponding Hurwitz numbers are given in Proposition A.3. We write the
elements of m−1(v) close to the vertex v.

The definition of the multiplicity of a black vertex v of D requires a preliminary construction.
The order on {1, . . . , 3d− 1} induces an order on Vert(v) via the map v′ 7→min(m−1(v′)). Note
that this order doesn’t have to be compatible with the orientation of D. Let us denote by
v′1 < · · ·< v′s the elements of Vert(v) according to this order. We denote by ei the edge of D
joining the vertices v and v′i, and define εi = 1 if ei is oriented toward v, and εi =−1 otherwise.
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Figure 16. Example of multiplicities of white vertices of D.

Given j ∈m−1(v), we define the integer ij by:
ij = 0 if j <min(m−1(v′1));
ij = i if min(m−1(v′i))< j <min(m−1(v′i+1));
ij = s if j >min(m−1(v′s)).

We define two functions δ, ñ : {0, . . . , s}→ Z by:
• δ(0) =−div(v),
δ(i+ 1) = δ(i) + εi+1w(ei+1);

• ñ(i) = |{j ∈m−1(v) | ij = i}|.
Given i0 ∈ {0, . . . , s}, we define the function ni0 : {0, . . . , s}→ Z>0 by ni0(i0) = ñ(i0)− 1 and
ni0(i) = ñ(i) if i 6= i0. Finally, we define Ñ(i) =

∑i
l=0 ñ(l) and Ñ(−1) = 0.

Definition 8.7. The multiplicity of a vertex v in Vert•(D) is defined by the following rules.
• If m−1(v) ∩ Pcomb = {j}, then

µLcomb(v) = δ(ij)H(δ, nij ).

• If m−1(v) ∩ Pcomb = ∅ and m−1(v) contains an element j such that j >maxv′∈Vert(v)

min(m−1(v′)), then
µLcomb(v) = (2 val(v)− 2)H(δ, ns).

• Otherwise,

µLcomb(v) =
1
2

s∑
i=0

(ñ(i)(2δ(i) + 2i+ Ñ(i) + Ñ(i− 1)− 1 + 2 div(v))H(δ, ni)).

Example 8.8. We give in Figure 17 some examples of multiplicities of black vertices of a marked
floor diagram. The corresponding open Hurwitz numbers are given in Proposition A.3 and
Example A.6.

Definition 8.9. The multiplicity of an Lcomb-marked floor diagram is defined as

µLcomb(D, m) =
∏

e∈Edge(D)

w(e)
∏

v∈Vert(D)

µLcomb(v).

Note that µLcomb(D, m) can be equal to 0.

Example 8.10. We give in Figure 18 a few examples of multiplicities of Lcomb-marked floor
diagrams.

The next theorem is a direct consequence of Proposition 8.21 and Theorem 3.8.
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Figure 17. Example of multiplicities of black vertices of D.

Figure 18. Example of multiplicities of Lcomb-marked floor diagrams.

Theorem 8.11. For any d> 1, k > 0, and Lcomb ⊂ {1, . . . , 3d− 1} of cardinal 3d− 1− k, we
have

Nd,0(k; 13d−1−k) =
∑

µLcomb(D, m)

where the sum ranges over all Lcomb-marked floor diagrams of degree d.

Note that in the case k = 3d− 1, Theorem 8.11 agrees with [BM07, Theorem 1] and [BM09,
Theorem 3.6]. Indeed, a ∅-marked floor diagram has non-null multiplicity if and only if the
marking is increasing with respect to the partial order on D defined by its orientation; in this
case, according to Example A.2, the different definitions of multiplicity of a marked floor diagram
coincide.

Example 8.12. We first compute the numbers N2,0(k; 15−k), with Lcomb = {k + 1, . . . , 5}. In each
case, there is exactly one marked floor diagram of positive multiplicity, depicted in Figure 19.

Example 8.13. In order to get used with floor diagrams, we compute again the numbers
N2,0(k; 15−k), using now Lcomb = {1, . . . , 5− k}. In this case we have one (respectively 3, and 2)
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Figure 19. Computation of N2,0(k; 15−k) with Lcomb = {k + 1, . . . , 5}.

