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Abstract

Coastal morphological changes can be assessed using shoreline position observations from
space. However, satellite-derived waterline (SDW) and shoreline (SDS; SDW corrected for
hydrodynamic contributions and outliers) detection methods are subject to several sources of
uncertainty and inaccuracy. We extracted high-spatiotemporal-resolution (~50 m-monthly)
time series ofmean highwater shoreline position along the Columbia River Littoral Cell (CRLC),
located on the US Pacific Northwest coast, from Landsat missions (1984–2021). We examined
the accuracy of the SDS time series along themesotidal, mildly sloping, high-energywave climate
and dissipative beaches of theCRLCby validating them against 20 years of quarterly in situ beach
elevation profiles. We found that the accuracy of the SDS time series heavily depends on the
capability to identify and remove outliers and correct the biases stemming from tides and wave
runup. However, we show that only correcting the SDW data for outliers is sufficient to
accurately measure shoreline change trends along the CRLC. Ultimately, the SDS change trends
show strong agreement with in situ data, facilitating the spatiotemporal analysis of coastal
change and highlighting an overall accretion signal along the CRLCduring the past four decades.

Impact statement

Coastal environments, particularly sandy beaches, are constantly changing on various temporal
and spatial scales. Therefore, monitoring coastal change over different spatiotemporal scales is
paramount for coastal scientists, managers and policymakers. Shoreline positions are a com-
monly used metric for evaluating coastal change. Historically, shoreline position data have been
relatively scarce, except for a few locations of specific research interest worldwide, primarily due
to the cost and labor required to collect data. In recent years, and thanks to newly developed
techniques and models, shoreline positions extracted from satellite imagery have provided high-
spatiotemporal-resolution data sets of coastal evolution. However, these data sets can often be
subject to biases and uncertainties, which limit their applications, especially at high-energy sites.
As a case study, we assess the accuracy of satellite-derived shoreline positions by comparing them
to field observations of shoreline positions along themesotidal, high wave-energy and dissipative
sandy beaches of the Columbia River Littoral Cell (CRLC) in the US Pacific Northwest. Our
findings indicate that after removing outliers and correcting the satellite-derived waterline data
for tides and wave runup, a strong agreement is detected between the satellite-derived and field-
observed shoreline positions along theCRLC,while removing outliers alone is sufficient to extract
accurate shoreline change trends. These findings underscore that the transition fromdata scarcity
to data abundance for shoreline positions, made possible by advancements in satellite remote-
sensing techniques, candrastically enhance coastalmonitoring throughout theworld, particularly
for regions that have been historically data-poor. These rich data sets can be employed for
monitoring coastal change with high spatiotemporal resolution and will inform coastal commu-
nities, policymakers and planners regarding historical trends and patterns, assisting them in
devising plans for the prevention and adaptation to potential future coastal hazards.

Introduction

Coastal regions support economic and recreational activities as well as rich ecosystems. Yet these
regions are constantly changing since they are subject to a myriad of hydrodynamic and
geomorphic processes across temporal scales ranging from seconds to millennia and from
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submeter to global scales. The dynamic evolution of coasts is likely
to have accelerated in many parts of the world over the past few
decades, notably due to anthropogenic drivers (Syvitski et al., 2022).
Although there is no consensus on the long-term future of sandy
coasts (Cooper et al., 2020; Vousdoukas et al., 2020), there is a
growing body of evidence suggesting that they are vulnerable
environments and under increasing pressure from rising seas
(Vitousek et al., 2017; Almar et al., 2021b), changing wave climates
(Allan and Komar, 2001; Reguero et al., 2019; Erikson et al., 2022)
and shifts in land use practices (e.g., deforestation, wildfire,
increased engineering of coastal/fluvial environments [Syvitski
et al., 2022; Warrick et al., 2023]). Such processes that affect coastal
morphodynamics add significantly to the uncertainties of future
coastal hazards such as flooding and erosion (Barnard et al., 2019).

Over the past few decades, monitoring coastal change has
mostly relied on expensive, labor-intensive methods such as aerial,
LiDAR or in situmeasurements, resulting in data sets with limited
spatiotemporal resolution. Consequently, only a few studies have
been able to consistentlymonitor coastalmorphological changes on
regional scales using these methods (Vitousek et al., 2022). The
difficulty of collecting coastal morphologic data sets with high
spatiotemporal resolution over large scales hinders not only the
understanding of coastal change but also the validation of coastal
flooding and erosion models.

Publicly available multispectral satellite imagery (MSI) has
recently enabled large-scale studies of coastal change (e.g., Luijen-
dijk et al., 2018). Landsat (5, 7 and 8, respectively, launched in 1984,
1999 and 2013) and Sentinel-2 (launched in 2015)missions provide
a wealth of open-source images covering themajority of the world’s
surface (Turner et al., 2021) and are made available through cloud-
computing platforms (Gorelick et al., 2017). So far, several studies
have adoptedMSI for coastal monitoring purposes, focusing on the
remote-sensing methodologies (Bishop-Taylor et al., 2019; Vos
et al., 2019; Castelle et al., 2021) and coastal change at various scales
ranging from global (Luijendijk et al., 2018; Mentaschi et al., 2018)
to regional (Vos et al., 2023a) to local (Castelle et al., 2021; Tave-
neau et al., 2021; Vitousek et al., 2023). Machine learning-based
methods have been increasingly applied in satellite-derived shore-
line (SDS) extraction algorithms as well (McAllister et al., 2022).
The applications of remote sensing for monitoring coastal change
have also been facilitated by the development of open-source
toolkits, such as CASSIE (Almeida et al., 2021), CoastSat (Vos
et al., 2019) and SHOREX (Sánchez-García et al., 2020). These
toolkits allow for the automatized extraction of the instantaneous
waterline (hereafter referred to as satellite-derived waterline
[SDW]), usually in the form of a time series of cross-shore position
along user-defined transects perpendicular to the coastline.

