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Abstract

This paper deals with the flux identification problem for scalar conservation laws.
The problem is formulated as an optimization problem, where the objective function
compares the solution of the direct problem with observed profiles at a fixed time.
A finite volume scheme solves the direct problem and a continuous genetic
algorithm solves the inverse problem. The numerical method is tested with synthetic
experimental data. Simulation parameters are recovered approximately. The tested
heuristic optimization technique turns out to be more robust than classical optimization
techniques.

2010 Mathematics subject classification: primary 90C59; secondary 90C30.
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1. Introduction

The problem of flux identification with conservation laws has been extensively
studied in the literature because of its relevance to many fields of science and
engineering. For instance, flux identification arises in chromatography [24, 25],
sedimentation problems [4, 5] with particular applications in wastewater treatment [12]
or centrifugation [2, 42], flows through porous media [9, 33] and highway traffic
models [19] (see also [6, 8] for analytical results).
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This paper represents the first systematic application of a genetic algorithm to the
flux identification problem and we find that, in the cases studied, this technique shows
promising results for applications. In particular, the coded genetic algorithm proves
to be more robust and reliable as a gradient method than the previously employed
classical methods.

The common approach across all these application problems is set up by continuum
mechanics, considering assumptions and simplifications appropriate to the particulars
of the system under study. The governing equations typically comprise a set of
conservation laws closed under state laws or constitutive conditions (algebraic
relations for the flux function) and a set of initial and boundary conditions.

Typically, in applications, initial and boundary conditions are estimated by
empirical measurements. The constitutive functions are determined qualitatively by
phenomenological assumptions and quantitatively by available information from
experimental data. Thereby, the constitutive equations depend on unknown parameters
which are not accessible from experimental procedures. In cases where they are
accessible, it would require very complicated, expensive laboratory tests to determine
them experimentally. Therefore, there is a need to develop and test parameter
identification methods.

In the framework of flux calibration, we consider an inverse problem where the
observation profile is given at a fixed time. The goal is to find the flux function such that
the entropy solution for an initial boundary value problem of a system of conservation
laws is as close as possible to the observed data. Optimization techniques help to obtain
the solution of this inverse problem, whereby a cost function quantifies the difference
between the observed data and the simulated solutions.

In general, the solution of nonlinear conservation laws depends nonlinearly on the
parameters. It develops discontinuities in finite time, independently of the regularity
of the coefficients and the initial and boundary conditions [11]. In most of the cases,
this kind of behaviour of the direct problem implies that the cost function turns out to
be a nonconvex and nondifferentiable function (see, for instance, Figures 2 and 5 for
illustration). Thus the inverse problem analysis and the choice of a suitable method
needs to address the ability to minimize nonconvex and nondifferentiable functions.

The applications of numerical optimization tools fall into two kinds of optimization
methods, namely, deterministic and stochastic, depending on the previous knowledge
about the parameters. On the one hand, if some previous information on the range
of the parameter values is known, then a local minimum of the cost function can
be found by deterministic methods [3, 10]. Here the central and common point is
that, close to a given estimation of the parameter values, local convexity of the cost
function is assumed and a formal calculus for the discrete gradient is realized in order
to improve the approximation. On the other hand, when little or no knowledge of the
ranges of the parameter values is available, and if there is no intuitive estimation of the
solution of the inverse problem to compensate this drawback, then the use of stochastic
optimization methods is suggested [37, 38].
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Recently, an exhaustive and complete review of stochastic optimization methods
applied to the inverse scattering problem was done by Rocca et al. [37]. They reported a
unified view on evolutionary algorithms constructed under competitive or cooperative
paradigms [7, 16]. For example, genetic algorithms belong to the class following
the competitive paradigm and swarm or ant colony algorithms belong to the class
following the cooperative paradigm.

In particular, Rocca et al. [37] clearly describe the main features and disadvantages
of the nature-inspired evolutionary algorithms. They elaborate several important
historical milestones during the development. For instance, in the case of genetic
algorithms the key properties are:

(a) to imitate the principles of biological evolution for the construction of an
iterative algorithm;

(b) to belong to the class of global methods which have the main advantage of
depending neither explicitly nor implicitly on gradients; and

(c) to require only the evaluation of the cost function in order to obtain a robust
optimization.

Hence genetic algorithms usually work well in situations when gradient methods
or gradient-like methods turn out to fail in the local convergence due to
nondifferentiability of the objective function [35]. Furthermore, they conclude that
although the existing evolutionary algorithms are reliable and efficient in the tested
inversion problems, the implementation and adoption of these methodologies in new
situations is of paramount importance for the theoretical development. Following
this suggestion, we study genetic algorithms for the flux identification problem with
nonlinear scalar conservation laws.

In the literature, there are a few results available concerning the specific application
of genetic algorithms to inverse problems in conservation laws. For instance, Hou
et al. [21] presents a review on algorithms used for the inverse problem arising in
porous media flow, which is well known as the “history matching problem”. Ingham
and Harris [22] recover the coefficients of a linear one-dimensional model for the flow
through porous media. They extensively discuss the benefits of genetic algorithms
in contrast to more traditional gradient-based techniques. Tang et al. [40] apply a
genetic algorithm to identify the flux function of a system of conservation laws of
Saint-Venant type modelling the flow of a river network. Akin and Demiral [1] have
reconstructed the relative permeabilities that define the fractional flow in the Buckley–
Leverett equation.