Figure 20. Computation of N2,0(k; 15−k) with Lcomb = {1, . . . , 5− k}.

marked floor diagrams of positive multiplicity for k = 5, 4, 1, and 0 (respectively 3, and 2).
These marked floor diagrams are depicted in Figure 20.

Example 8.14. Figure 21 represents all marked floor diagrams of degree 3 with positive
multiplicity when Lcomb = {2, . . . , 8}. Hence there are exactly 600 rational cubics passing
through one point and tangent to seven lines.

Example 8.15. We give in Figure 22 the sum of multiplicities of floor diagrams of degree 3 with
Lcomb = {1, 2, 3, 4, 6}, when this sum is positive. In particular, we find that there are exactly 712
rational cubics passing through three points and tangent to five lines.

8.3 Proof of Theorem 8.11
The strategy of the proof of Theorem 8.11 is the same as in the proof of [BM09, Theorem 3.6]:
we first prove that if points in P, and vertices of elements of L, lie in some strip I × R, then all
the vertices of a curve in ST(d, P, L) tangent to L also lie in the strip I × R. As a consequence,
if the configuration (P, L) is sufficiently stretched in the vertical direction, then all floors of a
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b, c, d b, c, d b, c, d

b, c, d

Figure 21. Computation of N3,0(1; 17) = 600 with Lcomb = {2, . . . , 8}.

Figure 22. Computation of N3,0(3; 15) = 712 with Lcomb = {1, 2, 3, 4, 6}.
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Li

Figure 23. No vertex v ∈Vert0(C) with f(v)< a if f is tangent to L.

curve in ST(d, P, L) tangent to L contain exactly one horizontal constraint. It will then remain
to study how the constraints can be distributed among the floors and the shafts of the tropical
curves we are counting.

The rest of this section is devoted to make precise the latter explanations.
From now on, we fix I = [a; b]⊂ R a bounded interval, and a generic configuration (P, L)

where P = {p1, . . . , pk} and L= {L1, . . . , L3d−1−k} is a set of 3d− 1 + k tropical lines in R2.
We denote by ηi the vertex of the line Li. Recall that an element of ST(d, P, L) with positive
(P, L)-multiplicity is called tangent to L.

Lemma 8.16. Suppose that P
⋃
{η1, . . . , η3d−1−k} ⊂ I × R. Then for any tropical morphism

f : C→ R2 in ST(d, P, L) tangent to L, and for any vertex v ∈Vert0(C), we have f(v) ∈ I × R.

Proof. The proof follows the same lines as the proof of [BM09, Proposition 5.3]. Suppose that
there exists a tropical morphism f : C→ R2 in ST(d, P, L) and a vertex v in Vert0(C) such that
f(v) = (xv, yv) with xv < a. We can choose v such that no vertex of C is mapped by f to the
half-plane {(x, y) | x < xv}. Since the configuration (P, L) is generic, the set ST(d, P, L) is finite
and v is a trivalent vertex of C. Hence, the proof of [BM09, Proposition 5.3] shows that v is
adjacent to an end e of direction (−1, 0), and two other edges of direction (0,±1) and (1, α),
and that one line Li has its horizontal edge passing through f(v) (see Figure 23). Thus, e ∪ v is
the pretangency component of f with Li, and µLi(f) = 0.

The case where there exist an element f : C→ R2 in ST(d, P, L) and a vertex v in Vert0(C)
such that f(v) = (xv, yv) with xv > b works analogously. 2

Recall that pretangency sets are defined in § 3.1. A line L ∈ L is called a vertical constraint
(respectively a horizontal constraint) of a morphism f ∈ ST(d, P, L) if the pretangency set of f
and L is (respectively is not) contained in the vertical edge of L. A point in P is at the same
time a horizontal and a vertical constraint of any morphism f ∈ ST(d, P, L). We say that a floor
F (respectively a shaft S) of f matches the constraint q ∈ P ∪ L if F (respectively S) contains
f−1(q) or contains the pretangency component of f with q.