The study of coastal change using earth-observing satellites is
still an emerging field, and despite the breakthroughs enabled by
the availability of satellite imagery and the development of remote-
sensing andmachine-learning methods, the research community is
still facing challenges regarding the extraction of accurate shoreline
features (Vos et al., 2023b). First, despite the subpixel methods used
in studies (e.g., Bishop-Taylor et al., 2019; Vos et al., 2019) to
acquire shoreline position data at a resolution finer than the pixel
size, shoreline extraction from satellite imagery still relies on optical
imagery with medium pixel resolution (e.g., 10–15 m pan-
sharpened pixels), limiting the accuracy to approximately 5–10 m
for shoreline products extracted from Landsat and Sentinel mis-
sions (Vos et al., 2019; Sánchez-García et al., 2020; Vos et al.,
2023b). However, recent research by Doherty et al. (2022) has
shown that the accuracy of shoreline products can reach <5 m

using images from PlanetScope missions captured with 3 m reso-
lution imagery. Additionally, rigorous shoreline determination
from satellite MSI (hereafter referred to as SDS) typically requires
additional data in the form of hindcasted (or observed) waves and
water levels. These data sets are crucial to correct the initially
extracted SDW data for hydrodynamic processes affecting the
instantaneous waterline observed in satellite imagery. A standard-
ized (e.g., based on mean sea level [MSL] or mean high water
[MHW]) shoreline measurement reference is paramount for an
objective assessment of shoreline variability and for comparison
with in situ data, which emphasizes the derivation of the best
possible SDS data sets from SDWdata sets. Water-level corrections
are particularly important for beaches subject to high-energy wave
climates and/or large tidal ranges (Castelle et al., 2021), though
these corrections are less important for low-energy, microtidal
coastal environments where the waterline position (SDW) roughly
coincides with the MSL/MHW shoreline position (SDS). Processes
that drive nearshore water-level fluctuations (e.g., tide and wave
runup) add uncertainties in the visual identification of waterline
features (Moore et al., 2006), which are typically based on extracting
the instantaneous waterline for each image. Lastly, the heteroge-
neous nature of coasts worldwide complicates the large-scale uses of
SDS methods. In 2018, Luijendijk et al. (2018) have reported the
first global-scale coastal change study relying on the SDS. Despite
its novelty and success, the study also had some limitations. For
example, the misidentification of some rocky and fully armored
coasts as sandy and the use of composite (time-averaged) images to
circumvent uncertainties in instantaneous waterline position and
cloud cover (Vitousek et al., 2023) highlight the challenges of
applying a single methodology to a wide variety of coastal settings.
Similarly, the adoption of multiple indicators for the shoreline,
detailed in Boak and Turner (2005), leads to subjectivity in the
shoreline detection analysis, particularly when comparing two
shoreline change data sets developed using different shoreline
proxies/definitions (e.g., MSL vs. MHW contour-based shorelines).

In this study, we seek to address two of the points raised above,
that is, (1) the correction of SDW data sets and (2) their applic-
ability for large-scale coastal monitoring. Using the open-source
Python (Van Rossum and Drake, 2009) toolkit CoastSat (Vos et al.,
2019), we extracted SDW time series along the dissipative beaches
of the Columbia River Littoral Cell (CRLC) in the northwestern
United States. Beaches along the CRLC aremildly sloped (Ruggiero
et al., 2005) and have a large and often complex intertidal foreshore
region. Therefore, the waterline identified in satellite imagery is
significantly influenced by synoptic variations in water level due to
tide and wave runup (Ruggiero et al., 2003). Moreover, the water-
line is often hard to distinguish along the CRLC because of the wet
sand and the persistence of a thin layer of water on the mildly
sloping foreshore topography. Following the methodology of Cas-
telle et al. (2021), we investigated the contribution of wave runup
and its components, in addition to tide levels, when applying a
series of water-level corrections over the SDW time series. We used
all available images from Landsat 5, 7 and 8 missions with 50% or
less cloud coverage without any manual image selection or removal
protocol. While we did not perform manual quality control on
satellite imagery, we found that applying an automated outlier
correction to the data set, based on excluding data points greater
than a particular factor of median absolute deviations (MADs), was
necessary to limit errors when conducting automated shoreline
extraction over large scales. The resulting SDS data from this
methodology is a dense time series of cross-shore shoreline posi-
tions (equivalent to the MHW contour) along the CRLC during
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1984–2021 with a spatial (i.e., alongshore) resolution of 50 m and
an approximately monthly temporal resolution.

The remainder of this article is organized in the following order:
Section “Study area” introduces the CRLC and its characteristics for
coastal change monitoring. Section “Methods” describes the meth-
odology to extract the SDW time series and mitigate the errors/
biases due to tides, wave runup and outliers. Section “Results”
investigates the performance of the waterline position extraction/
correction procedure and explores 37 years of coastal change along
the CRLC through the lens of high-resolution, satellite-derived
MHW shoreline change data. Section “Discussion” discusses the
implications of our findings in terms of the capabilities of satellite-
based methods for regional-interdecadal coastal change monitor-
ing. Lastly, conclusions are drawn in section “Conclusions.”

Study area

The CRLC is a 165-km-long littoral cell on the US West Coast,
extending from Point Grenville, Washington, at its northernmost
limit, to Tillamook Head, Oregon, at its southernmost limit. As
depicted in Figure 1, the CRLC consists of four mostly sandy
subcells (from north to south): North Beach, Grayland Plains, Long
Beach and Clatsop Plains. The CRLC surrounds the mouth of the
Columbia River, which is responsible for the largest water discharge
volume on the USWest Coast (Benke and Cushing, 2005; Naik and
Jay, 2011). This river system experienced more than a 70% decrease
in sand transport since the late nineteenth century (Naik and Jay,
2011) due to its extensive management and regularization

(Gelfenbaum et al., 2001). The littoral cell is characterized by a
high-energy wave climate with deep-water significant wave heights
and periods having annual averages exceeding 2 m and 10 s,
respectively (see Supplementary Figure S1), and a mesotidal range
of 2–4 m (Ruggiero et al., 2005). The littoral cell is significantly
impacted by El Niño events, the warm phase of El Niño/Southern
Oscillation (ENSO), which is a complex climate pattern character-
ized by the periodic warming of sea surface temperatures in the
central and eastern equatorial Pacific Ocean. The most recent
strong El Niño events took place in 1982–1983, 1997–1998 and
2015–2016. Under strong El Niño conditions, sea levels and wave
activity are significantly impacted, especially during winter, with
some storm events leading to extreme wave activity (Allan and
Komar, 2002; Barnard et al., 2015, 2017). For example, in February
1998, average winter wave heights were 2 m larger than the typical
seasonal conditions along the CRLC (Ruggiero et al., 2005). This
increase in wave heights introduces more variations in nearshore
water levels via wave setup, exposing coasts to erosion of beaches
and dunes (Barnard et al., 2017).

