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With the recent rapid development of artificial intelligence (AI) and wide applications
in many areas, some fundamental questions in turbulence research can be addressed,
such as: ‘Can turbulence be learned by AI? If so, how and why?’ In order to provide
answers to these questions, we applied deep learning to the prediction of turbulent
heat transfer based only on wall information using data obtained from direct numerical
simulations (DNS) of turbulent channel flow. Through this attempt, we investigated
whether deep learning could help to improve our understanding of the physics of
turbulent heat transfer. Under the assumption that the wall-normal local heat flux
can be explicitly expressed through a multilayer nonlinear network in terms of the
nearby wall-shear stresses and wall pressure fluctuations, we applied convolutional
neural networks (CNNs) to predict the local heat flux. After optimizing the network
hyperparameters using a grid searching method, we found that the network can
predict the heat flux very accurately with a correlation coefficient of 0.980 between
the DNS and the prediction by CNN for the trained Reynolds number, Reτ = 180,
and shows similar accuracy at a Reynolds number three times higher than the trained
number. This result indicates that relationships between the local heat flux and the
nearby inputs are quite insensitive to the Reynolds number within the tested range. In
addition, observing the gradient maps of the trained network, we identified the part
of the input data that is essential for the local heat flux prediction and the spatial
relationship between the local heat flux and the nearby input fields. In addition to
obtaining an understanding of the underlying physics, we investigated whether our
model could be utilized for turbulence modelling.

Key words: turbulence simulation

1. Introduction
Deep learning (Krizhevsky, Sutskever & Hinton 2012), reinforcement learning

(Mnih et al. 2015) and their performance beyond human capabilities (He et al. 2015;
Silver et al. 2016, 2017) have been recently recognized. In particular, deep learning
has shown amazing performance and evolved rapidly day by day, and has been
widely applied in many areas as noted by LeCun, Bengio & Hinton (2015). Inspired
by this advancement, naturally arising questions in turbulence research would include
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‘Can deep learning learn turbulence, which is infamously known to be a chaotic and
strongly nonlinear phenomenon?’ and ‘If turbulence is learnable, what element of
turbulence makes learning possible?’ In order to pursue answers to these questions,
we applied deep learning to the prediction of turbulent heat transfer based only on
wall-shear and pressure information in channel flow. We investigated whether deep
learning can help us to quantify and physically understand the nonlinear relationship
underlying turbulence data, which is not easily identified by conventional statistical
methods.

Although the application of machine learning to fluid dynamics has become very
active recently, the first attempt dates back to Lee et al. (1997), who applied an
artificial neural network (ANN) to turbulence control for drag reduction. In their
study, shallow learning was successfully applied to the prediction of the near-wall
wall-normal velocity based on the wall-shear stresses or pressure. Since then, machine
learning in various forms has been applied to diverse areas of fluid mechanics, such
as flow reconstruction, unsteady flow prediction, flow control, finding solutions
to nonlinear partial differential equations (PDEs) and turbulence modelling. For
example, flow reconstruction from experimental data using ANNs based on radial
basis functions (Pruvost, Legrand & Legentilhomme 2001; Hočevar, Širok & Grabec
2005), turbulence reconstruction from noise-added isotropic and stratified turbulence
using an ANN (Maulik & San 2017) and flow prediction around a bluff body using
the dimension reduction machine learning method (Bright, Lin & Kutz 2013) and
convolutional neural networks (CNNs) (Miyanawala & Jaiman 2017; Jin et al. 2018;
Lee & You 2018) were carried out. In order to predict flow information recursively,
Hennigh (2017) and Mohan & Gaitonde (2018) used autoencoder (AE) architectures
composed of convolution layers, and Mohan & Gaitonde (2018) and Wang et al.
(2018) used long short-term memory (LSTM), too. Similarly, Lusch, Kutz & Brunton
(2018) applied the AE for the prediction of relatively simple nonlinear dynamics,
finding out that the dynamics can be globally linear on the low dimension. Flow
control has been one of the active areas and has seen various applications of machine
learning (Milano & Koumoutsakos 2002; Lorang, Podvin & Quéré 2008; Duriez et al.
2014; Gautier et al. 2015; Rabault et al. 2019). A bold approach to solving nonlinear
PDEs was made by Raissi, Yazdani & Karniadakis (2018) and Raissi et al. (2019),
who applied deep neural networks to express the solutions of the Navier–Stokes
equations in terms of spatial positions and time, and Bar-Sinai et al. (2018), who
used CNNs for an accurate discretization of spatial derivatives. In addition, ANNs
are nowadays used as a part of the experimental workflows, especially in particle
image velocimetry (Lee, Yang & Yin 2017; Rabault, Kolaas & Jensen 2017; Cai
et al. 2019)

Another active area of the application of machine learning to fluid mechanics is
turbulence modelling, such as large-eddy simulation (LES) (Sarghini, Felice & Santini
2003; Gamahara & Hattori 2017; Vollant, Balara & Corre 2017; Beck, Flad & Munz
2018; Maulik et al. 2018, 2019) and Reynolds-averaged Navier–Stokes (RANS)
modelling (Tracey, Duraisamy & Alonso 2013, 2015; Duraisamy, Zhang & Singh
2015; Ling & Templeton 2015; Zhang & Duraisamy 2015; Ling, Jones & Templeton
2016a; Ling, Kurzawski & Templeton 2016b; Parish & Duraisamy 2016; Kutz 2017;
Ling et al. 2017; Singh, Duraisamy & Zhang 2017a; Singh, Medida & Duraisamy
2017b; Wang et al. 2017a; Wang, Wu & Xiao 2017b; Wu et al. 2017; Milani et al.
2018; Sotgiu, Weigand & Semmler 2018; Wu, Xiao & Paterson 2018; Duraisamy,
Iaccarino & Xiao 2019), in which various attempts to improve the subgrid-scale model
or the Reynolds stress models have been made. In addition to the above examples,
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physical interpretation of nonlinear turbulence using neural networks (Ferre-Gine
et al. 1996; Giralt et al. 2000) was carried out. Although practical applications of
machine learning are indeed necessary, applications of machine learning for a more
fundamental study of turbulence are equally useful, but quite rare.

In the present work, we used deep learning to predict the turbulent heat transfer
(the wall-normal heat flux) on the basis of other wall information obtained by DNS
of channel flow and also attempted to analyse the physics of the heat transfer through
it. In channel flow, Antonia, Krishnamoorthy & Fulachier (1988) and Kim & Moin
(1989) found that temperature fluctuations are highly correlated with streamwise
velocity fluctuations. Similarly, Abe, Kawamura & Matsuo (2004) reported that
wall-normal heat flux fluctuations are mostly similar to streamwise wall-shear stress
fluctuations regardless of the Reynolds number, but dissimilarity between them occurs
in some regions, in which there are large wall pressure fluctuations. It is well
known that the presence and behaviour of vortices near the wall are significant in
near-wall transport. High streamwise wall-shear stress on the wall interacts with (is
both affected by and affects) the streamwise vortices, and the correlation between
them becomes maximum at the side downstream from the shear stress position
(Kravchenko, Choi & Moin 1993). According to Abe & Antonia (2009), when these
vortices exist, large fluctuating streamwise and spanwise pressure gradients occur, and
streamwise gradients intensify or weaken momentum streaks, unlike thermal streaks.
From these observations, we hypothesized that the wall-normal heat flux can be
explicitly expressed as nonlinear combinations of nearby streamwise wall-shear stress,
spanwise wall-shear stress and pressure fluctuations, which can be captured by deep
learning. If this hypothesis is true, turbulent heat transfer could be obtained from just
the wall information. Then, the trained network might contain information on the
physical correlation of the heat transfer; therefore, an analysis of the network may
help us to figure out the physical characteristics.

Explicit correlation between the heat transfer and wall information, such as shear
stresses or pressure, would be beneficial for practical applications. It is well known
that the prediction of turbulent heat transfer in RANS/LES simulations, which are
frequently adopted in many industrial applications, is much less accurate than the
prediction of skin friction. The construction of a successful machine learning network
to accurately predict heat transfer on the basis of wall information would greatly
enhance the usefulness of RANS/LES. For example, accurate wall-normal heat flux
might be predicted from the wall-shear stresses and pressure obtained by RANS on
coarse grids through training the network with RANS and DNS datasets. Such a
possibility is discussed in this paper. Furthermore, correct identification of the role
of vortices in the heat transfer mechanism would help in the design of artificially
generated vortices for heat transfer augmentation (Fiebig 1995; Jacobi & Shah 1995).
To date, various types of vortex generators (Torii, Kwak & Nishino 2002; Ahmed,
Mohammed & Yusoff 2012; Liu & Sakr 2013; Gallegos & Sharma 2017; Alam &
Kim 2018) have been studied numerically and experimentally to develop the heat
exchangers used in various fields. Therefore, identifying the relationship between
the vortex and heat transfer is crucial not only for a fundamental understanding of
turbulent physics but also for many practical applications.

