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Abstract. It is well known that a ring R is an exchange ring iff, for any a ∈ R,
a − e ∈ (a2 − a)R for some e2 = e ∈ R iff, for any a ∈ R, a − e ∈ R(a2 − a) for some
e2 = e ∈ R. The paper is devoted to a study of the rings R satisfying the condition that
for each a ∈ R, a − e ∈ (a2 − a)R for a unique e2 = e ∈ R. This condition is not left–
right symmetric. The uniquely clean rings discussed in (W. K. Nicholson and Y. Zhou,
Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow
Math. J. 46 (2004), 227–236) satisfy this condition. These rings are characterized as the
semi-boolean rings with a restricted commutativity for idempotents, where a ring R is
semi-boolean iff R/J(R) is boolean and idempotents lift modulo J(R) (or equivalently,
R is an exchange ring for which any non-zero idempotent is not the sum of two units).
Various basic properties of these rings are developed, and a number of illustrative
examples are given.

1991 Mathematics Subject Classification. Primary 16U99.

1. Introduction. Rings R are associative with unity. We write J(R) and U(R) for
the Jacobson radical and the group of units of R. In [13], Nicholson observed an
interesting relation between elements in a ring R,

a − e ∈ U(R) for some e2 = e =⇒ a − f ∈ (a2 − a)R for some f 2 = f.

Consequently, every clean ring is an exchange ring, where a ring is called clean if each
of its elements is the sum of a unit and an idempotent. Exchange rings have been
extensively studied by many authors (for example, see [2–5, 7, 9, 10, 12–14, 19, 20, 22,
23]). Clean rings is an active subject recently. A ring R is called uniquely clean if for
each a ∈ R, a − e ∈ U(R) for a unique idempotent e. As discussed in [1, 6, 16, 18], the
uniquely clean rings turned out to be a natural generalization of boolean rings and
their structure is well understood: a ring R is uniquely clean iff R/J(R) is boolean,
idempotents lift modulo J(R) and the idempotents of R are central.

In this paper, we are motivated to study the rings R satisfying the condition that for
each a ∈ R, a − f ∈ (a2 − a)R for a unique idempotent f . We prove that this condition
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is not left–right symmetric (see Example 28). Every uniquely clean ring satisfies this
condition. The rings with this condition are characterized as the semi-boolean rings
with a restricted commutativity for idempotents (see Theorem 17), where a ring R is
semi-boolean iff R/J(R) is boolean and idempotents lift modulo J(R) [or equivalently,
R is an exchange ring for which any non-zero idempotent is not the sum of two units
(see Theorem 13)]. Various basic properties of these rings are developed, and a number
of illustrative examples are given.

The ring of integers modulo n is denoted by �n. We write �n(R) [resp., �n(R)] for
the ring of all n × n matrices (resp., all upper triangular n × n matrices) over R. The
ring of polynomials (resp., power series) in indeterminate x over a ring R is denoted by
R[x] [resp., R[[x]]]. For an endomorphism σ of a ring R, R[x; σ ] and R[[x; σ ]] denote the
(left) skew polynomial ring and (left) skew power series ring, in which the multiplication
is subjected to the condition that xr = σ (r)x for all r ∈ R.

2. A few easy lemmas. The first two lemmas are implicit in [13].

LEMMA 1. Let R be a ring and x, a ∈ R. Then

a ∈ xR, 1 − a ∈ (1 − x)R ⇔ x − a ∈ (x2 − x)R.

Proof. “⇒”. x − a = x − xa + xa − a = x(1 − a) + (x − 1)a ∈ (x2 − x)R.
“⇐”. If x − a ∈ (x2 − x)R, then a ∈ xR and 1 − a = (1 − x) + (x − a)

∈ (1 − x)R. �
LEMMA 2. Let a, e2 = e, u, v ∈ R. The following hold:

(1) If a = e + u and uv = 1, then a − u(1 − e)v = (a2 − a)v.
(2) If a = e + u and vu = 1, then a − v(1 − e)u = v(a2 − a).
(3) If a = e + u where u ∈ U(R), then a − u(1 − e)u−1 = (a2 − a)u−1 and

a − u−1(1 − e)u = u−1(a2 − a).

Proof. The verification of (1) and (2) is straightforward, and (3) follows by (1) and
(2). �

LEMMA 3. Let a, e2 = e ∈ R with ea = ae. Then the following hold:
(1) (a − e)R = R ⇔ a − (1 − e) ∈ (a2 − a)R.
(2) R(a − e) = R ⇔ a − (1 − e) ∈ R(a2 − a).

Proof. (1) ‘⇒’. Let u = a − e and uv = 1 with v ∈ R. Then a − (1 − e) = a −
(1 − e)uv = a − u(1 − e)v = (a2 − a)v by Lemma 2(1).

‘⇐’. Suppose that a − (1 − e) ∈ (a2 − a)R. Then 1 − e ∈ aR and e ∈ (1 − a)R by
Lemma 1. Write 1 − e = ar and e = (1 − a)s where r, s ∈ R. Then 1 − e = (1 − e)ar(1 −
e) = a(1 − e)r(1 − e) and e = e(1 − a)se = (1 − a)ese. So we may assume that r = (1 −
e)r = r(1 − e) and s = es = se. Then (a − e)(r − s) = ar − as − er + es = 1 − e − as +
s = 1 − e + (1 − a)s = 1 − e + e = 1. So (a − e)R = R.

(2) The proof is similar to (1). �
COROLLARY 4. The equivalences (1) ⇔ (2) and (3) ⇔ (4) hold for a ring R.