Beach topography surveys have been conducted approximately
every 3 months since the summer of 1997, and nearshore bathym-
etry surveys have been conducted once a year since 1999 along the
CRLC (Ruggiero et al., 2005). Northwestern US coasts, including
the CRLC, have also beenmonitored via LiDAR surveys carried out
in 1997, 1998, 2002, 2009 and 2016 and through aerial photo-
graphs prior to that (Kaminsky et al., 2010; Ruggiero et al., 2013;
Mull and Ruggiero, 2014). These studies reveal that beaches along
the CRLC are mostly prograding, meaning that the shoreline tends
to accrete seaward and, therefore, the beach width often increases

Figure 1. The Columbia River Littoral Cell (CRLC). (a) Map of the CRLC showing validation sites where beach profile surveys (white dots) have been conducted (Ruggiero et al., 2005).
The labels of some of the transects at the edge of each subcell are displayed. The red line in this panel shows the extent of the areas where satellite-derived coastal change
monitoring is conducted for the 1984–2021 period using the presented SDS method. The colored squares show sections of the (b) Long Beach (red), (c) Grayland Plains (blue) and
(d) North Beach (green) subcells.
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(Ruggiero et al., 2016). According to Ruggiero et al. (2013), beaches
along the CRLC are experiencing an average shoreline change rate
of +4.2, +1.7, +4.7 and +1.9m/yr for North Beach, Grayland Plains,
Long Beach and Clatsop Plains subcells, respectively, where posi-
tive values indicate accretion.

Beaches along the CRLC are relatively flat, where mean beach
slopes (represented by tan β) vary in the range of 0.01–0.05
(Ruggiero et al., 2005). These beaches are mostly covered with sand
with a mean grain size of approximately 0.2 mm on the intertidal
zone. A small number of beaches in the region have relict coarse
sand deposits; for instance, the sand on the mid-beach of the
northernGrayland Plains subcell has a diameter that varies between
0.6 and 0.7 mm (Kaminsky et al., 2010). Because of the gentle
slopes, high wave energy, and large tidal range, the sand gets wet
and darkens quite far landward from the mean waterline. The
abrupt transition in the sand color associated with the wet and
dry portions of the beach (see, e.g., Figure 1b–d) often makes the
dry/wet interface optically very similar to the instantaneous water-
line. Note that the flatness of the beaches significantly amplifies this
effect, where small variations in water level induce large horizontal
variations in the position of the waterline, leaving large portions of
the beach wet for hours.

Methods

Shoreline position extraction and correction

In this study, thePython toolkit CoastSat (Vos et al., 2019)was used to
extract the time series of SDW positions from publicly available
satellite imagery products along the CRLC during 1984–2021. Coast-
Sat downloads and processes satellite images from Landsat 5, 7 and
8 missions available through Google Earth Engine (Gorelick et al.,
2017). All images with <50% cloud coverage are included in the
analysis, and no manual image selection/removal was performed on
the resulting image collection. Between 1999 and 2019, on average
across all transects, 918 images are taken by Landsat 5, 7 and 8 mis-
sions, with a cloud coverage <50% (i.e., cloud coverage threshold is set
to 50%), meaning a mean rate of 45 images per year (~1 image per
week; see Supplementary Figure S2 for the temporal evolution of
image availability per each Landsat mission). These images have a
pixel size resolution of 30 m. Among these images, the average cloud
coverage rate was 19%. The waterline is detected from each image
using a pixel-indexing method based on the Modified Normalized
Difference Water Index (MNDWI; Xu, 2007), defined as

MNDWI=
G�SWIR
G+ SWIR

, (1)

where G and SWIR are the intensity of the green and short-wave
infrared bands, respectively. A multilayer perceptron pixel classifi-
cation method categorizes each pixel into four classes of “sand,”
“water,” “white-water” and “other land features” (Civco, 1993),
based on pixel intensity of red, green, blue, near infrared, short-
wave infrared bands and their spatial variances, and trained over a
set of Australian beaches. For each image, an MNDWI threshold is
computed using Otsu’s threshold method (Otsu, 1979) that opti-
mally splits the “sand” and “water” portions of the MNDWI
histogram, and, finally, the extracted waterline is refined using a
subpixel contouring method (Cipolletti et al., 2012). See
Supplementary Figures S3 (good cases) and S4 (bad cases) for
three-panel figures showing examples of the RGB, pixel-classified
and MNDWI-classified images.

Similar to other proxy-based shoreline position estimates (e.g.,
aerial photograph-derived shorelines;Moore et al., 2006), SDWdata
are subject to biases and uncertainties due to the presence of tides,
waves, atmosphere-induced water-level variations and lighting con-
ditions. The biases/uncertainties associated with shoreline positions
are generally low for steep, micro-tidal, low wave-energy beaches.
On the other hand, for flat, meso- to macro-tidal, high wave-energy
beaches, as is the case along the CRLC, vertical variations in water
level can reach severalmeters and lead to tens ofmeters of variations
in shoreline position. Therefore, in order to obtain an objective
comparison of SDS position with in situ shoreline observations,
typically measured as a water level-invariant elevation contour
(or datum-based shoreline, which here is taken to be equivalent to
the MHW elevation), it is often necessary to correct the initially
extracted SDW for the introduced biases/uncertainties associated
with the water level in order to obtain accurate SDS data. These
corrections should ideally seek to correct for all hydrodynamic
contributions to the waterline time series and retain all of the
morphologic contributions to the changing beach location.

In this study, tide and wave runup corrections, based on the 2%
exceedance level of wave runup, R2%, have been applied to the SDW
time series. Additionally, an outlier correction was used to address
anomalies in the time series due to algorithmic misidentification of
the waterline. The contribution of these individual corrections is
investigated in section “SDS performance.” The corrected cross-
shore shoreline position (SDS), Xc, at time t is given by

XcðtÞ=XrðtÞ+ΔXtideðtÞ +ΔXwaveðtÞ+ ξðtÞ, (2)

where Xr is the raw cross-shore position of the waterline (SDW),
ΔXtide is the tide correction,ΔXwave is the wave (runup) correction,
and ξ is an outlier correction term.