This article presents deep learning procedures in § 2, results and discussion in
§ 3 and conclusions in § 4. In § 2.1, turbulent channel flow simulations based on a
spectral method for collecting the data used for deep learning are introduced. In § 2.2,
our CNN architecture and network optimization process are described. The resulting
prediction accuracy for several Reynolds numbers is presented in § 3.1. In §§ 3.2
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Reτ Pr Domain size Grid size Nu Trained Tested

180 0.71 4πδ× 2δ× 2πδ 192× 129× 192 6.106 Yes Yes
360 0.71 2πδ× 2δ×πδ 384× 193× 384 11.43 No Yes
540 0.71 2πδ× 2δ×πδ 576× 257× 576 16.30 No Yes

TABLE 1. Simulation parameters for DNS.

and 3.3, observations of inaccurately predicted cases and gradient maps of the trained
network are provided. Finally, the possibility that our CNN could be utilized as a
turbulence model is discussed in § 3.4.

2. Deep learning procedures
2.1. Data collection by DNS

In order to collect deep learning datasets, DNS of fully developed turbulent channel
flow with a passive temperature field were carried out. Mean flow in the x-direction is
driven by the mean pressure gradient, and the temperature distribution is developed by
the temperature difference between the top and bottom walls. The governing equations
are the continuity equation, the incompressible Navier–Stokes equations and the energy
equation:

∂ui

∂xi
= 0, (2.1)

Dui

Dt
=−

∂p
∂xi
+

1
Reτ

∂2ui

∂xj∂xj
, (2.2)

DT
Dt
=

1
PrReτ

∂2T
∂xj∂xj

. (2.3)

Here xi, ui and T are the coordinates, velocity and temperature variables normalized
by the channel half-width (δ), the friction velocity (uτ ) and half the temperature
difference (1T) between the top and bottom walls, respectively; x1 (x), x2 (y) and x3
(z) denote the streamwise, wall-normal and spanwise directions; and the corresponding
velocity components are u1 (u), u2 (v) and u3 (w), respectively. The dimensionless
parameters are the frictional Reynolds number (Reτ ), which is defined by uτ , δ and
the kinetic viscosity ν, and the Prandtl number (Pr = ν/α), which is fixed as 0.71,
with α denoting the thermal diffusivity.

Periodic boundary conditions are imposed in the horizontal directions, and the
no-slip and constant-temperature conditions are applied at the wall. To numerically
solve the governing equations, a pseudo-spectral method with the Fourier expansion
for the horizontal directions and the Chebyshev-tau method for the wall-normal
direction is used. For time advancement, the third-order Runge–Kutta scheme and
the Crank–Nicolson scheme are employed for the nonlinear terms and the viscous
terms, respectively. The domain size and the number of grid points for each Reynolds
number are listed in table 1, which are greater than or equal to those of Moser, Kim
& Mansour (1999). The code has been validated by application to various problems
(Yeo, Kim & Lee 2009, 2010; Lee & Lee 2015; Park & Lee 2015; Jang & Lee
2018).
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FIGURE 1. Wall information extracted from DNS that is used for the input and output
of a deep learning network. The streamwise wall-shear stress, spanwise wall-shear stress
and wall pressure fluctuation are the inputs, and the wall-normal heat flux is the target of
deep learning. Here, the spanwise wall-shear stress is referred to as the streamwise wall
vorticity.

The data at Reτ = 180 are used for training, validation and testing, and the data at
the other Reτ are used for testing only. In table 1, Nu denotes the Nusselt number,
which is the normalized average heat transfer in the wall-normal direction. As
proposed by Kasagi, Tomita & Kuroda (1992), in the channel flow simulation, the
Nusselt number can be well fitted by a linear function of the Reynolds number:

Nu≈ 0.0284Reτ + 1. (2.4)

As shown in figure 1, we collected four types of wall information, including the
streamwise wall-shear stress (interchangeably called the shear stress) du/dy, the
spanwise wall-shear stress (or vorticity) dw/dy and the wall pressure fluctuations
p as inputs, and the wall-normal heat flux dT/dy as the prediction target. In order
to train the deep learning network with statistically independent data, fields were
collected per 1t+ = 36, which is longer than the integral lifetime scale of the
spanwise wall-shear and pressure (Quadrio & Luchini 2003). A total of 6400 training
fields were accumulated. The size of the training data in the single precision is
approximately 3.7 GB. Further, in channel flow, the mirror image of the collected
data can be used as the training data by taking advantage of the statistical symmetry
between (x, y, z) and (x, y, −z). This data augmentation method is expected to
help prevent overfitting in addition to imposing symmetry on the deep learning
network, and can be critical for a situation where the amount of collected data is
insufficient. Although not used in this study, spectral shifting can also be used for
data augmentation in the present problem. As a preprocess, the inputs of training
data are normalized to have mean= 0 and standard deviation= 1:

x′train =
xtrain −µ(xtrain)

σ (xtrain)
, (2.5)
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FIGURE 2. Padding effect of discrete convolution.

where xtrain, x′train, µ and σ are the original training data, preprocessed training data,
mean and standard deviation of the original training data, respectively.

2.2. Deep learning model: CNN
Among the many types of deep learning algorithm, the CNN proposed by LeCun
(1989) has recently shown remarkable performance, particularly in image classification
such as AlexNet (Krizhevsky et al. 2012), ZFNet (Zeiler & Fergus 2014), VGGNet
(Simonyan & Zisserman 2014), GoogLeNet (Szegedy et al. 2015) and ResNet (He
et al. 2015). In the present research, the wall-shear information can be regarded
as two-dimensional images, similar to the RGB (red, green, blue) images of the
classification problem. CNN is known to efficiently handle the spatial information
in the input images to approximate the required output through highly nonlinear
mapping. Therefore, we expected that CNN would be a proper model to predict the
local value of the heat transfer based on the spatial features in the wall-shear stresses
and pressure.

A typical CNN architecture consists of convolution layers, pooling layers and
fully connected layers. The core layer is the convolution layer, in which the
output calculated from the input images (maps) is maintained in the form of a
two-dimensional image so that spatial information can be efficiently extracted. Kernels
in the form of 3 × 3 weights are convolved with the input fields, producing feature
maps on the hidden layer. Here, zero padding is usually employed to maintain the
same output size as the input size, but we did not use such a discontinuous application
to break the smoothness of flow data. One characteristic of this discrete convolution
operation without padding is that the input and output sizes can be varied, and the
output from the small-size input can be a part of the output from the large-size
input. For example, the convolution with zero padding can cause different parts of
the output to be present at the same spatial location when the inputs have different
sizes, as illustrated in figure 2(a). However, the convolution without padding results
in the same output at the same location regardless of the input size. In other words,
the small-size output is a part of the large-size output (figure 2b). This property is
useful for our problem, and the details are discussed later.

There is a problem called the internal covariate shift in which during training the
input distribution in each layer can change, as the parameters in the previous layers
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change (Ioffe & Szegedy 2015). To suppress this phenomenon, a batch normalization
(Ioffe & Szegedy 2015) that normalizes the input layer using the mean and variance,
which are moving-averaged by batch datasets for training steps, is applied after each
convolution. Next, a nonlinear function is used to impose nonlinearity in the network.
The equations of this layer can be expressed as

yconv = σ(BN(wconv ∗ xconv)), (2.6)

where xconv, wconv, BN, σ and yconv are the input maps, kernels, batch normalization,
nonlinear function and output feature maps, respectively. As the nonlinear function,
an exponential linear unit (ELU) function (Clevert, Unterthiner & Hochreiter 2015) is
used:

σ(x)=
{

x, x > 0,
ex
− 1, x< 0. (2.7)

This nonlinear function is smooth and expected to be effective in separating turbulent
structures of the input such as low- and high-speed streaks, and positive and negative
parts of pressure and vorticity. Although a rectified linear unit (ReLU) function is
commonly used in image classification, it can eliminate a large amount of information
from the input. Therefore, we used the smooth ELU function, which is expected to
work a little better for the flow data. In fact, we tried both and found that the ELU
function performs slightly better than the ReLU function.

The pooling layer usually extracts only important information so that the size of
the input maps is reduced. However, because too much information in the maps
can be lost, we do not use this layer. Finally, the fully connected layer connects all
components of the feature maps generated through several convolution layers with
the output:

yfc =
∑

wfc xfc + bfc, (2.8)

where xfc, wfc, bfc and yfc are the input maps, weights, biases and output of the fully
connected layer, respectively. Through the last fully connected layer, a single value of
the wall-normal heat flux is predicted.