Corollary 8.17. If the points in P
⋃
{η1, . . . , η3d−1−k} are in I × R and far enough apart,

then any floor of any tropical morphism f : C→ R2 in ST(d, P, L) tangent to L matches at most
one horizontal constraint.

Proof. If e is an edge of C with uf,e 6= (0,±1), then the slope of f(e) is uniformly bounded in
terms of the degree of f . Hence, the result is an immediate consequence of Lemma 8.16. 2

Definition 8.18. We say that a generic configuration (P, L) is vertically stretched if it satisfies
the hypothesis of Corollary 8.17.
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To any morphism f : C→ R2 in ST(d, P, L), we can naturally associate a floor diagram Df
of degree d in the following way: white vertices of Df correspond to floors of C, black vertices
correspond to shafts of C, and a white vertex and a black vertex of Df are joined by an edge of
weight w if and only if the corresponding floor and shaft are joined by an elevator of weight w;
an elevator of C has an orientation inherited from the standard orientation of the line {x= 0}
in R2, and edges of Df inherits this orientation as well. Given a shaft S of f , we define l(S) to
be the sum of the number of floors of C adjacent to S and the number of ends of C contained in
S. In other words, if S corresponds to the black vertex vS of Df , then l(S) = val(vS)− div(vS).

Corollary 8.19. Let (P, L) be a vertically stretched configuration of constraints and let f be
an element of ST(d, P, L) tangent to L. Then we have the following.

• Any floor F of f matches exactly 2 deg(F)− 1 constraints, and exactly one of them is
horizontal.

• Any shaft S matches exactly l(S)− 1 constraints, and exactly one of them is vertical.

Proof. A floor F and a shaft S of f have respectively exactly 2 deg(F)− 2 and l(S)− 2
vertices, since πx ◦ f|F : F → R and πy ◦ f|S : S→ R are tropical (open) ramified coverings with
respectively 2 deg(F) and l(S) ends. According to Corollary 8.17, a floor F matches at most one
horizontal constraint so F matches at most 2 deg(F)− 1 constraints. Since the configuration
(P, L) is generic, a shaft S matches at most one vertical constraint, and hence at most l(S)− 1
constraints. All together, we get the inequality∑

F
(2 deg(F)− 1) +

∑
S

(l(S)− 1) 6 3d− 1.

We have∑
F

(2 deg(F)− 1) +
∑
S

(l(S)− 1) = 2d− |Vert•(Df )| − |Vert◦(Df )|+
∑

v∈Vert•(Df )

val(v) + d

and the fact that Df is a bipartite tree gives us

|Vert•(Df )|+ |Vert◦(Df )| −
∑

v∈Vert•(Df )

val(v) = |Vert•(Df )|+ |Vert◦(Df )| − |Edge(Df )|= 1

so we obtain ∑
F

(2 deg(F)− 1) +
∑
S

(l(S)− 1) = 3d− 1.

Hence all the inequalities above are, in fact, equalities. 2

The set P ∪ {η1, . . . , η3d−k−1} inherits a total order from the map πy, and we relabel elements
of this set by q1 < · · ·< q3d−1. We define the set Lcomb ⊂ {1, . . . , 3d− 1} by

i ∈ Lcomb⇐⇒ qi ∈ L.

Given a morphism f : C→ R2 in ST(d, P, L), we define a map mf : {1, . . . , 3d− 1}→Df by

mf (i) = v⇐⇒ the floor or shaft of C corresponding to v matches qi.

Lemma 8.20. Let (P, L) be a vertically stretched configuration of constraints. If f is tangent
to L, then (Df , mf ) is an Lcomb-marked floor diagram of degree d.

Proof. This is an immediate consequence of Corollary 8.19 and the genericity of the configuration
(P, L). 2

96

B. Bertrand, E. Brugallé and G. Mikhalkin
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Hence we have constructed a map φ(P,L) which maps an element of f ∈ ST(d, P, L) tangent
to L to the Lcomb-marked floor diagram (Df , mf ). Theorem 8.11 is a direct consequence of
Theorem 3.8 and of the following proposition.