Tide correction and beach slope estimation
Following the approach developed by Vos et al. (2019), SDW data
are virtually projected from the instantaneous tide-level elevation to
a static, reference elevation zref by considering the beach as a linear,
inclined plane that intersects thewater surface at an angle noted β. In
this study, all elevations are reported relative to the North American
Vertical Datum of 1988 (NAVD88). The reference elevation we use
is zref = 2.1 m, which roughly corresponds to the MHW elevation
along the coasts of Oregon andWashington (Ruggiero et al., 2013).
The projection, or vertical correction, of the waterline along this
inclined plane to the MHW results in a horizontal tide correction of
the shoreline position (ΔXtide) defined as

ΔXtideðtÞ= ηðtÞ� zref
tanðβÞ , (3)

where η is the tide level (in meters, NAVD88) and tan β is the
foreshore beach slope. Here, the instantaneous tide levels, with a
1-h temporal resolution, are obtained from the National Oceanic
and Atmospheric Administration (NOAA) tide gauge station in
Astoria, Oregon (ID 9439040; NOAA, 2022) (see Supplementary
Figure S1). CoastSat toolkit contains a package that estimates the
foreshore beach slope, tan β, based on the time series of waterline
position (Vos et al., 2020). Foreshore beach slopes are critical to
correcting the SDW data for the influence of tides and waves (see
equations (3) and (4)). To ensure that the slopes produced via
CoastSat correspond best to the in situ slopes, we validated and
calibrated CoastSat slopes (hereafter denoted by “calibrated
slopes”) such that they best match with the in situ-derived slopes
(the validation results are presented in Supplementary Figure S5).
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Wave runup correction
Instantaneous nearshore water levels (and thus waterline positions)
are influenced by wave runup, which is the sum of two components:
wave setup, the persistent superelevation of nearshore water levels
in the presence of breaking waves, and swash, the oscillation of
waves washing up and down a beach, which itself has two compo-
nents of incident band and infragravity band wave swash. Wave
runup directly affects the position of the waterline, inducing a
cross-shore displacement of the waterline landward (Ruggiero
et al., 2003). From a remote sensing point of view, wave runup
can also indirectly affect waterline extraction by wetting the sand;
for example, a big swash event prior to image collection can wet the
beach over tens of meters and thus make it harder to objectively
identify the waterline position afterward.

SDW extracted using CoastSat over the CRLC are generally
located between the wet/dry sand interfaces (i.e., edges delineated
by the last tide and the maximum wave runup levels) and the
instantaneous waterline. Therefore, we investigate the contribution
of extreme wave runup maxima, R2%, to mitigate this bias in the
estimation of the shoreline positions. The wave-induced shoreline
cross-shore position bias is defined as

ΔXwave tð Þ = R2% tð Þ
tan βð Þ , (4)

whereR2% is the 2% exceedance runup (Moore et al., 2006; Senechal
et al., 2011), which has been parameterized by Stockdon et al.
(2006) as

R2% tð Þ¼ 1:1 0:35tan βð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H tð ÞL tð Þ

p 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H tð ÞL tð Þ 0:563 tan2 βð Þþ0:004ð Þp

2

!
,

(5)

whereH is the wave height, L the wavelength and β the beach slope
angle (in radians). This relationship for runup accounts for eleva-
tion variations due to wave setup, Rsetup, incident swash, Rincswash,
and infragravity swash, Rigswash. These three components, which
have been used separately at some point in this study, reshape the
estimation of R2%- as follows:

R2% tð Þ= 1:1 Rsetup tð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rincswash tð Þ2þRigswash tð Þ2

q
2

0
@

1
A: (6)

The wave data set utilized in our analysis is from the CAWCR/
CSIROwave hindcast product (Durrant et al., 2019), which provides
wave height, period and direction in deep water offshore of the
Columbia River at a 1-h temporal resolution (see Supplementary
Figure S1). This wave hindcast data set has been validated against
altimeters and buoy observations, and the validation metrics show
satisfactory agreement between the hindcast and the altimetry/buoy
data (Durrant et al., 2014; Smith et al., 2021).

Outlier correction
SDWdata typically contain outliers stemming from various sources
(e.g., isolated clouds/fog, geo-referencing, “sand”-“water” segmen-
tation errors, wave effects, etc.). Unmasked clouds appear to be the
primary source of misdetection of the waterline, resulting in large,
easily identifiable outliers. Othermisdetections appear during some
low tides, leading to the detection of a continuouswaterline near the

wet/dry sand interface and also isolated and irregular waterline
contours that may intermittently appear along the wet beach. Also,
the CoastSat pixel classification sometimes fails to identify wet sand
as “sand,” resulting in a waterline detected between the instantan-
eous waterline and the wet/dry sand interface (images illustrating
these cases are shown in Supplementary Figure S4). Because the
water-level corrections for tide and wave runup can be relatively
large compared to the morphological changes of the coast, the
outlier correction, used here, is applied after the wave runup and
tide corrections in order to avoid the miscorrection of “well-
extracted” waterline positions (SDWs).

The outlier correction is conducted on the time series extracted
at each transect using the Python package hampel (Pedrido, 2021)
and a function of the same name. As input, this function takes a
window size S, a threshold factor n and a time series X(t) and
corrects the values identified as outliers based on how much they
deviate from a particular multiplication of the median absolute
deviation (MAD) of the neighboring data calculated as μ = median
(Xi–median(XS)). The value Xi is identified as an outlier if its
deviation from the S-sized rolling median exceeds kn times the
MAD, with a scaling factor conventionally used as k = 1.4826 for a
normally distributed set of values (Rousseeuw and Croux, 1991).
Values identified as outliers are imputed with the rolling median
value.

The sensitivity of SDW data to the value of inputs n and S has
been investigated and is shown in Supplementary Table S1. The
best RMSE and R2 scores are found for n = 1 and S = 15. For the rest
of the study, outlier correction refers to the corrections made using
the function hampel with n = 1 and S = 15 as input parameters.
Supplementary Figure S6 shows examples of waterline position
time series before and after outlier correction. All of the above-
mentioned corrections applied to the SDW time series are sum-
marized in Table 1.