Before training the constructed network, we first define the loss function, which is
defined by the sum of the data loss (Li) and the regularization loss (R(w)) to prevent
overfitting:

Ltotal =
1
N

N∑
i=1

Li + λR(w), (2.9)

where

Li = (yDNS
i − yCNN

i )2, (2.10)

R(w)=
1
2

∑
k

w2
k . (2.11)

Here yDNS
i is the wall-normal heat flux from DNS; yCNN

i is the predicted value from
the CNN; k denotes the index of the weights in the network; N is the batch size,
which denotes the number of datasets used in a training step; and λ is the weight
decay parameter, which is fixed as 0.0001. Minimizing this loss function is expected
to enable the network to produce good predictions for testing. A commonly used
method to minimize the loss is the gradient descent method, which iteratively updates
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overlap regions → inefficient

Nz
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Classical architecture

FIGURE 3. Modified CNN architecture composed of only convolution layers without zero
padding, which is more cost-efficient than the classical architecture shown above because
there is no redundant application of the convolution layers. In the modified architecture,
the output size is variable with a choice of the input size.

the parameters in the network in the negative direction of the total loss gradient. The
gradient can be obtained by the chain rule, whose details are demonstrated well by
LeCun et al. (2015), and the parameters are updated by the product of the gradient
and the learning rate. The larger the learning rate set, the larger the resulting parameter
change. The initial learning rate is set to 0.0005, and we reduce the learning rate by
1/5 per 400 epochs, and the total number of epochs is 2000. Here, one epoch means
the period for which the given training datasets are used all at once for training. One
of the gradient descent methods, adaptive moment estimation (ADAM) (Kingma & Ba
2014), which is known to show good convergence and requires little hyperparameter
tuning, is used. The open-source library TensorFlow (Abadi et al. 2015) is used to
train the CNN.

The architecture of the network employing the CNN needs to be briefly discussed.
We wanted to construct a network to predict the heat flux at a single position on the
basis of the shear stresses and pressure distribution in a nearby rectangular region with
size Nx × Nz. Here, Nx and Nz are the number of grid points in the streamwise and
spanwise directions, respectively. In this study, the input kernel size Nx×Nz is mostly
fixed to 33×33. Then, in order to predict a heat flux field on a grid of size 192×192,
one has to provide an Nx×Nz size input 192× 192 times, which is greatly inefficient.
However, it can be noticed that predicting the heat flux at the adjacent points requires
the input data, whose share of data is large. An example is illustrated in the classical
architecture of figure 3, where two input images having the same partial information
pass through convolution layers without zero padding, and then identical parts (the
black dashed line) in the output feature maps are produced. We can reduce the cost
by calculating these overlapped parts only once. To achieve this, we removed the fully
connected layer of the classical CNN architecture and added the convolution layer
operated by the same number of weights as the fully connected layer. Therefore, the
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modified CNN performs an identical operation as that of the classical CNN on the
input kernel of Nx ×Nz size. However, there is a big difference that the input kernel
size can be varied from Nx × Nz to a maximum of (Nx + 191)× (Nz + 191), and the
corresponding output size is varied from 1 to 192× 192. For example, by providing
an Nx × (Nz + 1) size input to the CNN instead of providing an Nx × Nz size input
twice, the heat flux at the two spanwise-adjacent points can be obtained without any
redundant calculation. This modified CNN can quickly predict a heat flux field by
using an (Nx + 191)× (Nz + 191) input only once.

A total of 12 800 fields – including the collected data and the reflected data using
the mirror image, which contains 12 800× 192× 192 (= 471 859 200) datasets – were
used for training. During the training, we set the size of the input images to (Nx +

191)× (Nz+191) instead of Nx×Nz as discussed above. This can yield a similar effect
to setting a large batch size and thus help quick learning in the constructed network.
Keskar et al. (2016) reported a problem that the test accuracy of the network trained
with a large batch size is worse than that for the one with a small batch size, but this
problem did not occur in the present study. The test accuracy of our approach is good,
and this method is critically fast for cases that require training of a large amount of
data or cases in which the input kernel size (Nx × Nz) is large. For training of our
networks, the batch size is fixed as four fields (= 4 × 192 × 192); i.e. the networks
are trained using four fields per iteration.

In the network that we are constructing, a number of important hyperparameters
need to be determined before training, such as the input kernel size (Nx × Nz), the
number of convolution layers, the number of maps in each convolution layer and the
convolution kernel size. We first set the input kernel size as 33×33, i.e. approximately
389×194 in wall units, from the observation that a streak of the wall heat flux is fully
captured in that size. The kernel size in a convolution operation is fixed as 3 × 3,
the size used in VGGNet (Simonyan & Zisserman 2014). In order to find appropriate
values of the other hyperparameters, a grid searching method is used. As the number
of convolution layers is varied among three, six and nine, we changed the number of
feature maps in the convolution layers from four to 32. Then, we observed training
and validation errors calculated using 20 fields that are not among the trained data
fields and are sufficiently far away from the training fields. When overfitting, which
makes the validation error much larger than the training error, seemed to occur, we
increased the number of training datasets and checked the errors again. The results are
given in figure 4, and validation errors are sometimes smaller than the corresponding
training errors because validation data are randomly selected turbulence data. As the
number of feature maps increases, the validation errors decrease and converge to a
specific value. When the number of maps is the same, the validation errors with six
convolution layers are rather smaller than the errors with three convolution layers (not
shown here), but the errors with six and nine convolution layers are almost the same.
The results indicate that the depth and width of the network are large enough for the
prediction of the local heat flux based on the given inputs. This also means that the
heat flux sometimes cannot be expressed by a unique function in terms of the inputs
because considerable errors remain. From the above process, an optimal structure of
the network among the trained networks is determined, and consists of nine 3 × 3
convolution layers, 24 feature maps in each convolution layer and one final 15× 15
convolution layer, as shown in figure 5. The total number of weights in the optimal
network is approximately 48 000, which is not an extremely large number. Our optimal
network was trained for 103 h on a single GPU server (NVIDIA Titan Xp) to obtain
the best results. However, while performing a quick training in practical applications,
5 h are enough to guarantee good prediction accuracy close to that of the optimized
one.
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FIGURE 4. Mean square error (MSE) of the networks composed of (a) six convolution
layers and (b) nine convolution layers with the number of feature maps changed in
each convolution layer. For cases where overfitting occurred, we increased the number
of original training fields from 3200 to 6400. The validation errors of a simple
linear regression using a single point of shear stress as input and a multiple linear
regression using a stencil of shear stresses and pressure are approximately 1.05 and 0.38,
respectively.

O
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1 ÷ 1 ÷ 1

Im
age size

15 ÷ 15 ÷ 24

Im
age size

31 ÷ 31 ÷ 24

Input size
33 ÷ 33 ÷ 3

Elu

Elu

Batch norm

Batch norm

Conv 15 ÷ 15

Conv 3 ÷ 3

Conv 3 ÷ 3

9 hidden layers

FIGURE 5. Architecture of the optimized network. Here 33× 33 (=Nx×Nz) is the input
kernel size needed to predict a single point of output. According to the increase in the
input size, the image size in the hidden layer and output size can increase.

3. Results and discussion
3.1. Test of the constructed network

First, the accuracy of the prediction by the trained network was validated against the
DNS data at Reτ = 180. The test data are apart from the training data more than
10 000 in wall time units. Fifty test fields were used, and the time interval between
them is 90 in wall time units, which guarantees that the data are almost uncorrelated
with each other. An example comparison between the DNS result of the heat flux and
the prediction through deep learning for a test field is presented in figure 6. It indicates
that the shape of the structures and the local maximum locations of the prediction
agree fairly well with those of the DNS. In order to quantify the prediction accuracy,
we used a correlation coefficient (R) between the DNS and the prediction values,

R=
〈qDNS

w qDL
w 〉

qDNS
w,rmsqDL

w,rms

, (3.1)
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FIGURE 6. Comparison of an instantaneous heat flux field between the DNS and the
prediction by the trained deep learning network at the Reynolds number Reτ = 180.