We note that Akin and Demiral [1], and Ingham and Harris [22] use a binary coded
genetic algorithm. In addition, note that a new strategy of evolutionary computation
was used by Jebalia et al. [26] to identify the flux in the chromatography system.

In this paper, we present four numerical examples in order to investigate the
feasibility and applicability of the continuous genetic algorithm to scalar conservation
laws. Although the results are preliminary in the perspective of solving the general
inverse problem for a whole class of the considered equation type, we can discern some
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properties that serve as guidance to a further development in more complex situations.
First, we note that the agreement of observed and recovered data is fine; this indicates
that the parameters identified by the algorithm represent good approximations to their
true values. Furthermore, we observe that the optimum of the numerical cost function
depends on the order of the finite volume method used for the discretization of the
direct problem.

In this perspective, we believe that the use of a high resolution numerical algorithm
for solving the direct problem contributes naturally to the performance of the
numerical flux identification in conservation laws. Thus the numerical examples given
in this article clearly suggest that the use of genetic algorithms is a powerful numerical
tool for parameter identification in conservation laws.

However, before the application of more complex scenarios of theoretical or
engineering interest, some aspects have to be improved, for example hybrid algorithms
can combine the continuous genetic algorithm with other evolutionary strategies and
even with deterministic algorithms. Moreover, given the high computational cost of
running finite volume schemes for the forward simulations, a parallelization of the
genetic algorithm is strongly needed.

The paper is organized as follows. In Section 2, we introduce the continuous direct
and inverse problems together with their respective discretization. In Section 3, we
present the continuous genetic algorithm. In Section 4, we document the numerical
results. Finally, in Section 5, we present some conclusions.

2. Continuous direct-inverse problem and discretization

In this section, after an outline on the direct and inverse problem, we define the
parameter identification problem, the discretization of the direct problem and the
discrete cost function.

2.1. Parameter identification problem The direct problem is given by the initial
boundary value problem

ut + ( f (u))x = 0, (x, t) ∈ QT = I × T , (2.1)
u(x, 0) = u0(x), x ∈ I = (0, 1), (2.2)
u(`, t) = g`(t), ` ∈ {0, 1}, t ∈ T = [0,T ], (2.3)

where t denotes time, x the spatial variable, u the state variable, f the flux function,
u0 the initial condition and g`, ` ∈ {0, 1} the Dirichlet boundary conditions. Typically,
we assume that u0, f , g0 and g1 are given functions and we want to find u(·, T ) for
a finite time T > 0. However, the flux function f is often unknown and should be
determined by the solution of an inverse problem. This inverse problem is the well-
known calibration problem, where a set of experiments is considered in order to have
an over-specified problem. For instance, if we assume that û(x) is a given experimental
solution profile at a fixed time t = T , then the inverse problem of flux identification can
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be formulated as the optimization problem

minimize J(u) =
1
2

∫
I

|(u − û)(x)|2 dx

subject to E(u, p; f ) = 0, f ∈ Uad,
(2.4)

where the constraint E(u, p; f ) is the weak integral formulation of the direct
problem (2.1)–(2.3)

E(u, p; f ) =−

"
QT

{upt + f (u)px} dx dt

+

∫
T

{ f (g1(t))p(1, t) − f (g0(t))p(0, t)} dt −
∫
I

u0(x)p(x, 0) dx

for all p ∈ C1
0(QT ), and the flux admissible set is defined as

Uad = { f : R→ R | f ∈ C2(R), f (0) = f ′(0) = 0, f ′′(u) > 0 for all u ∈ Imax},

with the maximum interval

Imax = [min(A),max(A)] with A = {‖u0‖L∞(I), ‖g1‖L∞(T ), ‖g2‖L∞(T )}.

Here, note that the optimization problem (2.4) allows us to determine the flux
function from Uad that best matches the observational data. The definition of Uad

is fundamental for the genetic algorithm, since it determines the trial region of the
parameter space in which the initial population is sampled. Furthermore, note that the
set Uad is constrained to convex flux functions and should be redefined in the case
of more general flux functions. For instance, in the case of sedimentation, the flux
function f is a nonconvex flux function with one or two inflection points.

For the parameter identification problem, we assume that the flux function depends
on a finite number of parameters, denoted by e = (e1, . . . , ed) ∈ Rd: that is, f (·) = f (·; e).
Typically, the analytical parametric dependence of the flux function f on the parameter
set e comes from a constitutive relationship between a velocity and a density. For
instance, in the case of traffic flow modelling, it is assumed that the flux function
is defined by f (u) = uv(u), where v is the velocity. For example, in the Lighthill–
Whitham model for traffic flow, the velocity is given by v(u) = v∗(1 − u/ρ∗), such that
v∗ and ρ∗ are the parameters for the calibration, (see [29, 30] and Example 4.2). Thus
the general formulation of the optimization problem (2.4) is reduced to an optimization
problem with respect to d parameters as

minimize J(e) = J(u(e))
subject to E(u(e), p; f (u(e); e)) = 0,

e ∈ D = {x ∈ Rd : f (u; x) ∈ Uad for all u ∈ Imax}.
(2.5)

The set D ⊂ Rd denotes the set such that the flux belongs to Uad. This set D is the
set of admissible parameters over which the optimization algorithm will search for the
optimal parameters.
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2.2. Numerical solution of direct problem For the description of the numerical
method for the direct problem, let us first recall the standard notation of finite volume
methods for conservation laws (see [14, 41] for more details). We subdivide the
spatial domain I into M subintervals Ki of length, ∆x = 1/M, centred at nodes
x j = j∆x for j = 0, . . . , M. The intervals are defined by K j = (x j−1/2, x j+1/2), where
x j±1/2 = x j ± ∆x/2 refers to positions between the nodes. Here, x j+1/2 = (x j + x j+1)/2
for j = 0, . . . ,M − 1, x−1/2 = x0 − ∆x/2 and xM+1/2 = xM + ∆x/2. The sets K j are called
the cells or control volumes, and their boundaries are called interfaces. Similarly, the
temporal domain T is partitioned into N subintervals of length ∆t = T/N defined
by Rn = [tn, tn+1), where tn = n∆t for n = 0, . . . , N. For notational simplicity, we set
Qn

j = K j × Rn. The numerical solution of (2.1)–(2.3) over Qn
j is denoted by un

j . With
this notation, we discretize the equations (2.1)–(2.3).