Validation of the satellite-derived data

Quality assessment of the resulting satellite-derived data has been
made possible based on the comparison with (1) beach elevation
profile surveys conducted quarterly for 42 sites (an example is
shown in Supplementary Figure S7) along the CRLC between
winter 1999 and fall 2018 (Ruggiero et al., 2005) and (2) the
1980s–2002 (1967–2002 for the Clatsop Plains subcell) shoreline
change rate product from Ruggiero et al. (2013), which are end-
point rates calculated from shorelines (corrected using approaches
similar to those adopted in this study) extracted from aerial photo-
graphs taken in the late 1960s (Oregon) and late 1980s
(Washington) and a LiDAR survey carried out in 2002. The former
is used to examine the accuracy of the extracted SDS time series and
investigate the influence of the water-level (hydrodynamic) correc-
tion procedure on the accuracy of the SDS data, while the latter is
used to assess the accuracy of the SDS change trends
(rates) extracted at a 50-m resolution all along the CRLC during
1984–2002.

During low tides, beach elevation profiles (with vertical accuracy
<10 cm) are measured by walking from the dunes to the sea along
each predefined transect while carrying a GPS receiver and antenna
mounted to a backpack following the method of Ruggiero et al.
(2005). For each profile, the MHW position is extracted from the
elevation profile at 2.1 m elevation (NAVD88). Beach slopes can
also be extracted from profile data, as we calculated the slopes
between MSL and MHW elevations (i.e., around 1.1 and 2.1 m
NAVD88, respectively) as the ground truth beach slopes.
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Large-scale shoreline position extraction along the CRLC

The process of extracting shoreline positions from satellite imagery
is automated within an area of interest (AOI) containing all of the
transects on which shoreline positions are sought. AOIs are sub-
divided into rectangular regions of interest (ROIs) of approximately
25 square km each with an overlap of 400–500 m between the ROIs
to ensure that transects on the extremities are entirely contained in
at least one ROI. Each transect within each ROI is then processed
with the same method as explained above.

In our analysis, transects serve as the alongshore spatial discret-
ization, or the model “grid,” spaced 50 m apart from each other
sequentially. They extend from an onshore point (i.e., where the
cross-shore position is set to zero), which specifies the onshore
boundary where the sandy beaches meet vegetation, dunes, bluffs,
cliffs or development, toward an offshore point while perpendicular
to the shoreline. This shoreline is identified visually via the latest
available satellite imagery on Google Earth Pro (Google, 2022) and
acts as a “reference” shoreline in defining the transects. The length
that the transects are extended beyond the reference shoreline is
user-defined and, in our case, is 300m. This process generates 2,852
transects along the CRLC.Note that the transects used for the large-
scale SDS extraction via CoastSat are different than the 42 transects
(withmuch larger inter-transect spacing) where the quarterly beach
elevation profile surveys have been conducted since 1997 (Ruggiero
et al., 2005).

Results

SDS performance

To demonstrate an example of the evolution of SDS accuracy, we
quantified validation metrics at a single profile (transect) along the
Grayland Plains using R2, RMSE, σ and bias scores, displayed in
Figure 2, where the different corrections described in Table 1 are
applied. Figure 2 demonstrates distinct improvement of accuracy
scores where a significant decrease in RMSE and bias for the outlier
removal, tide, wave setup and wave swash (incident) corrections
(correction labels 2 and 5) is observed, while a large increase in
RMSE and bias for wave swash (infragravity) correction (correction
label 6) emerges.

To determine the large-scale accuracy of the SDS time series, the
derived SDS data (i.e., the corrected SDW data) are validated
against the time series of in situ-measured shoreline positions at

42 transects along the CRLC; the exact same transects that were
used for the extraction of SDS data over these 42 sites. Figure 3
depicts a map of the locations of the beach elevation profiles color-
coded according to their coefficient of determination (R2), root
mean square error (RMSE), standard deviation (σ) and bias,
obtained via comparing SDS data against the in situ shoreline
position data. The mean scores obtained for these 42 locations
are 0.54, 22.37, 19.3 and 3.54 m after applying the tide, wave setup
and wave swash (incident) corrections and outlier removal
(i.e., correction label 5 in Table 1), which were introduced in
section “Methods.” Spatial variability in Figure 3 is evident; for
instance, R2 scores are relatively higher at the extremities of each
subcell (e.g., southern Grayland Plains and northern Long Beach),
which is likely caused by the large shoreline change trends at these
sites.

Long-term SDS trends, dX/dt(SDS), extracted from the outlier-
only-corrected SDS time series (correction label 2 in Table 1),
demonstrate a strong correlation with in situ shoreline change
trends, dX/dt(in situ), with a coefficient of determination R2 = 0.99
and a RMSE and bias <1 and �0.23 m/yr, respectively (see
Supplementary Figure S8b). The beach slopes initially derived from
CoastSat (shown in Supplementary Figure S5a) also show a satis-
factory fit with slopes derived from in situ profile data, where the
coefficient of determination is R2 = 0.77. However, it appears the
slope estimation methods in CoastSat slightly overestimate the
beach slopes derived from in situ data, and the amount of overesti-
mation is larger for steeper slopes. Using the y-intercept and the
gradient of the fitting line, we perform a calibration. After calibra-
tion, the calibrated CoastSat-derived slopes and the in situ ones are
fitted on the 1:1 line (see Supplementary Figure S5b).

Figure 4 depicts the evolution of R2, RMSE, σ and bias scores for
each correction label averaged across all 42 validation sites for both
raw (uncalibrated) and calibrated CoastSat-derived beach slopes.
By comparing the two (i.e., using the calibrated vs. uncalibrated
slopes), it is apparent that the calibrated slopes (which are generally
smaller compared to the uncalibrated ones) typically drive the SDS
data further landward under tide correction (see equation (3))
compared to the ground truth data (i.e., bias<0 m after tide correc-
tion), which allows the wave correction terms (i.e., wave setup and
incident swash) to successively improve the validation metrics,
where bias~0 m after applying wave corrections (excluding infra-
gravity wave swash). Corrections to SDW data using local beach
slopes extracted from the beach elevation profiles rather than the
calibrated SDS-derived beach slope estimation (described in
section “Methods”) are also performed, with both a static slope,
that is, an average of the beach slopes across all profiles, and a
dynamic slope, that is, the beach slope extracted from themeasured
beach elevation profile at the time of each survey. Corrections using
the static beach slopes result in the tide, wave setup and wave swash
(incident)-corrected SDW data with almost no biases (bias~0 m)
but do not significantly affect the other validation metrics (R2~0.5
and RMSE~20 m; see Supplementary Figure S9). As noted in
Castelle et al. (2021), we also find that the use of time-varying
(i.e., dynamic) beach slopes rather than a static beach slope does not
lead to a notable improvement in the accuracy of corrected SDW
data (see Supplementary Figure S10).