Model Input Reτ = 180 Reτ = 360 Reτ = 540
Mean R.m.s. R Mean R.m.s. R Mean R.m.s. R

DNS — 6.132 2.484 — 11.445 4.796 — 15.751 6.765 —

SLinear
du
dy

6.125 2.235 0.901 11.212 4.359 0.893 15.905 6.322 0.883

MLinear
du
dy
,

dw
dy
, p 6.126 2.388 0.964 11.211 4.719 0.961 15.849 6.903 0.958

DL
du
dy
,

dw
dy
, p 6.100 2.421 0.980 11.149 4.772 0.977 15.746 6.992 0.975

TABLE 2. Test results of simple linear regression (SLinear), multiple linear regression
(MLinear) and deep learning (DL) at three Reynolds numbers. The network was trained at
Reτ = 180, but tested at Reτ = 180, 360 and 540. For Reynolds numbers Reτ = 360 and
540, the same number of input kernel grid points (Nx ×Nz = 33× 33) and the same grid
size ((1x+, 1z+)= (11.781, 5.890)) as those of the trained one (Reτ = 180) were used.

where qw is the wall-normal heat flux fluctuations, defined as qw= (dT/dy)−〈dT/dy〉,
and qw,rms is the root-mean-square (r.m.s.) of qw. The angle bracket denotes the
average over all test points. For the purpose of comparison, two kinds of linear
regression models were considered. One is a simple linear regression (SLinear) using
a single point data of the streamwise wall-shear stress as input; and the other is a
multiple linear regression (MLinear) using the same inputs as the deep learning (DL).
The validation errors of SLinear, MLinear and optimal DL are 1.05, 0.38 and 0.21,
respectively (figure 4). Therefore, the test accuracy of DL was expected to be superior
to those of the two linear models, especially for high heat flux regions. Quantified
test results of the performances, including the mean, r.m.s. and R, are shown in
table 2. At the tested Reynolds number of 180, the mean values of the prediction by
SLinear, MLinear and optimized DL are in very good agreement with those of the
DNS. However, the r.m.s. values predicted by DL and MLinear are much closer to
the value of the DNS than that of SLinear. The R of 0.901 between the DNS and the
prediction by the SLinear was obtained at the Reynolds number of 180, indicating
that there exists a pointwise correlation between the shear stress and the heat flux.
However, it is not good enough for accurate prediction of the heat flux, because a
deviation from the pointwise correlation is usually observed in the high-flux regions.
On the other hand, from the optimized deep learning model, we obtained an R of
0.980, finding that the deviation from the perfect correlation, 1 − R, is one-fifth of
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FIGURE 7. Comparison of heat flux scatterplot between the DNS and prediction values for
the trained Reynolds number using (a) SLinear, (b) MLinear and (c) DL. Only one-tenth
of all test data are plotted. (d) The p.d.f.s of prediction data under the condition that the
DNS value = 5 and 10. Here, conditioning was achieved by collecting data in the range
(5 − 0.1, 5 + 0.1) and (10 − 0.1, 10 + 0.1) among all test data used for calculating the
p.d.f.s.

that from SLinear and approximately half of that from MLinear, clearly indicating
that the nonlinear DL captures the correlation much better than both linear networks.
Further, the scatterplots between the DNS and the predictions are given in figure 7,
confirming that the prediction by DL is superior to that by both linear models. The
cross-sectional distribution of the probability density functions (p.d.f.s) along the red
(DNS value = 5) and blue (DNS value = 10) lines in figure 7(a–c) is also presented
in figure 7(d), indicating that the peak values obtained by the DL are much higher
than those obtained by both linear models. However, a trend is observed for the
prediction of a large value: the performance deteriorates for all models.

The total p.d.f.s and high-order moments of the heat flux data of the DNS and
prediction by the models are compared in figure 8. The prediction of the p.d.f. by
DL agrees well with the DNS results except for the very high heat flux parts. The
moments predicted by DL are much closer to those of the DNS than those of the
linear models even for a very high order. Although MLinear shows relatively higher
prediction accuracy than SLinear, DL goes beyond it, especially for high heat flux.
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FIGURE 8. (a) P.d.f.s and (b) high-order moments of the DNS and prediction for the
trained Reynolds number.

These results indicate that deep learning indeed captures well the nonlinear relation
between the local heat flux and the spatial information of the shear stresses and
pressure at the trained Reynolds number.

Next, we investigated whether the trained network can predict the turbulent heat
transfer at other Reynolds numbers higher than the trained number. The data at
other Reynolds numbers, however, have different scales from the trained number.
The scales of the wall-shear stresses except pressure increase with the Reynolds
number. Therefore, in order to match the input scales to the trained Reynolds
number, the test input information except pressure is additionally rescaled by the
ratio Reτ (= Reτ ,test/Reτ ,train):

x′test =

xtest
Reτ ,train

Reτ ,test
−µ(xtrain)

σ (xtrain)
. (3.2)

Here xtest and x′test are the original input data and preprocessed input data at the tested
Reynolds number, respectively; and µ(xtrain) and σ(xtrain) are the mean and standard
deviation of the training data, which were used in (2.5). Further, the target wall-normal
heat flux at each Reτ has different scales. However, if the normalized input maps are
used on the trained network, the output in the range of scales at the trained Reynolds
number will be produced. To adjust the scales to the heat flux scales at other Reynolds
numbers, the predicted outputs are normalized by the inverse ratio of the Nusselt
number,

ytest = y′test
Nutest

Nutrain
, (3.3)

where y′test is the output of the network and ytest is the scaled output, which has
the scales at the tested Reynolds number. Because the Nusselt number can be well
approximated by a simple function of the Reynolds number (2.4) within our simulated
Reynolds-number range, it is reasonable to assume that we already know the Nusselt
number at the other Reynolds numbers. In short, this simple scaling process is
identical to using (1/Reτ ) du/dy, (1/Reτ ) dw/dy and (1/Nu) dT/dy instead of du/dy,
dw/dy and dT/dy, respectively.
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FIGURE 9. Comparison of heat flux scatterplot between the DNS and prediction values
for the Reynolds number three times higher than the trained one using (a) SLinear,
(b) MLinear and (c) DL.

In addition to the above process, the input grid size at the other Reynolds number
should be matched to the trained one ((1x+, 1z+) = (11.781, 5.890)). In general,
an interpolation scheme is necessary for transforming data between different grids.
However, the simulation grid size at Reτ = 360 and 540 is half of that at Reτ = 180;
therefore, interpolation was not used in the present study. For general non-uniform
grids, learning the grid locations as a part of the input can be considered.

Test results obtained using the same number of data as the case at Reτ = 180 are
presented in table 2 and figures 9 and 10. As shown in table 2, the mean values
at the other Reynolds numbers are well predicted by SLinear, MLinear and DL
models. Because the mean y′test in the above scaling process of SLinear approximates
Nutrain, it is natural that the mean values of all models show good agreement with
the DNS. The r.m.s. prediction by MLinear and DL for higher Reynolds numbers,
however, is more accurate than that of SLinear. In fact, the R value between the
DNS and the prediction by the DL at a Reynolds number of 540 reaches as high
a value as 0.975. It is shown in figure 9 that the prediction by DL is closer to the
DNS than both linear models, and the extent of spread is similar to that in figure 7.
Figure 10(a) shows that the p.d.f.s of the DNS and the prediction by DL are in good
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FIGURE 10. (a) P.d.f.s of heat flux and (b) high-order moments of the DNS and prediction
for the Reynolds number three times higher than the trained number.

agreement. In figure 10(b), the relatively low-order moments of the p.d.f. produced
by DL are also in good agreement with those of the DNS, whereas the difference
between them increases with the order of the moment. Although high-order moments
are overpredicted by the DL, the relationship between the heat flux and the inputs
including the wall-shear stresses and pressure is quite insensitive to the frictional
Reynolds number, at least within the tested range.

3.2. Observations of inaccurate predictions
As mentioned in § 3.1, relatively large errors occur in some region in the prediction by
deep learning of the high wall-normal heat flux. In this section, we report the reason
for poor prediction. It was confirmed through the hyperparameter optimization process
that the lack of training datasets and deep learning’s overfitting or underfitting are
not the dominant reason for poor prediction. Locally poor prediction implies that our
hypothesis that the instantaneous near-wall temperature information can be uniquely
expressed by the instantaneous wall stress information is not perfectly valid. In order
to find the common characteristics of the poorly predicted flow fields, we investigate
the behaviour of the near-wall vortical structures near the high-heat-flux region that
show either good or poor prediction. Four representative cases are demonstrated in
figures 11–14 with vortices visualized by the λ2 method (Jeong & Hussain 1995). The
first two examples are observed when both the streamwise wall vorticity and pressure
fluctuations are similarly aligned with the streamwise direction, but one case shows
accurate prediction (figure 11) and the other case shows poor prediction (figure 12).
The next two examples are found when the vorticity and pressure are not aligned
similarly with each other, but one case shows accurate prediction (figure 13) and the
other case shows poor prediction (figure 14).

The near-wall streamwise vortices induce a sweeping motion that pushes fluid
carrying high momentum and high temperature towards the wall so that both the
streamwise wall shear and the heat flux are enhanced. Then, the streamwise vorticity
and pressure show high correlation as shown in figure 11 for which deep learning
predicts very well. However, for the similar situation shown in figure 12, where
the streamwise vorticity is highly correlated with the wall pressure, the prediction
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FIGURE 11. The first example fields yielding accurate prediction. Here t0 is the prediction
time, and the point is on the local maximum location of the heat flux. The vortices are
visualized with λ2 =−0.05.

by deep learning is poor. The difference between these two cases can be found in
the side view of the near-wall vortices shown in figures 11 and 12; the vortex in
figure 11 is slightly slanted away from the wall, whereas the vortex in figure 12 is
slanted towards the wall at the point of interest. The former case is more frequently
observed than the latter case; thus the latter case is not well learned by the network
due to the small number of samples in training data, leading to poor prediction. The
instantaneous distributions of the input fields alone cannot distinguish well between
the two cases, but a consideration of temporal behaviour can help to identify the
difference. For the well-predicted case, the strength of the vorticity and pressure
increases with time, while the reduction of the vorticity and pressure over time is
noticeable in two snapshots captured at different times, as shown in figure 12.