Proposition 8.21. Let (P, L) be a vertically stretched configuration of constraints. For any
Lcomb marked floor diagram (D, m) of degree d, we have∑

f∈φ−1
(P,L)(D,m)

µ(P,L)(f) = µLcomb(D, m).

Proof. Let (D, m) be a Lcomb-marked floor diagram. We start with two easy observations. Given
a tropical morphism f ∈ φ−1

(P,L)(D, m) and v ∈Vert◦(D) corresponding to the floor Fv of f , then
the horizontal constraint matched by Fv is qmin(m−1(v)). If v ∈Vert•(D) corresponds to the shaft
Sv of f , then the vertical constraint matched by Sv is:

(i) the point qiv in P where iv is the unique element of m−1(v) ∩ Pcomb if this set is non-empty;

(ii) the line qiv in L where iv = max(m−1(v)) if iv >maxv′∈Vert(v) min((m−1(v′)));

(iii) a line qiv where iv ∈m−1(v), otherwise.

Hence, we see that the horizontal constraint matched by Sv is not determined by D only in case
(iii) above. We denote by Vert•,3(D) the subset of Vert•(D) composed of vertices in this case.

Given ε > 0 and p ∈ P (respectively L ∈ L with vertex η), we denote by Iε,p (respectively
Iε,L) the interval of R centered in πy(p) (respectively πy(η)) and of length ε. Let us denote by
q′1 < · · ·< q′val(v) the elements of P ∪ L which are horizontal constraints for a floor of f adjacent
to the shaft Sv, and by xi the center of the interval Iε,q′i . We define the set QT to be the set
of centers of all intervals Iε,L with L a non-vertical constraint of Sv matched by Sv. Now we
can consider the set HT(δ, niv) corresponding to the points xi and the set QT (see Appendix
for the definition of HT, and Definition 8.7 for the definition of δ and niv). Since the points of
P ∪ {η1, . . . , η3d−1−k} are contained in the strip I × R and very far apart, Lemma 8.16 tells us
that there exists ε > 0 depending only on a,b, and d (in particular independent on f , P, and L),
such that the following hold.

• If v′ is a vertex of Sv such that f(v′) ∈ L ∈ L with L 6= qiv , then πy ◦ f(v′) ∈ Iε,L.

• If v′ is a vertex of Sv which is also a vertex of a floor matching the horizontal constraint q,
then πy ◦ f(v′) ∈ Iε,q.

• If q 6= q′, then Iε,q ∩ Iε,q′ = ∅.
Hence, there exists a unique element g of HT(δ, niv) which can be obtained from a deformation
(gt : C ′t→ R2)t∈[0;1] of the restriction f|Sv in its deformation space such that gt(Vert(C ′t))⊂⋃
q∈P∪L Iε,q for all t. Moreover, when f ranges over all elements of φ−1

(P,L)(D, m) with fixed
iv, there is a natural bijection between all possible restrictions f|Sv and the set HT(δ, niv).

Once again, since the points of P ∪ {η1, . . . , η3d−1−k} are contained in the strip I × R and
very far apart, to construct a morphism f in φ−1

(P,L)(D, m), it is enough to construct independently
the restriction of f on the floors and on the shafts of C, and to glue all these pieces together along
elevators. It follows from Definition 8.7, Proposition 5.1, and Theorem A.5, that the contribution
of a vertex v ∈Vert•(D)\Vert•,3(D) is equal to µLcomb(v). In the case of a vertex v ∈Vert•,3(D),
an easy Euler characteristic computation and (2) for the weight associated to a tangency show
that the contribution of v with a fixed iv is, in the notation of Definition 8.7,

ri,vH(δ, niv)
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where riv = (δ(iv) + i+ |{i ∈m−1(v) | i < iv}|+ div(v)). Hence, according to Lemma 8.22,
the sum of the (P, L)-multiplicity of all morphisms f ∈ φ−1

(P,L)(D, m) with fixed iv for all
v ∈Vert•,3(D) is exactly∏

e∈Edge(D)

w(e)
∏

v∈Vert(D)\Vert•,3(D)

µLcomb(v)
∏

v∈Vert•,3(D)

(rivH(δ, niv)).