In terms of R2, RMSE, σ and bias scores, it appears that the
outlier, tide, wave setup and incident wave swash corrections
systematically provide an increase in SDS data accuracy, regardless
of the beach slopes used during the correction procedure, that is, the
beach slopes extracted from SDS time series (calibrated CoastSat
slopes) or from the beach elevation profiles (static and dynamic).

Table 1. Correction procedure applied to the SDW time series

Correction
label Correction performed

Terms remained to be
corrected

1 Raw data ΔXtide = 0, ΔXwave = 0, ξ = 0

2 Outlier removed ΔXtide = 0, ΔXwave = 0

3 Tide corrected from 2 ΔXwave = 0

4 Wave setup corrected from 3 Rincswash = 0, Rigswash = 0

5 Incident swash corrected from 4 Rigswash = 0

6 Infragravity swash corrected
from 5

ALL CORRECTIONS APPLIED

Note: The labels used for each correction are the same used in Figure 2. Note that for
corrections 2 through 6, outlier correction is applied at the end, that is, after hydrodynamic
corrections.
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Figure 2. Validation plots showing the comparison between satellite-derived and in situ shoreline positions (Ruggiero et al., 2005) for a single cross-shore profile (profile 020) at
Grayland Plains, Washington. Each row of panels ranging from1 to 6 refers to its corresponding correction label described in Table 1. On each row, the right and left panels represent
the direct comparison of satellite-derived and in situ shoreline positions and the shoreline position time series from CoastSat and in situmeasurements, respectively. R2, RMSE, σ,
bias and long-term trends are shown for each correction label. Red dashed lines in direct comparison subplots show the 1:1 line, and black dashed lines show the linear regression
between the satellite-derived and in situ shoreline position data. Note that the higher positive values correspond to the seaward direction.
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Thus, partial application of wave runup correction by excluding the
infragravity wave swash is most advantageous in CRLC (also noted
in Cabezas-Rabadán et al., 2020). However, the outlier correction-
only provides modest validation scores (R2 ~ 0.45, RMSE ~ 30–
50 m), but panels (a) and (d) in Figure 5 show the shoreline change
trends during 1984–2002 calculated via linear regression over only
the outlier-corrected SDWs compared to the endpoint shoreline
change rate product from Ruggiero et al. (2013) introduced in
section “Methods”. The fit between the two data sets (R2 = 0.74)
shows that the SDS method is capable of extracting high-quality

shoreline change trends over large scales. In addition, the differ-
ences between SDS trends and end-point trends may stem from
subtle differences in rate calculation methodology, that is, differ-
ences between linear regressions and endpoint rates.

37 years of morphological change along the CRLC

We examined the temporal evolution of the shoreline positions at all
2,852 transects along the CRLC and also their deviation from the
long-term shoreline change trend from 1984 to 2021. Figure 6a shows

Figure 3. Maps of the CRLC showing the 42 validation sites and the validation scores, that is, (a) coefficient of determination (R2), (b) root mean square error (RMSE), (c) standard
deviation (σ) and (d) bias, between the time series of cross-shore shoreline position extracted via CoastSat (corrected for tide, wave setup, wave swash [incident] and outliers) and
the in situ-measured beach elevation profiles (Ruggiero et al., 2005). On each subplot, the histogram shows the distribution of validation scores. Relatively accurate estimations of
the long-term trends are shown in Supplementary Figure S10b.

Figure 4. Box plots showing (a) R2, (b) RMSE, (c) σ and (d) bias scores after each step of correction for the 42 sites along the CRLC. Corrections steps, labeled with numbers 1 to 6, are
described in Table 1. Black circles depict the values out of the range of box plots. White boxes (gray boxes) indicate validation scores for corrections performed using uncalibrated
beach slopes (calibrated against in situ beach slopes) calculated via the CoastSat toolkit (Vos et al., 2019).
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the spatiotemporal evolution of the shoreline positions along these
transects during 1984–2021. It highlights that CRLC beaches have
generally experienced accretion over the past four decades. Shoreline
change rates are heterogeneously distributed among the subcells; for
instance, the Clatsop Plains subcell (south of the Columbia River
mouth) experiences lower shoreline change rates than the other three
subcells north of the Columbia River mouth, and beaches at the edges
of the subcells are generally experiencing erosion. Moreover,
Figure 6b depicts the evolution of anomalies (deviations) in shoreline
position relative to the local shoreline change trend, calculated at each
transect via

XanomðtÞ =XðtÞ�XtrendðtÞ, (7)

where X(t) is the change in tide-corrected shoreline position time
series (in meters) since spring 1984 (time series start from zero),
and Xtrend(t) is the linear trend line fit to the observed shoreline
position time series, as shown in Figure 6.

This spatiotemporal visualization of shoreline position anomalies
reveals seasonal-to-interdecadal shoreline change patterns; seasonal
cycles are revealed with “high-frequency” vertical stripes, while a
longer-term, “low-frequency” pattern tends to indicate that theCRLC
roughly experienced an increase in accretional trends relative to the
long-term linear rate during 1984–1996, a decrease during 1997–2014
and an increase again since. It is worthwhile to point out the similarity
in the temporal evolution of shoreline position anomalies between
distant locations, such as theNorth Beach subcell and the Long Beach
subcell, which are dozens of kilometers apart.