Indeed, we start with the discretization of the initial condition (2.2) by setting

u0
j =

1
∆x

∫
K j

u0(x) dx j = 0, . . . ,M.

Then, following the ideas of the finite volume technique, we integrate the
equations (2.1)–(2.3) over Qn

j , denote the mesh ratio by λ = ∆t/∆x, and deduce the
numerical scheme

un+1
j = un

j − λ{ f
n
j+1/2 − f n

j−1/2}, f n
j+1/2 ≈

1
∆t

∫
Rn

f (u(x j+1/2, t)) dt, (2.6)

for all n = 0, . . . , N and j = 0, . . . , M, where f n
j+1/2, for a stencil with 2p + 1 points,

depends on the values at the nodes as f n
j+1/2 = g(un

j−p+1, . . . , u
n
j+p). We assume that

the numerical flux function g ∈ Lip(R2p, R) is Lipschitz continuous and ensures
consistency of the finite volume scheme (2.6) with the discretized differential equation
by satisfying g(u, . . . , u) = f (u). Particular and interesting cases are the well-known
monotone flux schemes, where g : R2 → R satisfies the following assumptions [14]
which hold for variables within lower and upper bounds, −∞ < um < uM <∞.

(G1) Lipschitz-regularity: g(u, v) is locally Lipschitz continuous with respect to each
of its variables bounded as (u, v) ∈ [um, uM]2: that is, both u and v belong to the
interval [um, uM].

(G2) Consistency: g(u, u) = f (u) for all u ∈ [um, uM].
(G3) Monotonicity: g(u, v) is nondecreasing with respect to its first variable u and

nonincreasing with respect to its second variable v, where both variables are
bounded as (u, v) ∈ [um, uM]2.

In the development of numerical analysis for conservation laws, the explicit monotone
flux schemes have played a very important role. This was mainly due to their
favourable properties, namely, consistency in the finite volume sense, L∞-stability,
bounded variation stability and convergence of the numerical solution to the entropy
solution under a Courant–Friedrichs–Lewy (CFL) condition (see [14] for further
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details). To be precise, in the numerical simulations given in this paper, we consider
the numerical flux of Godunov [29], which is defined explicitly for f ∈ Uad by

gGodunov(u, v) =


f (u) for u, v > 0
f (v) for u, v < 0
min{ f (u), f (v)} for u ≤ 0 ≤ v
max{ f (u), f (v)} for v ≤ 0 ≤ u.

Naturally, the scheme (2.6) is written as
un+1

0 = un
0 − λ{g

Godunov(un
0, u

n
1) − f (un

0)}, (2.7)
un+1

j = un
j − λ{g

Godunov(un
j , u

n
j+1) − gGodunov(un

j−1, u
n
j)}, (2.8)

un+1
M = un

M − λ{ f (un
M) − gGodunov(un

M−1, u
n
M)}. (2.9)

For the stability and convergence of the Godunov scheme (2.7)–(2.9), we ensure that
the CFL condition, λ ·max{| f ′(u)| | u ∈ Imax} ≤ 1/2, is satisfied.

2.3. Discrete parameter identification problem Continuous observation data û
are discretized by

û j =
1

∆x

∫
K j

û(x) dx, j = 0, . . . ,M.

The natural discretization of the parameter identification problem (2.5) is

minimize J∆(e), J∆(e) =
1
2

M∑
j=0

|uN
j (e) − û j|

2∆x

subject to uN
j (e) is obtained by (2.7)–(2.9) for e ∈ D.

(2.10)

Here we note that the continuous restriction
E(u(e), p; f (u(e); e)) = 0

is replaced by the discrete restriction that uN
j (e) is the numerical solution of (2.1)–

(2.3) obtained by the finite volume scheme (2.7)–(2.9). The consistency between the
discrete and continuous restrictions is given by the convergence of the monotone finite
volume method.

3. Continuous genetic algorithm for flux estimation
Evolutionary computation techniques imitate the principles of natural selection and

evolution. The basis of evolutionary computation form the following four paradigms:

(A) genetic algorithms [20];
(B) genetic programming [27];
(C) evolutionary strategies [34]; and
(D) evolutionary programming [15].

Among these techniques, genetic algorithms are the most popular ones, because they
are easy to implement. Complementarily, under certain conditions, they provide global
convergence (see [39]).
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The first genetic algorithm was proposed by Holland in his pioneering work [20].
After this work, several researchers have been developing various improvements. The
development of several versions of the original binary genetic algorithms given by
Jong [13] was responsible for a wide and rapid diffusion of genetic algorithms.

Michalewicz [32] developed mainly the point concerning real coded genetic
algorithms. In contrast to the classical binary representation of chromosomes, the
coding of chromosomes with floating-point representation was introduced and was
proved to give significant improvements in the implementation, computation speed
and precision. A complete review on genetic algorithms before 2008 is given by Rocca
et al. [37].