Given v ∈Vert•,3(D), we have∑
iv

(rivH(δ, niv))

=
s∑
i=0

((
ñ(i)(δ(i) + i+ div(v)) +

Ñ(i)−1∑
j=Ñ(i−1)

j

)
H(δ, ni)

)

=
s∑
i=0

((
ñ(i)(δ(i) + i+ div(v)) +

Ñ(i)2 − Ñ(i− 1)2 − (Ñ(i)− Ñ(i− 1))
2

)
H(δ, ni)

)
= µLcomb(v).

Hence we have ∑
f∈φ−1

(P,L)(D,m)

µ(P,L)(f) =
∏

e∈Edge(D)

w(e)
∏

v∈Vert(D)

µLcomb(v) = µLcomb(D, m),

as desired. 2

Lemma 8.22. Let dv > 1 and w1, . . . , wl > 0 be integer numbers. Choose a generic configuration
(P, L) of constraints such that P = {p1, . . . , pl} ⊂ I × R, and L= {L1, . . . , L2dv−2} ⊂ I × R is
a set of vertical lines. Choose also a point p0 ∈ I × R and a tropical line L0 whose vertex η0 is in
I × R such that the configuration (P ∪ {p0}, L ∪ {L0}) is generic. Suppose that the points pi
and η0 are very far apart, and denote by Cp0(2dv + l, P, L) (respectively CL0(2dv + l, P, L)) the
set of all minimal tropical morphisms f : C→ R2 such that the following hold:

(i) C has l ends of direction (0,±1); given such an end e of C, f(e) passes through one point
pi of P, and wf,e = wi;

(ii) C has dv ends of direction (−1, 0) and weight 1, and dv ends of direction (1, 1) and weight 1;

(iii) f is pretangent to all lines in L;

(iv) f passes through p0 (respectively is pretangent to L0).

Then ∑
f∈Cp0 (2dv+l,P,L)

µ(P∪p0,L)(f) = dl+1
v H(dv)

∏
e∈Edge∞(C),uf,e=(0,±1)

w(e)

and ∑
f∈CL0 (2dv+l,P,L)

µ(P,L∪L0)(f) = (l − 2 + dv)dlvH(dv)
∏

e∈Edge∞(C),uf,e=(0,±1)

w(e).

Moreover, any tropical morphism f ∈ Cp0(2dv + l, P, L) (respectively f ∈ CL0(2dv + l, P, L)) has
exactly one floor, and this floor matches p0 (respectively L0).

Proof. The fact that f has only one floor is straightforward: C has 2dv + l − 2 vertices, exactly
l of which are adjacent to a vertical end of C, so C has exactly one vertex mapped to each
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line Li, i > 0; in particular, it has no other vertical edge than its vertical ends. Since the floor of
f has to match a horizontal constraint, it matches necessarily p0 or L0.

In the following, we use the notations of Appendix. Let us denote by QT the set of intersection
points of all tropical lines Li with {y = 0} when i > 0, and let us consider the set HT(δ, n) with
s= 0, δ(0) = dv, and n(0) = 2dv − 2. Let us fix an element f0 : C0→{y = 0}= R in HT(δ, n).
Consider a sequence of l open tropical modifications π : C1→ C0, and a minimal tropical
morphism f1 : C1→ R2 satisfying conditions (i)–(iii) such that πx ◦ f1 = f0 ◦ π. Composing
f1 with a translation in the (0, 1) direction, we construct a finite number of elements of
Cp0(2dv + l, P, L) and CL0(2dv + l, P, L).