To assess the potential link between the “low-frequency” pattern
in shoreline positions shown in Figure 6b and the modes of climate
variability in the Pacific Ocean, we examined the temporal evolu-
tion of the Pacific decadal oscillation (PDO; Mantua et al., 1997)
and Niño 3.4 (Rayner et al., 2003) indices. Figure 6c shows the
temporal evolution of PDO, which is a long-term climate pattern
that involves variations in sea surface temperatures in the North
Pacific Ocean. In this figure, the time series of PDO (in dashed gray)
and the scaled mean anomaly of cross-shore shoreline positions
along the CRLC (in solid black) are displayed during 1984–2021.
The figure highlights that these time series seem to roughly evolve
jointly, albeit this correspondence is more evident for specific
periods, for example, the 1997–2013 relative erosional pattern
coincides with the negative PDO phases, and, reversely, 1984–
1996 and 2014–2021 relative accretional patterns coincide with
the positive PDO phases. We observe that the 2014–2017 evolution
of the PDO greatly matches the signal of median shoreline anomaly
change. Similar to Figure 6c, the time series of Niño 3.4 index
(in dashed gray) and the scaled mean anomaly of cross-shore
shoreline positions along the CRLC (in solid black) are shown in
Figure 6d. Niño 3.4 is an index used to monitor and quantify the
strength of El Niño and La Niña (opposite phase to El Niño) events
throughmeasurements of sea surface temperature anomalies in the
Pacific Ocean. Large positive values of Niño 3.4, which characterize
major El Niño events, do not seem to drive drastic erosional events
as have been observed in shoreline change studies in California
(e.g., Barnard et al., 2017). The positive peak in 1997–1998matches

Figure 5. Shoreline change trends along the CRLC. (a) Latitudinal (alongshore) variability of 1980s–2002 (1967–2002 for the Clatsop Plains subcell) shoreline change trends from
Ruggiero et al. (2013) in black, and 1984–2002 SDS change trends in red, (b) distribution map of SDS change trends along the CRLC and (c) direct comparison between shoreline
change trends from Ruggiero et al. (2013) and satellite-derived data.

Cambridge Prisms: Coastal Futures 9

https://doi.org/10.1017/cft.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.30


the 1997–1998 winter negative peak of the scaled mean anomaly of
cross-shore shoreline position along the CRLC, but does not seem
to significantly influence the winter erosion pattern. The same
pattern can be observed for a smaller positive peak in the Niño
3.4 index in 2009–2010. Similar behavior is observed for the 2015–
2016 ENSO event, which corresponds to the largest (positive) Niño
3.4 index value during the study period. Moreover, the strong
negative peak of Niño 3.4 in 1988 did not result in any significant
change in the anomalies of the cross-shore shoreline positions
along the CRLC.

Discussion

Applications of spatiotemporally high-resolution SDS data for
coastal management

This study demonstrates the applicability of SDSmethods for local-
to-regional and monthly-to-interdecadal scale coastal change ana-
lysis over the high wave-energy, dissipative sandy beaches of the
CRLC. SDS methods can potentially be applied to a broad range of
coastal environments, particularly those experiencing high shore-
line change trends. This study also demonstrates that satellite
monitoring can detect spatial and temporal shifts in erosion/

accretion hot spots and can greatly increase the scale of observa-
tions, while in situ field measurements are restricted by their local
scale and temporal infrequency. The use of SDS methods can thus
greatly reduce the costs associated with coastal monitoring oper-
ations over large spatiotemporal scales since only a few field meas-
urements are needed to validate SDS data once it is established that
the SDS method used is appropriate for the application site/region.

Current SDS toolkits, such as CoastSat, support the quick gen-
eration of high-resolution shoreline position data sets over large
spatiotemporal scales. Over large scales, the signal-to-noise ratio for
dissipative beaches, that is, the ratio of low-frequency shoreline
change and high-frequency biases due to tides and wave runup,
allows us to conduct reliable estimates of erosion/accretion trends,
even without water-level corrections. However, obtaining accurate
SDS time series generally requires corrections for tides and outliers,
at the very minimum.

Strong variability of the shoreline, as experienced by the Gray-
land Plains subcell, can expose local coastal areas to a high level of
vulnerability. Along the CRLC, the PDO signal, which was on
average positive during the 1984–1997 and 2014–2021 periods
and negative during 1997–2014, seems to lead to a “low-frequency”
signal of the anomalies of the shoreline change trends with an
amplitude >10 m, and locally exceeding 50 m along the Grayland

Figure 6. Spatiotemporal evolution of (a) the cross-shore shoreline position along the CRLC, initially set at 0 m, and (b) the associated anomalies relative to the local shoreline
change trend during the same period, and temporal evolution of (c) PDO and (d) Niño 3.4 indices during 1985–2021 (Mantua et al., 1997; Rayner et al., 2003) in gray dashed lines. The
mean anomaly of cross-shore shoreline position at all transects scaled by its standard deviation is also displayed on panels (c) and (d) (black solid lines). Note that the positive
(negative) values of PDO and Niño 3.4 metrics correspond to El Niño (La Niña) conditions. Panels (a) and (b) are generated using the MATLAB (2010) interpolation/smoothing
function smoothn (Garcia, 2023). Each subcell has been processed and smoothed separately with the same parameters and then aggregated together.

10 Marcan Graffin et al.

https://doi.org/10.1017/cft.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.30


Plains subcell. Some very recent studies have investigated the link
between coastal morphologic change and climate modes, such as
the occurrence of major El Niño events (Barnard et al., 2017;
Anderson et al., 2018; Almar et al., 2023; Vos et al., 2023a),
quantified through metrics such as the Multivariate ENSO Index
(MEI) (Wolter andTimlin, 1993) andNiño 3.4 (Rayner et al., 2003).
Vos et al. (2023a) have found that beaches along the USWest Coast
(i.e., California beaches) generally experienced erosion (accretion)
during the boreal winter El Niño (LaNiña) phases. Our preliminary
results suggest that the CRLC does not respond as strongly as
California does to boreal winter El Niño phases (see Figure 6d).
However, establishing a clear link between the inter-annual shore-
line position anomalies along the CRLC and ENSO cycles is beyond
the main scope of this study and could benefit from further
research, not merely along the CRLC but the entire Pacific North-
west (PNW).

Historical SDS positions have emerged as revolutionary in the
modeling of future shoreline positions by driving coastal science
toward a “data-rich” field (Vitousek et al., 2023). In addition to
supporting large-scale trend analyses, SDS data sets can greatly
benefit dynamic shoreline modeling efforts. Various coastal geo-
morphology evolution models (e.g., Vitousek et al., 2017; Ibaceta
et al., 2020; Taherkhani et al., 2023), particularly those applying
data assimilation techniques, rely on historical shoreline data to
calibrate their free parameters, which can be highly location/time-
dependent. While field- and airborne-derived shoreline positions
come with very high precision (RMSE < 1 m), shoreline positions
obtained via these methods are typically very sparse throughout
time (e.g., often annual at best and often with resampling > 5 years),
mainly due to being expensive, rendering the calibration/training of
thesemodels insufficient. Nevertheless, incorporating SDS data sets
in coastal evolution models has significantly enhanced the effi-
ciency of the calibration process and reliability of the projected
short- and long-term future shoreline positions (e.g., CoSMoS-
COAST; Vitousek et al., 2023). Ultimately, future advances toward
more accurate detection of SDS data sets (via better correction and
manipulation of SDW data sets) can lead to enhanced model
calibration and, thus, more robust future shoreline projections.