The second group of examples is the case where the wall vorticity distribution is
quite different from the pressure distribution. Figure 13 demonstrates the case where a
near-wall vortex strongly tilted towards the spanwise direction causes such a situation.
Despite the dissimilarity between the shear stress and the heat flux at the prediction
time, deep learning captures the difference well. On the other hand, the case shown
in figure 14, where the wall vorticity distribution is too complex and there is a large
pressure gradient, is not well predicted by deep learning. Here, again, the difference
between the two cases lies in the temporal behaviour: the wall vorticity and pressure
increase with time at the point of interest, leading to an increase in the heat flux in
the former case (figure 13), whereas the pressure gradient decreases very quickly with
time, leading to a quick increase in the shear stress in the latter case (figure 14).

Through these observations, we can conjecture that the accurately predicted cases
are found in the regions where the vorticity and pressure increase with time and
the heat flux is enhanced, and that the inaccurately predicted cases are observed
in the regions where the vorticity and pressure decrease with time. In particular,
the sharp decrease in the streamwise gradient of pressure is responsible for poor
prediction. To improve the performance of deep learning, the temporal information
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FIGURE 12. The first example fields yielding poor prediction. The point is on the local
maximum error location. The vortices are visualized with λ2 =−0.05.

can be considered in the input. We carried out additional deep learning taking into
account the pressure at a little earlier time than the present time as an extra input.
We varied the time interval (1t+) between the original inputs and the additional input
from 0.9 to 7.2 in wall time units. As shown in table 3, the mean and r.m.s. values
of all the deep learning models are very similar to those of the DNS. Although
the models considering the temporal information (p∗) show similar correlation
coefficients between the prediction and the DNS, the model at 1t+ = 7.2 is the
best among the implemented models in the prediction of the local heat flux, with
a correlation of approximately 0.983, which is slightly higher than the case without
considering the temporal information. For the test at Reτ = 540, which is not trained,
the correlation coefficient between the prediction and the DNS is approximately 0.979.
It is confirmed that pressure information for just one extra time step can improve the
prediction accuracy. The results imply that information from several time steps of all
variables might enhance the prediction of the local heat flux. Then, three-dimensional
convolutional neural networks with time-directional convolution or recurrent neural
networks, which use sequential information as inputs, might work as well. It will be
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FIGURE 13. The second example fields yielding accurate prediction. The point is on the
local maximum location. The vortices are visualized with λ2 =−0.05.

Model Input 1t+ Reτ = 180 Reτ = 540
Mean R.m.s. R Mean R.m.s. R

DNS — — 6.132 2.484 — 15.751 6.765 —

DL
du
dy
,

dw
dy
, p — 6.100 2.421 0.980 15.746 6.992 0.975

DL
du
dy
,

dw
dy
, p, p∗ 0.9 6.125 2.433 0.982 15.810 7.081 0.978

DL
du
dy
,

dw
dy
, p, p∗ 1.8 6.130 2.427 0.983 15.734 7.000 0.978

DL
du
dy
,

dw
dy
, p, p∗ 3.6 6.128 2.432 0.983 15.784 7.062 0.979

DL
du
dy
,

dw
dy
, p, p∗ 7.2 6.130 2.430 0.983 15.803 7.048 0.979

TABLE 3. Deep learning results considering the pressure field p∗ at an earlier time by 1t+
as an extra input for prediction of the local heat flux. Training was performed using data
of Reτ = 180, and tests were carried out at Reτ = 180 and 540.

more effective to apply the Lagrangian perspective considering the mean propagation
speed of the input information when using those methods. However, the current deep
learning, which does not consider time-dependent information, shows sufficiently
reliable prediction accuracy.

3.3. Gradient analysis of the trained network
In the previous section, we have shown that the local heat flux can be well predicted
on the basis of the nearby distributions of the wall-shear stresses and pressure by
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FIGURE 14. The second example fields yielding poor prediction. The point is on the local
maximum error location. The vortices are visualized with λ2 =−0.1.

deep learning, which connects the input and the output through a nonlinear explicit
relationship. Although the number of weights involved in the trained network is
huge, an investigation of the relationship between the input and output might provide
some clues to a better understanding of the near-wall physics of turbulence. In this
section, we analyse the relationship between the wall-shear stresses, pressure and
heat flux using the gradient map. First, we focus on the parts of the inputs that are
important for the local heat flux prediction. The sensitivity analysis was performed
by Simonyan, Vedaldi & Zisserman (2013) to visualize the class saliency map for
image classification problems. For regression problems, the sensitivity can be defined
as the gradient of the output with respect to the input maps at each pixel, indicating
how much the change in each input pixel value affects the output:

Si,j =
∂O(Ii,j)

∂Ii,j
. (3.4)

Here Si,j, Ii,j and O(Ii,j) are respectively the gradient maps, the input kernel maps
over Nx×Nz regions used for prediction of a single point value of heat flux, and the
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FIGURE 15. Average gradient maps of the optimal network. The black line is the
centreline of each axis, and (0, 0) is the point of interest where the local heat flux is
predicted. The side view is provided at the bottom right of each panel.

output, which represents the convolutional neural network; and i and j represent the
pixel indices of the minimum input in the streamwise (x) and spanwise (z) directions,
respectively. The position i = 0, j = 0 corresponds to the point of interest. If we
approximate the network as a multiple linear regression model composed of the same
number of weights as the pixels of the input, the gradient signifies the values of the
weights multiplied by each pixel of input,

Si,j ≈wi,j if O(Ii,j)≈
∑

wi,j Ii,j + b, (3.5)

where wi,j and b are the weights and bias of the multiple linear regression
approximating the network.

The gradient map obtained from an input kernel size dataset is quite different for
each input dataset due to the nonlinear nature of the network and sometimes too noisy
to allow any pattern to be recognized. The noise might originate from the training
process under complicated situations where the relationship between the inputs and
the output is not unique. In other words, it may be a kind of overfitting. However, the
pixelwise average of the gradient maps over several input datasets shows a noticeable
pattern regardless of the hyperparameters. Figure 15 shows the average gradient maps
of the test datasets, which clearly demonstrate a non-negligible pattern near the point
of interest. Therefore, it makes sense to investigate these patterns to understand the
role of the nearby input data in determining the heat flux at the point of interest.

Before discussing the implications of the gradient map in detail, the quality of the
gradient map needs to be refined. As shown in figure 15, wavy noise is observed in
the downstream region in all gradient maps of the wall-shear stresses and pressure,
and appears to be a numerical artifact. Upon investigation, we found that this
phenomenon is related to the weights in the edge of the input image in the last layer.
One way to resolve this is to apply stronger regularization to the weights towards the
edge of the input image; however, this did not prove to be very successful. Another
attempt to suppress this noise can be made by increasing the input kernel size, the
region connected with a single point heat flux, because the noise is likely to come
from the discontinuity of the weight distribution near the edges. We increased the
input kernel size from 33× 33 to 49× 49 just for the purpose of the gradient analysis,
to eventually suppress the noise significantly, as shown in figure 16.

In addition to the average, the r.m.s. of the fluctuations of the gradient maps is
also shown in figure 16. The parts in which both the average and r.m.s. of the
gradient are very small can be regarded as unnecessary regions for the prediction of
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FIGURE 16. (a–c) Average and (d–f ) r.m.s. of the noise-reduced gradient maps of the
network using the large-size inputs.

the local heat flux. It appears that the regions x+ < −150 (upstream) or |z+| > 100
(spanwise sides) are unnecessary parts, while the downstream region up to x+ = 300
is the necessary part. This implies that information located further in the downstream
direction rather than the upstream direction is more critical in the prediction of the
heat flux. However, the prediction accuracy is only slightly enhanced with an increase
in the input kernel size as shown in the comparison between DL and DL3 in table 4,
and thus increasing the input kernel size in the downstream direction is not expected
to enhance the accuracy significantly. Besides, because the average and r.m.s. of the
gradient maps are non-negligible only in the narrow neighbourhood of the point of
interest, we can assume that the critical parts are very narrow in the context for good
prediction.