In the subsequent work, we use the standard terminology of genetic algorithms. For
completeness we recall the main concepts, namely, chromosomes, genes, population
and generation (for further details see [18, 39]).

Definition 3.1. A chromosome is an array of parameters to be identified: that is, where
the cost function is evaluated.

Definition 3.2. A gene is a Cartesian coordinate of the parameter set that represents a
chromosome (vector).

Definition 3.3. A population is a set of chromosomes.

Definition 3.4. A generation is the population at the end of one iteration of the genetic
algorithm.

Genetic algorithms use several kinds of representation for the chromosomes.
The most widely used variants are the binary representation and the floating-point
representation, which characterize the so-called “real” and “continuous” genetic
algorithms. In this paper, we opt for a floating-point representation, since the
corresponding continuous genetic algorithm is inherently faster than the binary genetic
algorithm. When the cost function is continuous, the chromosomes do not have to
be decoded prior to the evaluation of the cost function. See the books of Haupt and
Haupt [18] and Michalewicz [32] for further details on advantages and disadvantages
of both representations.

After the selection of the initial population, the continuous genetic algorithm
implemented in this paper iterates on the natural selection until the cost function of the
best gene reaches an established tolerance, or until the maximum number of iterations
is reached.

In their simplest form, standard genetic algorithms are unconstrained optimization
methods, whereas the inverse problem formally has the form of minimizing a cost
function subject to a constraint. The constraint is represented by the numerical solution
of the direct problem uN

j (e) according to equations (2.7)–(2.9). Also, the constraint
contributes to the cost function of the population, which, in turn, is handled in the
selection and crossover operations. The algorithm basically consists of five major steps
as outlined in Algorithm 1.

The hypercube Ω considered in (a) can be replaced by a convex set such that Ω ⊂ D.
The hypothesis of convexity is needed for the convex combination used in (d).
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Algorithm 1 Major steps of implemented genetic algorithm

(a) Initial population. Define a full matrix that represents a random initial
population E = [e1|e2| · · · |en]T, where each row eT

j ∈ Ω =
∏d

i=1[li, ui] ⊂ D ⊂ Rd

with li < ui for i = 1, . . . , d being a hypercube. Let G be the maximum number of
iterations or the maximum number of generations. Initialize the counter q ∈ Z+

0
by q = 0 and start an iteration over the following steps.

(b) Cost of the population. Define the vector cost ∈ Rn by evaluation of the
cost function for each chromosome of the population E: that is, J = (J∆(e1),
. . . ,J∆(en))T ∈ Rn. For the calculation of the cost function, uN

j (e) is calculated
according to equations (2.7)–(2.9). Define the matrix Ê = [E|J]. Given Jmin as
an established tolerance for the cost evaluation, if there is an ` ∈ {1, . . . , n} such
that J` ≤ Jmin, then the solution of (2.10) is e` and the iteration is stopped.

(c) Select mates. Select the parents in three stages. First, update Ê by row
permutation until the property Êq

1,d+1 ≤ Ê
q
2,d+1 ≤ . . . ≤ Ê

q
n,d+1 is satisfied. Second,

if s ∈ (0, 1] denotes the selection rate, select the first ~ns� rows of Ê and store
the submatrix in the so-called mating pool matrix F. Here, ~·� is the notation of
the nearest integer. Third, by applying the roulette wheel weighting, choose the
parents from the chromosomes on F.

(d) Mating. Define the algebraic law for the crossover of the parents. In this paper,
we obtain an offspring by applying a random convex combination of parents’
genes at the random crossover point. The mating process stops when n − ~ns�
offspring are generated. Here, in this step, the population matrix E is updated
by considering the parents in the first ~ns� rows and the offspring in the next
ones.

(e) Mutation. Given the mutation rate µ ∈ [0, 1], define the total number of
mutations as m = ~µ(n − 1)d�. Repeat the following mutation process m times:
the random gene Ei j is replaced by a random number which belongs to the
interval [l j, u j]. We note that after the mutation has stopped, the population
matrix E is naturally updated. Set q = q + 1. If q ≤ G, then go to item (b);
otherwise, calculate the vector J and the solution is the chromosome e` such
that J` ≤ J j for j ∈ {1, . . . , n}.

4. Numerical results

In this section, we consider four examples of applications of the genetic algorithm
used for the flux identification in conservation laws. In all the examples, the genetic
algorithm is run with a population size n = 20, selection rate s = 0.5 and tolerance
Jmin = 1.0 × 10−6 for the cost evaluation. The mutation rate is set to µ = 0.2 for
Example 4.1 and to µ = 0.37 for Examples 4.2, 4.3 and 4.4. The maximum number
of iterations for Examples 4.1 and 4.2 is iter = 100, for Example 4.3 it is iter = 20 and
for Example 4.4 it is iter = 200.
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This selection of genetic parameter values is oriented by suggestions of Haupt
and Haupt [18]. Here, several heuristic values are found by a set of performance
assessments carried out with a range of numerical parameters. During extensive
assessment runs, they identified that population size and mutation rate are the most
crucial parameters, whereas the crossover rate, selection method and type of crossover
are less relevant for the algorithm performance. Specifically, their version of the
genetic algorithm “works best (optimizes quickest) with small population sizes and
relatively high mutation rates. As the population size increases, the optimal mutation
rate decreases”. Our own validation of the suggested numerical parameters confirmed
that the chosen values appear to offer a good rate of convergence.