Accuracy, reliability and limitations of SDS data

The cross-shore shoreline position time series extracted along the
dissipative beaches of the CRLC (using the procedures described in
section “Methods”) showmedium accuracy when validated against
the ground truth data (on average:R2 ~ 0.55,RMSE~ 20m), relative
to the best results that SDS methods can achieve in other idealized
settings (Bishop-Taylor et al., 2019; Doherty et al., 2022), including
using Landsat/Sentinel images only (Vos et al., 2019). Castelle et al.
(2021) have shown that high-quality shoreline data (R2 > 0.8,
RMSE ~10 m) could be extracted along dissipative beaches by
applying both tide and wave runup corrections and also by manu-
ally removing flawed waterline detection (Castelle et al., 2022).
Although their method is efficient for the generation of reliable
shoreline data, the manual selection of images is onerous for large-
scale shoreline position extractions. Moreover, the wave runup
correction they used (Senechal et al., 2011; Castelle et al., 2021)
has been specifically calibrated for their study site. These conditions
for accurate shoreline extraction along high-energy, meso/macro-
tidal beaches are difficult to meet in regional-to-continental coastal
change studies, as the one conducted by Vos et al. (2023a) over the
Pacific Basin, where the PNW region has been left out of the
analysis due the challenges associated with processing satellite-

derived images of this coastal region. Therefore, future work could
enhance water-level corrections, develop criteria and methods for
the automatic removal of flawed images and explore outlier cor-
rection methods that mitigate biases while preserving the integrity
of the shoreline position time series.

Additionally, it seems that CoastSat sometimes captures virtual
waterline features between the wet/dry sand interface and the actual
instantaneous waterline along the CRLC. The resulting noise is
likely to perturb the results of frequency-domain mode analysis,
consequently affecting estimations of beach slope via CoastSat. It
must be noted that an overestimation of the beach slope, as observed
along the CRLC, leads to an underestimation of water-level correc-
tions (especially tide correction, as shown in Figure 4when using the
uncalibrated CoastSat-derived slopes). This tendency of confusion
in the detection of the waterline, which has also been observed along
southwestern French beaches (Castelle et al., 2021), might be due to
the fact that wet sand turns dark and contrasts greatly with dry sand,
leading to the formation of an easily observable interface between
the wet and dry sand, which is optically very similar to a waterline
interface. This highlights the remaining limitations of SDSmethods
and, thus, the need to validate and jointly consider SDS data with
alternative data sources from complementary methods, such as
other remote-sensing methods, field surveys and numerical model-
ing, to ensure the higher accuracy of extracted SDS data.

It is also important to note that the use of shoreline position as a
proxy for coastal geomorphology state has its limitations, as it
represents only a one-dimensional (1D) land/sea interface and does
not capture the complexity of coastal morphodynamics occurring
between the lower shoreface and the dunes, highlighting the oppor-
tunity for future research to develop methods to quantify and
monitor coastal change beyond a 1D shoreline position (e.g., sat-
ellite structure-from-motion).

Toward new ways to monitor coastal change via satellite
products

The study presented here fits into a substantial body of research
using MSI to monitor coastal change at local and regional scales,
with each successive study providing potential improvements for
satellite-based coastal change analysis at a given coastal setting. The
collaborative advancement of satellite coastal monitoring not only
enhances our understanding of the diverse range of beach dynamics
worldwide but also incorporates this diversity to progress toward
broader-scale studies, for example, robust global-scale analyses of
coastal evolution over the past four decades.

Recently, Bergsma et al. (2021) have developed integrated
approaches for estimating beach topography and nearshore
bathymetry using satellite imagery. Their methods use wave dis-
persion theory to extract nearshore bathymetry and stereography
methods to estimate topography, which involves analyzing stereo-
pairs of high-resolution satellite images to determine beach surface
elevations. Nearshore bathymetry is calculated using wave kine-
matics extracted from satellite imagery and linear, shallow-water
wave dispersion theory to derive water depth. Other methods allow
for estimating nearshore bathymetry based on light penetration and
reflection in the water (Li et al., 2021; Al Najar et al., 2022). These
prototypes (e.g., S2Shores [Almar et al., 2021a] and SaTSeaD
[Palaseanu-Lovejoy et al., 2023]) have matured over the past few
years and now enable the generation of a topography-bathymetry
continuum with an error in the vertical position of ~ 1 m, down to
~ 10 cm for ideal cases. However, these methods are still subject to
limitations, such as the lack of texture for certain types of beaches,
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which may bias the stereography (Taveneau et al., 2021) and the
inability to observe waves or extract their characteristics on some
images, leading to errors in bathymetry extraction. Despite these
challenges, developing these new tools represents a promising path
toward usingmore comprehensive indicators, rather than primitive
ones such as shoreline positions, to monitor coastal change.

Conclusions

In this study, wemonitored changes in shoreline positions along the
sandy beaches of the CRLC during the past four decades using
CoastSat, an open-source SDS extraction toolkit. Based on in situ
beach profile and ground truth data across the littoral cell, we
investigated the contributions of tide and wave runup corrections
to reduce errors and biases in the SDS position data. The identifi-
cation and correction of these errors/biases revealed that tide, wave
setup and incident band wave swash corrections and outlier
removal systematically improved the accuracy of SDS data at our
study site, leading to final outputs with RMSE~20 m using Landsat
5, 7 and 8 imagery (i.e., RMSE of less than a pixel size [~30 m]),
where infragravity band wave swash corrections significantly
decreased the accuracy. From the tide and outlier-corrected SDS
time series, we developed a high-resolution (~50 m-monthly)
shoreline position data set along the CRLC during 1984–2021
and found that it provides a reliable and coherent picture of both
long-term shoreline trends (with R2 = 0.99, RMSE < 1 m/yr) and
fine-scale shoreline response to seasonal, interannual and decadal
variations in the wave and water level climate.
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