In such narrow parts of the average gradient map of the trained network,
strong gradient values in the specific distribution are observable regardless of the
hyperparameters, implying some physical meaning. For the comparative analysis
with the present model (DL3), two more deep learning procedures with a different
combination of the inputs, such as a model using the shear stress and vorticity as
the inputs (DL1) and another model using the shear stress and pressure as the inputs
(DL2), were carried out (table 4). In addition to these three cases, other deep learning
procedures including models using only one type of input and a model not using
the shear stress as input were performed and the results are provided in table 5 in
appendix A. Because the prediction accuracy of DL1, DL2 and DL3 is much higher
than that of the other cases, we consider only these cases here, except to mention
that it is interesting that the model using only the vorticity and pressure without
the information of momentum streaks can predict thermal streaks well and produces
a correlation coefficient of 0.959 with DNS data. While the accuracy of DL1 and
DL2 is similar, the prediction of DL3 is slightly more accurate than those of DL1
and DL2. Also, for observing the linear relation between the input and output, a
multiple linear regression (MLinear1) using the same inputs as DL3 was carried out.
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Model Input Reτ = 180 Reτ = 540
Mean R.m.s. R Mean R.m.s. R

DNS — 6.132 2.484 — 15.751 6.765 —

DL
du
dy
,

dw
dy
, p 6.100 2.421 0.980 15.746 6.992 0.975

DL1
du
dy
,

dw
dy

6.130 2.416 0.977 15.849 6.906 0.973

DL2
du
dy
, p 6.122 2.421 0.978 15.734 6.945 0.972

DL3
du
dy
,

dw
dy
, p 6.116 2.416 0.980 15.715 6.966 0.976

TABLE 4. Deep learning results for different combinations of the input fields. Input grid
points (Nx × Nz) are increased from 33× 33 (DL) to 49× 49 (DL1, DL2, DL3) in order
to reduce the noise of the average gradient maps.
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FIGURE 17. Magnified view of the average gradient maps of DL1 in which the inputs
are the shear stress and vorticity.
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FIGURE 18. Magnified view of the average gradient maps of DL2 in which the inputs
are the shear stress and pressure.

The accuracy of MLinear1 is almost the same as that of MLinear (table 2). Here,
L1 regularization was used to prevent noise in the gradient map of MLinear1. For
MLinear1, the r.m.s. values of the fluctuations of gradient maps are all zero simply
because Si,j becomes equal to wi,j. The magnified views near the point of interest
of the average gradient maps of DL1, DL2, DL3 and MLinear1 are presented in
figures 17, 18, 19 and 20, respectively.
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FIGURE 19. Magnified view of the average gradient maps of DL3 in which the inputs
are the shear stress, vorticity and pressure.
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FIGURE 20. Magnified view of the gradient maps of MLinear1 in which the inputs are
the shear stress, vorticity and pressure.

For all cases, the average gradient maps show that the streamwise wall-shear stress
is the most influential in the determination of the heat flux, as expected, and the
strong positive peak is found to be slightly shifted towards upstream of the point of
interest (x+< 0). A negative gradient is commonly observed in the spanwise sides and
downstream of the strong positive peak in all cases. For DL1, DL3 and MLinear1, the
average gradient maps of the streamwise vorticity are large on both sides downstream
(x+ > 0, |z+| > 0), which is consistent with the report for the relationship between
the shear stress and the streamwise vortices (Kravchenko et al. 1993). In the first
quadrant of the input map (x+ > 0, z+ > 0), the gradient of the heat flux with respect
to the vorticity is positive, whereas the gradient is negative in the fourth quadrant
(x+ > 0, z+ < 0), due to the skew symmetricity (Si,j =−Si,−j). On the other hand, in
the second (x+ < 0, z+ > 0) and third (x+ < 0, z+ < 0) quadrants, similar correlations
exist with signs opposite to the first and fourth one, respectively. This implies that
the sweep motions downstream or vortices crossing from the third to the first or from
the second to the fourth quadrant can strongly enhance the local heat flux even if the
shear stress is low. The average gradient maps of streamwise shear stress and vorticity
in all cases, including the linear model, show similar distributions. However, this does
not necessarily mean that the linear and DL models act similarly. It is noteworthy that
the prediction accuracy of DL1 (R= 0.977), which uses only the wall-shear stresses
as input, is higher than that of MLinear1 (R= 0.964), although MLinear1 uses more
input information. Furthermore, the DL model produces meaningful distributions of
the r.m.s. of the fluctuations of gradient maps, which is absent in the linear model.
This input-dependent property of DL is a major difference between the nonlinear
mapping and linear one, which somehow produces a better correlation than the linear
network.
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For DL2, in which the streamwise shear stress and pressure are used as input,
the average gradient map of the pressure upstream is negatively correlated with the
heat flux at the point of interest, whereas that downstream is positively correlated
while maintaining the symmetry in the spanwise direction (Si,j = Si,−j). This indicates
that the pressure gradient in the streamwise direction at the point of interest indeed
positively influences the heat flux, which is consistent with the results of Abe &
Antonia (2009). Comparing DL2 and DL3 (figures 18 and 19), however, we can
notice that the average gradient maps of the pressure are significantly different. This
difference is obviously caused by the inclusion of the vorticity in the input for DL3,
suggesting that there might be some correlation between the vorticity and the pressure
fields. Kim (1989) reported that the large-negative-pressure parts strongly correspond
to the large-streamwise-vorticity parts, and the vorticity is similar to the spanwise
pressure gradient. For DL3 and MLinear1, which use the same input information, a
remarkable difference is observed in the average gradient map of the pressure, as
shown in figures 19(c) and 20(c), while the average gradient maps of the wall-shear
stresses are similar. This indicates that pressure influences the heat flux through the
nonlinear mapping when the entire wall information including shear stresses and
pressure is used as input. This explains why the linear network performs relatively
well, but the nonlinear DL produces a better result by capturing the nonlinear relation
between the input and output.

Additional deep learning procedures to quantitatively investigate the dependence
between the wall variables are carried out, and the results are presented in table 6
in appendix A. Prediction of the vorticity based on the nearby pressure information
is very accurate with R= 0.974, but the inverse prediction of the pressure based on
the vorticity is not so accurate with R= 0.881. This suggests that pressure has more
information than the vorticity and that the wall pressure cannot be predicted on the
basis of wall information alone.

In fact, the average gradient maps, which we have discussed above, contain more
information on the gradient of the input of low magnitude, because the input field of
low magnitude is more frequently found. Therefore, the average gradient map might
be biased to the input of low magnitude. However, we are more interested in the
behaviour of the input fields that cause a strong heat flux. In order to focus on the
gradient maps of large-magnitude inputs, here, we observe the change in output caused
by the relative change in the input magnitude. In other words, relative gradient maps
to observe the output change when the value on each pixel of the input maps is
multiplied by a factor f that is almost equal to 1 were defined:

RSi,j =
O( f Ii,j)−O(Ii,j)

sign(Ii,j)( f − 1)
, (3.6)

where RSi,j are the relative gradient maps, and f is 1.1. In the operation of f Ii,j, f
is multiplied to an input variable at the i, j position only. The RSi,j value is similar
to Si,j, but it emphasizes large-amplitude input. Figure 21 shows the average relative
gradient maps for DL3, which is consistent with the previous average gradient maps
(figure 19), indicating that the average gradient maps are valid for the overall range of
the inputs in our problem. The only noticeable difference is found in the amplitude
of the average gradient maps such that the peak value of the gradient map of the
shear stress decreases. The decrease implies that, as the input values are large, the
linear relationship between the shear stress and the heat flux becomes weak. There
is a similar quantity that reflects the magnitude of the input to the gradients such
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FIGURE 21. Magnified view of the relative average gradient maps of DL3.
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FIGURE 22. Representative case with high heat transfer at Reτ = 180. Panel (b) is the
top view of panel (a). Isocontours are used for the heat flux, the lines are used for the
streamwise shear stress, and λ2 = −0.1. The local maximum value of the heat flux is
approximately three times higher than the average heat flux, while the local shear stress
value at the same location is similar to the mean shear stress.

as |Ii,j| Si,j, which can intuitively extract the relations between turbulent structures and
predicted heat fluxes. We also confirmed that the average result of this quantity is
similar to the relative gradient map.

Figure 22 demonstrates a good example that clearly shows the relationship between
the local heat flux and the nearby vorticity on the wall. There is a strong streamwise
vortex that is slightly tilted anticlockwise in the horizontal (x–z) plane. Then, a
strong and positive streamwise vorticity occurs on the wall and is tilted, and high
heat transfer is observed along this vortex. The local maximum value is approximately
three times higher than the average heat transfer rate, while the streamwise shear
stress value near the maximum position is approximately the average shear stress.
This situation results in a large contribution to the positive values at the first and third
quadrants in figures 17(b), 19(b), 20(b) and 21(b). Conversely, the negative values in
the second and fourth quadrants are obviously caused by the vortex tilted clockwise
on the horizontal (x–z) plane.