Regarding the numerical method for the direct problem, the maximum number of
time steps in the finite volume method for the three examples is selected via the relation

N =
�
T (0.45∆x)−1 max

u∈Imax
| f ′(u)|

�
,

where the interval Imax is detailed in the description of each example.

4.1. Identification of a single parameter (d = 1)

Example 4.1. In this example, the flux function in (2.1) is specified to be of Burgers
type, f (u) = uα/α, and the initial boundary conditions are given by

u0(x) =

0, (4x − 1)(4x − 3) > 0
1 elsewhere,

g0(t) = g1(t) = 0 for all t > 0.

We note that f ′′(u) = (α − 1)uα−2, which implies that f belongs to the admissible
setUad when α − 1 > 0, since Imax = [0, 1]. Thus the restriction set in (2.5) is defined
as D = (1,∞).

We take two analytical observations obtained with α = 2 at T1 = 1/4 and T2 = 1/2,
denoted by û1 and û2, respectively. By the method of characteristics (see Figure 1), we
deduce that ûi : I → R for i = 1, 2 are defined as

û1(x) = u(x, 1/4) =


0, (4x − 1)(8x − 7) > 0
4x − 1, (4x − 1)(2x − 1) ≤ 0
1 elsewhere,

û2(x) = u(x, 1/2) =


0, 4x − 1 < 0
2x − 1/2, (4x − 1)(4x − 3) ≤ 0
1 elsewhere.

The analytical cost functions are given by

J1(α) =
1
8

(
α − 1
α + 1

−
2(α − 1)
2α − 1

+
1
3

)
+
α − 2
16α

sgn(α − 2), (4.1)

J2(α) =
1
4

(
α − 1
α + 1

−
2(α − 1)
2α − 1

+
1
3

)
+
α − 2
16α

{1 + sgn(α − 2)}, (4.2)

where sgn is the “sign” function.
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Figure 1. (Example 4.1) Configuration of characteristics with α = 2.

For the genetic algorithm, we choose Ω = [1.1, 4] ⊂ D. The graph of the cost
function over Ω is shown in Figure 2. In both the plots in Figure 2(a) and Figure 2(b),
we note that the optimum values of the numerical and analytical cost functions do not
coincide. This behaviour is a natural consequence of the numerical method used for
the simulation of the direct problem, since first-order finite volume methods have large
numerical diffusion (see [14, 41]).

For the simulation of the direct problem, we use M = 100 space intervals and choose
a variable number of time steps satisfying the CFL condition.

The results of the identification of α are given in Table 1, and the best chromosomes
of each iteration are given in Table 2. The observed and identified profiles for
T = 1/2 and T = 1/4 are compared in Figure 3(b) and Figure 3(c), respectively. The
observed and identified flux functions are compared in Figure 3(d). From Table 2,
we note a fast convergence of the implemented genetic Algorithm 1. The maximum
number of generations and the cost tolerance are fixed to 1.0 × 102 and 1.0 × 10−6,
respectively. However, the algorithm found an acceptable optimum within four
generations and stops at ten generations, when the stopping criteria of cost tolerance is
reached.

In Table 3, we present a comparison of the parameter identification via the genetic
algorithm and via the Nelder–Mead simplex method [28] using the fminsearch
function of Matlab. Here we take the observation function û1 and vary over the number
of temporal steps M. The initial guess in the case of the simplex method is 1.1.

From Table 3, it can be seen that the cost function of the global optimum Jga found
by the genetic algorithm has the same dominant digits as the corresponding value of the
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û 1
(l

ef
t)

an
d
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Figure 2. (Example 4.1) (a) Analytical cost function (4.1) (solid line) and the numerical cost function
(dotted line); (b) analytical cost function (4.2) (solid line) and the numerical cost function (dotted line).

optimal cost Jsim calculated by the Nelder–Mead simplex method. However, looking
at the further digits, the value of Jga is lower than the value of Jsim in 70 per cent of the
cases, which demonstrates that the genetic algorithm outperforms the Nelder–Mead
simplex method even in a controlled situation, where the initial guess is chosen close
to the optimum and the cost function is convex. Such a comparison would be even more
in favour of the genetic algorithm in general situations, where the cost function loses
convexity and the cost optimum is not known beforehand, so that it is not guaranteed
that the initial guess is sufficiently close.

4.2. Identification of a flux modelling traffic flow (d = 2)

Example 4.2. We note that the basic flux function used for traffic flow models is of the
type f̂ (u) = v∗u(1 − u/ρ∗), which is a concave function for v∗ and where ρ∗ belongs
to R+: that is, f̂ < Uad. It is well known that the analysis of concave flux functions is
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Table 2. (Example 4.1) The best chromosomes of the first 11 generations and their corresponding cost
function values.

q Observation û1 Observation û2
α cost α cost

0 1.9375 0.00046090 1.7865 0.00106196
1 1.9375 0.00046090 1.9605 0.00026737
2 1.9375 0.00046090 1.9110 0.00025926
3 1.9675 0.00037939 1.9383 0.00020224
4 1.9575 0.00036810 1.9415 0.00020118
5 1.9575 0.00036810 1.9415 0.00020118
6 1.9612 0.00036794 1.9415 0.00020118
7 1.9594 0.00036738 1.9415 0.00020118
8 1.9594 0.00036738 1.9415 0.00020118
9 1.9594 0.00036738 1.9415 0.00020118

10 1.9594 0.00036738 1.9415 0.00020118

Table 3. (Example 4.1) Comparison of the identification via the genetic algorithm and the simplex method
as a function of the spatial discretization steps (M). The values of Jga and Jsim are the values of the cost
function at the convergence point of the genetic algorithm and simplex method, respectively.