• To construct an element of Cp0(2dv + l, P, L), we have to make one of the edges of C1

pass through p0. Once this is done, the orientation of the curve C1 defined in § 5 is as follows: the
rays emanating from p0 are oriented away from p0, and exactly one edge e with uf1,e 6= (0,±1) is
oriented toward v1 at a vertex v1 of C1. Hence the multiplicity of such a vertex v1 is µ(v1) = |α| if
uf1,e = (α, β). The multiplicity can then be computed via Proposition 5.1. Notice that for a given
choice of morphism f0, and every thing being fixed but for one vertical edge (respectively the
edge containing the marked point), summing the corresponding µ(v1) (respectively weights of the
supporting edges) over all the possible choices, one gets a factor dv. Thus adding the (P ∪ p0, L)-
multiplicity of all possible morphisms f1 constructed in this way starting with a fixed f0, we
obtain dl+1

v µH(f0). Considering all possible tropical morphisms f0 ∈HT(δ, n), Theorem A.5 tells
us that we obtain ∑

f∈Cp0 (2dv+l,P,L)

µ(P∪p0,L)(f) = dl+1
v H(dv)

∏
e∈Edge∞(C),uf,e=(0,±1)

w(e).

• To construct an element of CL0(2dv + l, P, L), we have two possibilities: either f1(C1)
passes through the vertex η0 of L0, or a vertex of C1 is mapped to L0. Once this is done, the
orientation of the curve C1 defined in § 5 is as follows (E0 denotes the union of all pretangency
components of f1 with L0): an edge e with uf1,e 6= (0,±1) intersecting E0 but not included in
E0 is oriented away from E0, and exactly one edge e with uf1,e 6= (0,±1) is oriented toward
v1 at a vertex v1 of C1\E0. Note that if there exists an end of C1 with direction (−1, 0) or
(1, 1) and intersecting E0 in infinitely many points, then µ(P,L∪L0)(f1) = 0. Hence, adding the
(P, L ∪ L0)-multiplicity of all possible morphisms f1 constructed in this way starting with a
fixed f0, we obtain dlvKµH(f0), where K = dv + |Vert0(C1)| − 2dv = l − 2 + dv. Considering all
possible tropical morphisms f0 ∈HT(δ, n), Theorem A.5 tells us that we obtain∑

f∈CL0 (2dv+l,P,L)

µ(P,L∪L0)(f) = (l − 2 + dv)dlvH(dv)
∏

e∈Edge∞(C),uf,e=(0,±1)

w(e).

Hence the lemma is proved. 2
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Appendix. Open Hurwitz numbers

We recall here the definition of open Hurwitz numbers. These numbers were introduced
in [BBM11] and are a slight generalization of well-known Hurwitz numbers. For simplicity, we
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restrict ourselves to the special cases we need in this paper. We refer to [BBM11] for more details
and examples about open Hurwitz numbers and their tropical counterpart (see also [CJM10]).

Let s> 0 be an integer number, and δ, n : {0, . . . , s}→ Z>0 be two functions. Choose a
collection of s embedded circles c1, . . . , cs in the sphere S2 such that c1 (respectively cs) bounds
a disk D0 (respectively Ds), and ci and ci+1 bound an annulus Di for 1 6 i6 s− 1. Choose also
a collection Q of points in S2\

⋃s
i=1 ci, such that each Di contains exactly n(i) points of Q. Let

us consider the set H(δ, n) of all equivalence class of ramified coverings f : Σ→ S2 where the
following hold:

• Σ is a connected compact oriented surface of genus 0 with s boundary components;

• f(∂Σ)⊂
⋃s
i=1 ci;

• f is unramified over S2\Q;

• f|f−1(Di) has degree δ(i) for each i;

• each point in Q is a simple critical value of f ;

• for each circle ci, the set f−1(ci) contains exactly one connected component c of ∂Σ, and
f|c : c→ ci is an unramified covering of degree |δ(i)− δ(i− 1)|.

Two continuous maps f : Σ→ S2 and f ′ : Σ′→ S2 are considered equivalent if there exists a
homeomorphism Φ : Σ→ Σ′ such that f ′ ◦ Φ = f .

Note that the cardinal of the set Q is prescribed by the Riemann–Hurwitz formula

|Q|= δ(0) + δ(s) + s− 2.