In addition to the gradient, the second-order derivatives can be used to identify
the local complexity of a function (Wahba 1990). However, in our applications of
deep neural networks to represent the relationships between turbulence data, when
the network is deeper, the second-order gradients typically increase significantly
without a meaningful increase in the prediction accuracy. The increase in the
second-order gradients results in rather noisy individual gradient maps. In other
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words, the overfitting, which does not affect the prediction accuracy, makes gradient
analysis difficult even when the number of training datasets is large enough. In order
to analyse individual cases through the gradient maps, it is critical to minimize such
overfitting. There are several possible methods to prevent overfitting, such as to make
the network relatively shallow, to strengthen the regularization, and to directly add
the average of the second derivatives to the loss function as a constraint (this greatly
increases the computation load and memory). Those are not attempted in the present
study. In short, the second-order derivatives are so sensitive to the hyperparameters
that investigation of them was not so informative, and it is crucial that they be
reduced for a deeper gradient analysis.

Finally, we briefly mention what we can learn from an analysis of the weights
of the trained network. In general, it is almost impossible to completely understand
the role of all weights in a multilayered network. However, because we are adopting
a convolution network, we might be able to grasp the roles of some weights in
successful learning by investigating the distribution of the weights. Here, we focus on
the first convolution layer, which is directly applied to the input fields to predict the
target output. In order to quantify the importance of each kernel in the convolution
layer, we carried out a kernel sensitivity analysis. All the weights of a specific
kernel were deliberately set to zero while keeping the weights of other kernels as
the trained networks, and the resulting change in the prediction accuracy in terms of
the correlation coefficient R was monitored. The changes are generally proportional
to the magnitude of the weights in the kernels, but not always, because of the scale
factor in the batch normalization.

Figure 23(a,b) shows the 3 × 3 weight distribution of the kernels in the first
convolution layer of the trained network and the corresponding response of the kernel
sensitivity test in terms of the change in R for the case DL3, respectively. Here,
the first, second and third input maps correspond to the shear stress, vorticity and
pressure, respectively, and the number of output feature maps in the first layer is 24.
The orientation of the 3× 3 weights is such that the horizontal and vertical directions
denote the streamwise and spanwise directions, respectively. Almost all the kernels at
least slightly influence the prediction performance. In particular, among the kernels
of the first input map, the kernels of the fifth and twentieth output feature maps
play the most important roles. The weight distribution of the corresponding kernels
shown in figure 23(c) indicates that the dominant weights of the fifth feature map
are all negative while those of the twentieth map are positive. This implies that each
kernel detects the low-speed and high-speed streaks of the shear stress, which are
characterized by negative and positive values, respectively, through the action of the
nonlinear activation function given in (2.7). Because these streaks influence the heat
flux through different mechanisms, the network needs to differentiate these in the
layer of feature map extraction.

An investigation of the tenth feature maps of the vorticity and pressure input
maps shown in figure 23(c) revealed that the feature map of the vorticity extracts
the vorticity value itself while that of the pressure extracts the spanwise gradient
of the pressure. This indicates that both maps detect the presence of a near-wall
vortex because the vorticity and spanwise gradient of the pressure are highly and
negatively correlated. When one signal is weaker than the other, these kernels capture
the difference between them. This result is closely related to the nonlinear effect
reflected on the average gradient maps of the pressure, shown by the difference
between figures 19(c) and 20(c). It can be seen that the weight distribution of the
twenty-third feature maps shown in figure 23(c) is opposite in sign to the tenth maps
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FIGURE 23. Kernel sensitivity analysis for quantifying the importance of kernels.
(a) Weight distribution of the kernels in the first convolution layer; (b) changes in R; and
(c) magnified view of prominent kernels that play an important role in the prediction of
heat flux.

for both the vorticity and pressure inputs. This preserves the reflectional symmetry
so that the streamwise vortex rotating either positively or negatively about the
streamwise direction can be detected equally. There are other important kernels, but
it is not easy to understand their roles in the physical sense. Understanding the role
of kernels in the deeper layer and the connections between the layers is even harder.
With the development of more sophisticated methods for analysing deep learning
such as visualizations using deconvolution (Zeiler & Fergus 2014) and layerwise
relevance propagation (Bach et al. 2015), we might have more opportunities to
further understand the physics of turbulence.

3.4. Application to low-resolution data
We presented the model for predicting turbulent heat transfer from the spatial
information of shear stresses and pressure on the wall. We showed that the heat
transfer could be well predicted by the nonlinear network if accurate wall-shear
stresses and pressure, which are provided by DNS, are used as input. In more
practical applications, such as LES or RANS, however, such high-quality input data
are not available. Therefore, the DL framework that we developed could not be
directly applied to LES or RANS. In this section, we investigate the possibility that
our DL could be utilized in LES or RANS.

We carried out a new deep learning procedure, DL-RV, for the prediction of
the well-resolved turbulent heat transfer using poorly resolved wall-shear stresses
and pressure. This procedure is similar to the super-resolution reconstruction of
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FIGURE 24. Prediction accuracy with change in input resolution at Reτ = 180. For all
cases, the turbulent heat transfer of training and testing data was a fully resolved one.

turbulence (Fukami, Fukagata & Taira 2019), in which they had the same input
variables as the output variable. Our poorly resolved input data were obtained by
truncation of the DNS data in the horizontal wavenumber domain, and the number
of grids in the physical domain was set equal to the full resolution through spectral
interpolation. Thus, the number of input kernel grids (Nx × Nz) and the grid interval
in wall coordinates (1x+, 1z+) are the same as those in table 2. The target output
is the accurate heat flux data obtained from DNS. Various wave resolutions between
128 × 128 (full) and 16 × 16 were considered as the training input data. The DL
network was trained using the data of those resolutions altogether.

The prediction results of the trained DL-RV in terms of the correlation coefficient
R are shown in figure 24. For the purpose of comparison, a multiple linear regression,
MLinear-RV, was trained using the same training data as that of DL-RV. As expected,
as the resolution decreases, the accuracy of DL-RV and MLinear-RV decreases
naturally due to the lack of input information. The prediction accuracy of MLinear-RV
decreases considerably with a decrease in the input wave resolution, while that of
DL-RV drops relatively slowly. Even at the resolution of 32 × 32, the value of
R for DL-RV is around 0.93, which is not bad given that the input data were
filtered over four grids in each direction. This implies that the relationship between
the poorly resolved inputs and the fully resolved heat flux is strongly nonlinear.
The fields predicted by DL-RV and MLinear-RV when the wave resolution of the
input is 32 × 32 are illustrated in figure 25. Although the locally high heat flux
is not completely represented as compared to the DNS data, the overall trend is
well captured by DL-RV, while in the prediction by MLinear-RV, the small-scale
behaviours are hardly found. These results clearly indicate that our DL model has
the potential to be applied to low-resolution simulations such as RANS or LES.

We have not trained our DL network using RANS or LES data. However, we
have shown that the poorly resolved input can yield accurate output if the network
is properly trained. For successful training, one needs pairs of RANS or LES input
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FIGURE 25. Predicted turbulent heat transfer from the low-resolution input fields using
DL-RV. (a) The DNS field and the low-resolution input field; and (b) the DNS heat flux
field, and the predicted heat flux fields by DL-RV and MLinear-RV.

data and accurate output data, which are usually not available. As a remedy to this
problem, unsupervised learning could be considered. Kim & Lee (2019) showed
that it is possible to learn a similarity between simulations with different Reynolds
numbers through unsupervised learning of turbulence. Likewise, connecting data from
low-resolution and high-resolution simulations would be possible.

4. Conclusions
The current study proposes a CNN model that can predict the wall-normal heat

flux on the basis of only wall information, including the streamwise wall-shear stress,
spanwise wall-shear stress (streamwise vorticity) and pressure fluctuations. In order
to collect data used for the training of the CNN, DNS of turbulent channel flow
with a passive temperature field at three frictional Reynolds numbers (180, 360 and
540) were conducted. A total of 6400 uncorrelated fields at Reτ = 180 and 50 extra
uncorrelated fields were collected as training and test data, respectively. In addition,
the 50 fields obtained at Reτ = 360 and 540 were collected only for test data. Several
deep learning procedures were performed, tested and analysed using the given data.

In order to predict a field (192 × 192) of the heat flux quickly, we used only
convolution layers without zero padding. We constructed an architecture such that the
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output size can be changed depending on the change in the input size without any
overlapped calculation. A single point of the output is connected with only small
regions (input kernel size, Nx × Nz) of the input, even if the input size is bigger
than Nx × Nz. During training, we used the biggest size input ((191 + Nx) × (191 +
Nz)), which produces a similar effect to using a large batch size and thus stably and
quickly learns sufficient training data on the network. The constructed network was
trained using ADAM, and the grid searching method was performed to optimize the
depth and width of the CNN. The resulting optimal CNN architecture consists of nine
3× 3 convolution layers, 24 feature maps in each convolution layer, and one 15× 15
convolution layer.