M Jsim Jga Jsim − Jga

10 1.1421 × 10−2 1.1421 × 10−2 2.7347 × 10−10

20 6.8933 × 10−3 6.8933 × 10−3 1.3056 × 10−08

30 3.7897 × 10−3 3.7897 × 10−3 −5.6871 × 10−12

40 4.0919 × 10−3 4.0918 × 10−3 1.3905 × 10−07

50 2.4407 × 10−3 2.4407 × 10−3 8.4222 × 10−10

60 1.9710 × 10−3 1.9710 × 10−3 −1.1750 × 10−10

70 1.5684 × 10−3 1.5684 × 10−3 9.4597 × 10−10

80 1.6682 × 10−3 1.6682 × 10−3 −1.5565 × 10−11

90 1.2927 × 10−3 1.2927 × 10−3 4.4827 × 10−12

100 1.1096 × 10−3 1.1068 × 10−3 2.7854 × 10−06

completely analogous to the case of convex flux functions (see [11, 29] for details).
In this specific case, if we redefine the flux function as f̂1(u) = − f̂ (u) + f̂ ′(0)u + f̂ (0),
then we have f̂1(u) = −v∗u2/ρ∗ ∈ Uad (see [31]). Thus the analysis of the traffic flow
model can be carried out by following the theory for convex flux functions.

In this example, we consider a slightly more general flux than f̂1(u) = −v∗u2/ρ∗,
namely,

f (u) = αuβ, u0(x) =


2, x ∈ [0, 1/3)
3, x ∈ [1/3, 2/3),
1, x ∈ [2/3, 1],

g0(t) = 0 and g1(t) = 1.
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Figure 3. (Example 4.1) (a) Initial condition u0; (b) random best initial profile at the initial evolution,
the identified profile and the analytical profile û1 at T = 1/4; (c) random best initial profile at the initial
evolution, the identified profile and the analytical profile û2 at T = 1/2; (d) comparison of the flux used
for the observation profile and the identified flux. For (b)–(d), see Table 1 for numerical values of best
initial and identified parameters.

Note that f ∈ Uad if αβ(β − 1) > 0, since Imax = [0, 3]. Thus the restriction set, defined
in (2.5), is given by

D = {e = (α, β) ∈ R2 | αβ(β − 1) > 0, f (·; e) ∈ Uad}.

We consider an analytical observation obtained with α = 0.25 and β = 2 at T = 1/4.
By the method of characteristics (see Figure 4), we deduce that û : I → R is defined as

û(x) = u(x, 1/4) =



8x, x(4x − 1) ≤ 0
2, (4x − 1)(12x − 7) < 0
8x − 8/3, (12x − 7)(24x − 17) ≤ 0
3, (24x − 17)(11x − 12) < 0
1, (11x − 12)(x − 1) ≤ 0.

For the genetic algorithm, we choose Ω = [0.1, 3] × [1.1, 4] ⊂ D. The graph of the
cost function over Ω is shown in Figure 5. The shapes of the numerical cost functions
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Figure 4. (Example 4.2) Characteristics configuration with α = 0.25 and β = 2.

for M = 100 and M = 200 are similar. However, as in the case of Example 4.1,
the numerical diffusion of the Godunov method implies that the optimum for the
numerical cost function is slightly different from the optimum of the analytical cost
function.

The results of the identification with M = 100 and M = 200 space steps are given
in Table 4. Furthermore, the plot of the profiles is shown in Figure 6.

4.3. Identification of a flux in chromatography (d = 3)

Example 4.3. Chromatography is a laboratory technique for the separation of mixtures.
It can be reasonably modelled by a first-order hyperbolic system of partial differential
equations governed by nonlinear functions of the mixture concentrations, called
isotherm functions, which appear as the flux of the mass-balance equations [36]. In
this example, we consider a scalar conservation law with a nonlinear flux modelled by
a modified Redlich–Peterson isotherm [35]

f (u) =
αu2

1 + σuβ
,

where α, σ and β are constant parameters. The identification of any of these three
parameters α, σ or β from our Redlich–Peterson model is crucial from the theoretical
point of view, as well as for the more practical consideration of accurately governing
the experiment to improve separation. In this regard, there are several articles in
the literature on the identification of other isotherms such as the Langmuir or the
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Figure 5. (Example 4.2) Plots and level curves of discrete cost functionJ∆ : Ω→ Rwith M = 100 (above)
and M = 200 (below) space intervals.

bi-Langmuir model [23, 25]. We suppose that the initial and boundary conditions are
given by

u0(x) =

0 if (4x − 1)(4x − 3) > 0,
−x2 + x − 3/16 elsewhere,

and g0(t) = g1(t) = 0, respectively. We note that

f ′(u) =
αu[2 + σ(2 − σ)uβ)]

(1 + σuβ)2 ,

f ′′(u) =
α[2 + σ(1 − σ)(4 + β)uβ + σ2(2 − β)(1 − β)u2β]

(1 + σuβ)3 ,

and Imax = [0, 1/16]. Consequently, the parameter identification restriction set (2.5) is
defined as

D = {e = (α, β, σ) ∈ R3 | α > 0, β ∈ [1, 2], σ > 0 and f (·; e) ∈ Uad}.