Definition A.1. The open Hurwitz number H(δ, n) is defined as:

H(δ, n) =
∑

f∈H(δ,n)

1
|Aut(f)|

.

Note that we can naturally extend the definition of the numbers H(δ, n) to the case where
δ : {0, . . . , s}→ Z is any function by setting

H(δ, n) = 0 if Im δ * Z>0.

Example A.2. If s= 2, δ(0) = δ(2) = n(0) = n(1) = n(2) = 0, and δ(1) = d, one computes easily

H(δ, n) =
1
d
.

In the special case where s= 0, we recover the usual Hurwitz numbers. In particular δ is just
a positive integer number, the degree of the maps we are counting and that we just denote by
d. We simply denote this Hurwitz number by H(d).

Proposition A.3 (Hurwitz). For any d> 1, then

H(d) =
dd−3(2d− 2)!

d!
.

Let us now define tropical open Hurwitz numbers, and let us relate them to the open
Hurwitz numbers we have just defined. Recall that we have chosen s> 0 an integer number,
and δ, n : {0, . . . , s}→ Z>0 two functions.

Choose a collection of s points x1 < · · ·< xs in R, and define DT
0 = (−∞; x1), DT

i = (xi, xi+1),
and DT

s = (xs;−∞). Choose another collection of points QT in R\{x1, . . . , xs}, such that each
DT
i contains exactly n(i) points of QT. Let us consider the set HT(δ, n) of all equivalence class
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of minimal tropical morphisms f : C→ R where the following hold:

• C is a rational tropical curve with s boundary components;

• f(∂C)⊂ {x1, . . . , xs};
• f(Vert0(C))⊂QT;

• given 0 6 i6 s and p ∈ DT
i , if we denote by e1, . . . , er the edges of C which contain a point

of f−1(p), then we have
∑r

j=1 wf,ej = δ(i);

• for each p ∈QT, f−1(p) contains exactly one element of Vert0(C), which is a 3-valent vertex
of C;

• for each 1 6 i6 s, the set f−1(xi) contains exactly one boundary component of C, adjacent
to an edge of weight |δ(i)− δ(i+ 1)|;

• each end of C is of weight 1.

As previously, two tropical morphisms f : C→ R and f ′ : C ′ :→ R are considered equivalent if
there exists a tropical isomorphism Φ : C→ C ′ such that f ′ ◦ Φ = φ ◦ f .

Once again, we have

|QT|= δ(0) + δ(s) + s− 2.

Given v a puncture of C adjacent to the end e, we set wf,v = wf,e, and we define wf,∞ as
the product of the weights wf,v when v ranges over all punctures of C. The multiplicity of an
element of HT(δ, n) is then defined as

µH(f) =

∏
e∈Edge(C) wf,e

wf,∞
.

Definition A.4. The tropical open Hurwitz number HT(δ, n) is defined as

HT(δ, n) =
∑

f∈HT(δ,n)

1
|Aut(f)|

µH(f).

As previously we extend the definition of the numbers HT(δ, n) by setting

HT(δ, n) = 0 if Im δ * Z>0.

Theorem A.5 [BBM11, Theorem 2.11]. For any two functions δ : {0, . . . , s}→ Z and n :
{0, . . . , s}→ Z>0, we have

H(δ, n) =HT(δ, n).

Example A.6. Using Theorem A.5 we compute easily the following open Hurwitz numbers:
if s= 1, δ(0) = 2, δ(1) = 0, n(0) = 1, n(1) = 0, then H(δ, n) = 1

2 ;
if s= 2, δ(0) = 1, δ(1) = 2, δ(2) = 0, n(0) = n(2) = 0, n(1) = 1, then H(δ, n) = 1;
if s= 1, δ(0) = 3, δ(1) = 0, n(0) = 2, n(1) = 0, then H(δ, n) = 1.
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BM07 E. Brugallé and G. Mikhalkin, Enumeration of curves via floor diagrams, C. R. Math. Acad.

Sci. Paris 345 (2007), 329–334.
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