The prediction accuracy of the optimized model is quantified via comparison of
several statistics of the heat flux against the DNS, such as mean, r.m.s., correlation
coefficient (R), p.d.f. and high-order moments. A simple linear regression model and
a multiple linear regression model were considered for performance comparison. Test
results show that, at Reτ = 180, all the mean values of prediction are very similar
to the DNS values, whereas the r.m.s. values predicted by deep learning and multiple
linear regression are much closer to the DNS values than those predicted by the simple
linear regression. Further, 1− R (= 0.02) of the optimal CNN is approximately one-
fifth of 1 − R (= 0.10) of the linear regression and half of 1 − R (= 0.036) of the
multiple linear regression. The p.d.f. and high-order moments of the optimal model
also agree well with the DNS, confirming that deep learning can predict turbulent heat
transfer considerably well. For the tests at Reτ = 360 and 540, the network trained at
Reτ = 180 yielded a predictive performance similar to that of the trained Reτ . These
results indicate that the relationship between the heat flux and the inputs including
shear stresses and pressure is almost independent of the frictional Reynolds number
within the tested range. Locally poor prediction was observed in some regions of
the high heat flux, and an investigation of these regions revealed that an often large
streamwise pressure gradient at an earlier time than the prediction time was identified
as being responsible for the poor prediction.

In order to understand the physics associated with the local heat flux, we observed
the gradient maps of the trained optimized network. The average and r.m.s. of the
gradient maps were calculated, and the results reveal which parts of the input fields
are critical for the local heat flux prediction. Both average and r.m.s. are very small
in the region beyond 150 wall units in the upstream direction and in the region
further than 100 in the spanwise direction, indicating that the information there is
almost unnecessary for the prediction. In contrast, there are quite large r.m.s. values
even up to 300 in the downstream direction. In particular, the average gradient maps
near the point of interest show a similar trend regardless of the hyperparameters.
For the shear stress, the average gradient map shows the strongest peak near the
point of interest, a little bias towards the upstream direction. For the vorticity, the
average gradient map is strong on both sides downstream, and they have opposite
signs. Further, the map is strong on both sides upstream, and their signs are opposite
to the downstream signs. This result implies that either when the vortex pair is
downstream, or when a vortex crosses diagonally at the point of interest, the local
heat flux can be enhanced. For the pressure, the average gradient map is biased
towards the downstream direction due to the strong correlation with the vorticity, and
it is observed that the trained network somehow captures the difference between them.
Also, a noticeable difference is observed in the pressure maps of the DL and linear
models, indicating that the linear model could not utilize the pressure information
for prediction because of the nonlinear relationship. In short, we identified the spatial
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relationship between the local heat flux and inputs, which is nonlinear, through the
analysis of the trained DL models.

For a practical application such as turbulence modelling, we carried out DL using
various resolution input data as the training data. As a result, the DL model is less
sensitive to the input resolution, indicating the possibility that our model could be
a good heat flux model in turbulence simulation. There are some remaining issues,
such as whether the trained model works well in modelled simulations like RANS or
LES. For successful training, RANS input and accurate output should be provided. We
expect that ‘unsupervised learning’, which can connect the low-resolution and high-
resolution simulations, would be a key for it. This certainly suggests a future research
direction.

In summary, we have proved our hypothesis in a current application of deep
learning, namely, that the heat flux field, which is one of the near-wall turbulence
fields, can be accurately predicted on the basis of only wall information, such as
the shear stress and pressure. This clearly indicates that the wall information of the
stresses and pressure is indeed sufficient to capture the near-wall physical process
responsible for the determination of the heat flux. We have also shown that an
investigation of the trained network structure can reveal the hidden physics of the
near-wall turbulence. This is promising and encourages wider applications of machine
learning to various turbulence phenomena for a better understanding of fundamental
physics as well as for practical applications. Our code and the relevant datasets will
be released as an open-source upon publication. Detailed information is given in
appendix B.
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Appendix A. Additional deep learning
Several deep learning procedures for different choices of input and output were

carried out for the purpose of quantifying the dependence of the difference in
prediction accuracy on the change of input and confirming the dependence between
the input variables. Although the input and output changes require a new optimization
process of the network, under the assumption that the difference will not be large,
we used the same size of the input images (49× 49) and the same structure of the
network as in DL3, which is composed of nine 3× 3 convolution layers, 24 feature
maps in each convolution layer, and one 31× 31 convolution layer. The network was
trained for 2000 epochs using 6400 original training fields with mirror-imaged ones,
and the learning rate was reduced to 1/5 per 400 epochs.

The results quantifying the prediction accuracy of deep learning for different
combinations of input fields are given in table 5, including DL1, DL2 and DL3.
All the mean values of the prediction show no large difference compared to the
DNS. Interestingly, when the streamwise shear stress is not used as a part of the
input, the local heat flux can be predicted relatively well on the basis of the pressure
and vorticity information together, but not on the basis of one of these alone. The
performance difference is more pronounced at Reτ = 540.

In addition, the results of deep learning procedures that were carried out for
quantification of the relationship between one field and other fields for various
combinations of input and output are given in table 6. Here, for the test at a higher
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Model Input Reτ = 180 Reτ = 540
Mean R.m.s. R Mean R.m.s. R

DNS — 6.132 2.484 — 15.751 6.765 —

DL
du
dy

6.129 2.400 0.968 15.911 6.842 0.959

DL
dw
dy

6.136 2.291 0.923 15.901 6.029 0.897

DL p 6.114 2.229 0.902 15.236 5.471 0.857

DL1
du
dy
,

dw
dy

6.130 2.416 0.977 15.849 6.906 0.973

DL2
du
dy
, p 6.122 2.421 0.978 15.734 6.945 0.972

DL
dw
dy
, p 6.130 2.380 0.959 16.000 6.683 0.950

DL3
du
dy
,

dw
dy
, p 6.116 2.416 0.980 15.715 6.966 0.976

TABLE 5. Deep learning results for various combinations of input fields for the local heat
flux prediction. Training was carried out using data of Reτ = 180, but tests were performed
at Reτ = 180 and 540.

Reynolds number than the trained number, a similar scaling process as that applied
to (3.2) and (3.3) was applied. As the preprocess of the input, the shear stresses and
the heat flux except the pressure are scaled by the ratio of the frictional Reynolds
numbers and the ratio of the Nusselt numbers, respectively. As the postprocess of the
output, the predicted shear stresses except the pressure are scaled by the inverse ratio
of the frictional Reynolds numbers.

The first thing to note in table 6 is the fact that the local vorticity can be predicted
well on the basis of the nearby pressure information with a correlation of 0.974,
whereas the inverse prediction of the pressure on the basis of the nearby vorticity
information is much less accurate with R = 0.881. This indicates that pressure
contains more information than vorticity, which is consistent with our observation
that the average gradient maps of pressure for DL2 and DL3 (figures 18 and 19) are
different. Besides, other deep learning procedures that predict wall information using
the nearby heat flux were carried out, as given in table 6. Similarly to DL2, the
network whose inputs are the heat flux and pressure can predict the local streamwise
shear and vorticity very well (R = 0.989 and R = 993, respectively), indicating that
the dissimilarity between the shear and the heat flux is strongly related to pressure, as
reported by Abe & Antonia (2009). Finally, the predictions of pressure based on the
shear stress, vorticity and heat flux are all poor. This indicates that, for the prediction
of pressure, which is a global quantity, the wall information of stress or heat flux is
not enough. For all cases, the performance differences are more pronounced in the
test at Reτ = 540.
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Model Input Output Reτ = 180 Reτ = 540
Mean R.m.s. R Mean R.m.s. R

DNS —
du
dy

180.376 66.436 — 525.674 211.006 —

DL
dw
dy

du
dy

180.138 62.091 0.932 523.685 179.145 0.902

DL p
du
dy

179.681 61.081 0.920 503.705 164.605 0.872

DL
dT
dy

du
dy

180.305 64.867 0.974 523.494 192.226 0.963

DL
dT
dy
, p

du
dy

180.056 65.685 0.989 528.013 200.009 0.985

DNS —
dw
dy

−0.189 37.819 — −0.203 135.931 —

DL
du
dy

dw
dy

−0.062 33.927 0.908 −0.018 112.904 0.877

DL p
dw
dy

−0.069 36.807 0.974 0.371 126.459 0.966

DL
dT
dy

dw
dy

−0.109 34.196 0.912 −0.468 111.988 0.885

DL
dT
dy
, p

dw
dy

−0.317 37.461 0.993 −0.209 131.917 0.990

DNS — p 0.000 1.619 — 0.003 2.172 —

DL
du
dy

p 0.010 1.432 0.882 −0.193 1.710 0.833

DL
dw
dy

p −0.004 1.426 0.881 −0.079 1.727 0.826

DL
dT
dy

p 0.002 1.174 0.733 −0.223 1.317 0.647

TABLE 6. Deep learning results for various choices of input and output fields.

Appendix B. Code release as open source
Our code and the relevant datasets are released as open source. We created a public

repository, https://github.com/junhyuk6/THT-CNN, which will host the code and data
upon publication of our paper.
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