The observational data are set as a piecewise linear fit to a simulation of the direct
problem with parameters α = σ = 1, β = 1.5, M = 500 and T = 3. More precisely, the
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Figure 6. (Example 4.2) (a) Initial condition u0; (b) random best initial profile at the initial evolution,
the identified profile and the analytical profile û at T = 1/4 with M = 100; (c) random best initial profile
at the initial evolution, the identified profile and the analytical profile û1 at T = 1/4 for M = 100; (d)
comparison of the flux used for the observation profile and the identified flux. For (b)–(d), see Table 2 for
numerical values of best initial and identified parameters.

observation û : I → R considered for this example is defined as

û(x) =


0, x ∈ [0, 0.25[∪]0.85, 1]
0.1178x − 0.0288, x ∈ [0.25, 0.598]
0.0984x − 0.0174, x ∈]0.598, 0.75]
0.0534x + 0.0168, x ∈]0.75, 0.85].

For the genetic algorithm we choose Ω = [0.1, 2] × [1, 2] × [0.1, 2] ⊂ D. The results
of the identification with M = 200 space steps are given in Table 5 and the plots of the
results are shown in Figure 7.

4.4. Performance, convergence and stability of the algorithm
Example 4.4. In this example, we assume that the velocity is a polynomial function:
that is, the flux is of the type

f (u) = uv(u) with v(u) =

20∑
i=1

eiui−1,
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Table 5. (Example 4.3) The initial population column shows the 20 random chromosomes and their
corresponding cost before the first generation and the final population column shows the 20 chromosomes
and their corresponding cost at the twentieth generation. The underlined chromosomes are the best
individuals of their generation.

Initial population Final generation
α β σ cost α β σ cost

0.9316 1.3251 0.5399 2.3191 × 10−5 0.9912 1.7783 0.9433 1.6432 × 10−7

0.5911 1.7578 0.3877 1.5353 × 10−4 0.9912 1.8513 1.1029 1.6434 × 10−7

1.6448 1.1740 0.8284 1.8691 × 10−4 0.9912 1.8513 1.1029 1.6434 × 10−7

1.2727 1.8093 1.4439 9.4545 × 10−5 0.9912 1.8875 0.9433 2.0864 × 10−7

0.2460 1.9109 1.4288 2.7872 × 10−4 0.9912 1.8513 0.4929 2.7107 × 10−7

1.3498 1.7926 1.7633 1.1675 × 10−4 0.9912 1.8875 0.5755 2.9447 × 10−7

1.8913 1.6329 0.2545 2.3345 × 10−4 0.9912 2.1019 0.9433 2.9722 × 10−7

0.2823 1.2721 1.1690 2.6780 × 10−4 0.9912 1.8513 1.3111 6.5055 × 10−7

1.2710 1.8265 0.6863 9.5575 × 10−5 0.9912 1.8875 0.2158 1.0564 × 10−6

0.7537 1.2150 1.8534 1.0555 × 10−4 0.9912 1.7783 1.5167 1.5097 × 10−6

1.7066 1.0165 1.4701 1.8586 × 10−4 0.9912 1.4546 0.9433 2.6636 × 10−6

0.7288 1.8147 1.1011 9.9594 × 10−5 0.9751 1.8788 1.2793 3.5103 × 10−6

0.2320 1.3725 0.8953 2.8537 × 10−4 0.9912 1.2442 0.9433 8.1190 × 10−6

0.6477 1.1466 0.3904 1.3488 × 10−4 1.1148 0.7222 1.2465 9.7744 × 10−6

0.1585 1.0861 1.3607 3.1185 × 10−4 0.9341 0.6495 0.9207 6.5038 × 10−5

1.8037 1.1925 0.9423 2.1949 × 10−4 1.5637 1.7783 1.3346 1.7336 × 10−4

1.8683 1.2471 0.9874 2.3347 × 10−4 0.9751 0.1082 1.3553 1.9253 × 10−4

1.6991 1.0650 1.7788 1.8445 × 10−4 0.4825 1.7783 0.6419 1.9595 × 10−4

1.3636 1.9357 0.4889 1.2287 × 10−4 1.8277 0.9523 0.9020 2.1762 × 10−4

1.9712 1.1818 1.7713 2.4154 × 10−4 0.2163 1.8513 1.1029 2.8980 × 10−4

where e = (e1, . . . , e20) are the unknown parameters. The initial and boundary
conditions are the functions u0, g0 and g1 given for Example 4.1. The observation
at T = 0.5 is given by

û(x) =


0 for (x − 0.58)(x − 2.22) ≥ 0,
4.136 − 23.570x + 53.622x2 − 64.085x3

+ 44.742x4 − 18.394x5 + 4.135x6 − 0.393x7 elsewhere,

which is a fitted function to the solution of a numerical simulation of the direct problem
with e = e∞ = (1, . . . , 1) and M = 200.

In this test example, we consider three categories of experiments.

(a) Comparison of optimization methods. We compare the genetic algorithm with
the Nelder–Mead simplex search method according to Lagarias et al. [28], which
is implemented in the fminsearch routine of Matlab. For the genetic algorithm,
we have selected Imax = [0, 1]. The restriction set is Ω = [0, 2]20 ⊂ D, where the
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Figure 7. (Example 4.3) (a) Initial condition u0, random best initial profile at initial evolution, identified
profile and analytical profile û at T = 3; (b) comparison of the flux used for the observational profile and
the identified flux. See Table 5 for numerical values of best initial and identified parameters.

restitution set D, given by (2.5), is defined as

D = {e = (e1, . . . , e20) ∈ R20 | ei > 0 and f (·; e) ∈ Uad}.

For the Nelder–Mead simplex method, the initial guess was 0.9 e∞, since, in
other cases, the convergence turned out to be too slow, and the execution
was aborted when the cpu time was higher than 12 hours. The values of the
cost function obtained by the genetic algorithm and the Nelder–Mead simplex
method after 200 iterations are 9.454 × 10−4 and 8.164 × 10−4, respectively. The
corresponding cpu time in the case of the genetic algorithm was 10.38 hours
and for the Nelder–Mead simplex method it was 11.21 hours. The selection of
the Nelder–Mead simplex method follows the suggestions of Hansen et al. [17].
Although the performances of both compared methods are on the same level
by concept, the genetic algorithm is more robust and feasible when the cost
function is nonconvex. In fact, in test runs, the Nelder–Mead simplex method
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evolved extremely slowly, and it almost got stuck whenever the initial data were
not chosen close to the optimum.

(b) Convergence of the algorithm. We study two types of convergence. First, we
study the convergence in terms of the mesh refinement. In this case, we consider
that the total number of iterations is fixed at 200 and develop the identification
with mesh size Mi = 10 i for i ∈ {1, . . . , 20}. We find the best chromosomes in
terms of the mesh size and we plot the space steps Mi versus the evaluation of
the cost function of these chromosomes. The results are given in Figure 8(a).
Second, we study the convergence at fixed space steps. We fix the temporal
steps as M = 50, find the best chromosomes in the first 100 iterations and plot
the generation versus the cost of the best chromosome (see Figure 8(b)).

(c) Stability with respect to noisy data on the observation. In this experiment, we
consider the identification of a random perturbation of the observational data.
The considered random perturbations are uniformly distributed numbers in the
interval (−0.05 u, 0.05 u), where u is the average of the observed data. The
identification with the genetic algorithm with M = 200 spatial nodes appears
to be stable. The results are shown in Figure 9.

5. Conclusion and discussion

The parameter identification problem for scalar conservation laws is formulated as
an optimization problem and solved by a continuous genetic algorithm. The continuous
genetic algorithm has been applied to four numerical examples. The agreement
between the observed parameters and the parameters identified by the continuous
genetic algorithm are of high quality. Furthermore, we observe that the optimum
of the numerical cost function depends on the discretization of the direct problem.
Therefore, we believe that the application of the continuous genetic algorithm with a
high resolution numerical method for the direct problem solution contributes naturally
to several improvements to the numerical flux identification in scalar conservation
laws.

The considered equations, namely, “scalar conservation laws” typically lead to
low-dimensional optimization problems, since the number of parameter dimensions
coincides with the number of parameters of the flux function. For performance
demonstration, three examples with low dimensions d ∈ {1, 2, 3} have been considered.
For the types of equation considered, the dimension of the optimization problems
in terms of free parameters is typically up to around five parameters. The limitation
of parameter dimensions is caused by the fact that the shape of the flux function
and its functional form is frequently restricted by constraints that are imposed by a
specific application context. Typical constraints include the sign of the flux function,
its derivatives and eventually even functional values as f (0) = 0. These constraints
lead to specific parametric forms that are well established in the corresponding
literature. An example is the S -shaped flux function in the Buckley–Leverett
equation [1].
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Figure 8. (Example 4.4) Measurements of two types of convergence: (a) the convergence in terms of the
number of space steps at 200 iterations; (b) the generation versus the better evaluation of the cost function
with 50 space steps.

Heuristic optimization techniques can be fruitfully applied to very high-dimensional
optimization problems, where classical optimization techniques may not improve the
results at all. On the other hand, in this study, the reason that justifies and actually
motivates the use of heuristic optimization techniques is their ability to capture
situations where the cost function is highly nonconvex, as is the case when the
solutions of the direct problem count with jumps.

One can increase the dimension within the considered type of equations through an
amplified modelling approach by considering systems of equations, that is, systems of
conservation laws. (A typical application is for multiphase flow-like traffic. Systems
of equations, however, need refined numerical techniques for the solution of the direct
problem.) Another possibility for dimensional incrementation is to stay with scalar
equations, but increase the order of the interpolating polynomial or spline to arbitrary
height in order to obtain a best fit to the observational data. This situation has been
considered in the last example for dimension d = 20.
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Figure 9. (Example 4.4) The observational data û (obs. profile) is randomly perpetuated and we obtain
the noisy data (noisy obs. profile). The identification from û is given by the identification profile (ident.
profile) and the identification from the noisy data is given by the noisy ident. profile.

The flux identification problem matters, since it helps to calibrate conservation
law models describing various convective flow and transport problems occurring in
chromatography, porous media flow or sedimentation. Corresponding mathematical
models give a better understanding of the underlying physical processes and enable
predictions. Model parameters are fitted to experimental observational data by
parameter identification.

Therefore, robust optimization methods are needed. Classical methods have a
low convergence rate, or they even fail to converge. Heuristic methods represent
a promising alternative. In this contribution, we provide a series of test cases that
vary over the number of parameters and application backgrounds. We assess the
performance of the continuous genetic algorithm to solve the inverse problem. The
main feature is its ability to handle nonconvex cost functions, which contributes
to the robustness of the parameter identification procedure. In a future work, we
plan to move towards a more ambitious use of the proposed solution technique in
applications on the basis of the work presented here. In particular, the application of
hybrid genetic algorithms to the calibration of conservation laws and their application
to higher-dimensional optimization problems is a highly relevant subject for further
investigation.
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