(1) For any a ∈ R, there exist e2 = e ∈ R and u ∈ R with uR = R such that a = e + u
and ea = ae.

(2) For any a ∈ R, there exists e2 = e ∈ R such that a − e ∈ (a2 − a)R and ea = ae.
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(3) For any a ∈ R, there exist e2 = e ∈ R and u ∈ R with Ru = R such that a = e + u
and ea = ae.

(4) For any a ∈ R, there exists e2 = e ∈ R such that a − e ∈ R(a2 − a) and ea = ae.

An element a ∈ R is called strongly clean if a = e + u and ea = ae where e2 = e
and u ∈ U(R), and a ring is called strongly clean if each of its elements is strongly clean
[15].

COROLLARY 5. The following are equivalent for a ∈ R:
(1) a is strongly clean in R.
(2) There exists e2 = e ∈ R such that e ∈ aR ∩ Ra, 1 − e ∈ (1 − a)R ∩ R(1 − a) and

ea = ae.
(3) There exists e2 = e ∈ R such that a − e ∈ (a2 − a)R ∩ R(a2 − a) and ae = ea.

Proof. (1) ⇒ (3). Suppose that a is strongly clean in R and write a = e + u where
e2 = e, u ∈ U(R) and ea = ae. By Lemma 3, a − (1 − e) ∈ (a2 − a)R ∩ R(a2 − a). So
(3) holds.

(3) ⇒ (1). By Lemma 3, (3) implies that a − (1 − e) is a unit of R, so a is strongly
clean.

(2) ⇔ (3). This is by Lemma 1 and by its left version. �
Every strongly clean element a ∈ R satisfies both (1) and (2) of Lemma 3. But

neither of (1) and (2) of Lemma 3 implies that a is strongly clean, as shown in the next
example [21].

EXAMPLE 6. [21]. Let V be a right vector space of countably infinite dimension over
a division ring D with {vi : i = 1, 2, . . .} a basis. Define σ : V → V by σ (vi) = vi+1 for
each i ≥ 1. Let R = End(VD) be the endomorphism ring and S = Ro be the opposite
ring of R. Then the following hold:

(1) σ is left invertible in R, but σ is not strongly clean in R.
(2) σ is right invertible in S, but σ is not strongly clean in S.

Proof. (1) Define ρ : V → V by ρ(vi+1) = vi for i ≥ 1 and ρ(v1) = 0. Clearly,
ρ ◦ σ = 1V , so σ is left invertible in End(VD). Suppose that σ = e + u and e ◦ u = u ◦ e
where e2 = e ∈ End(VD) and u is a unit of End(VD). Then 1 − e = σ ◦ (1 − e) ◦ u−1.
So

vi − e(vi) ∈ σ (V ) = span(v2, v3, . . .) for each i ≥ 1. (2.1)

Since u is a unit of R, there exists v = v1a1 + · · · + vnan ∈ V such that

v1 = u(v) = (σ − e)(v)

= v2a1 + v3a2 + · · · + vn+1an − e(v1)a1 − e(v2)a2 − · · · − e(vn)an. (2.2)

Because of (2.1), it follows that a1 = −1. Applying e to both sides of (2.2) yields that

0 = e(v2)(a1 − a2) + e(v3)(a2 − a3) + · · · + e(vn)(an−1 − an) + e(vn+1)an

= σ (e(v1)(a1 − a2) + e(v2)(a2 − a3) + · · · + e(vn−1)(an−1 − an) + e(vn)an).

Since σ is one-to-one, it follows that

0 = e(v1)(a1 − a2) + e(v2)(a2 − a3) + · · · + e(vn−1)(an−1 − an) + e(vn)an.
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Again by (2.1), one obtains a1 − a2 = 0 and so

0 = e(v2)(a2 − a3) + · · · + e(vn−1)(an−1 − an) + e(vn)an

= σ (e(v1)(a2 − a3) + · · · + e(vn−2)(an−1 − an) + e(vn−1)an).

Repeating the process above, one obtains a2 − a3 = 0. A simple induction clearly shows
that a1 = −1, ai − ai+1 = 0 for i = 1, . . . , n − 1 and an = 0. This is a contradiction.

(2) follows by (1). �

QUESTION 1. Suppose that for any a ∈ R, there exists e2 = e ∈ R such that ea = ae
and a − e ∈ (a2 − a)R (resp., a − e ∈ R(a2 − a)). Is R strongly clean?

3. Right uniquely exchange rings. An element a in a ring R is called a right
uniquely exchange element if ∃|e2 = e ∈ R such that e ∈ aR and 1 − e ∈ (1 − a)R (or
equivalently, ∃|e2 = e ∈ R such that a − e ∈ (a2 − a)R). The ring R is called a right
uniquely exchange ring if every element of R is a right uniquely exchange element. Left
uniquely exchange rings (resp., elements) are defined analogously.

In the proof of [14, Proposition], Nicholson actually showed that, for a ∈ R,
∃e2 = e ∈ R such that a − e ∈ (a2 − a)R iff ∃f 2 = f ∈ R such that a − f ∈ R(a2 − a).
But a right uniquely exchange element need not be a left uniquely exchange element.
Indeed, a right uniquely exchange ring need not be a left uniquely exchange ring (see
Example 28).

EXAMPLE 7. Let R be a ring and a ∈ R.

(1) Idempotents of R and elements in J(R) all are left and right uniquely exchange
elements.

(2) a is a right uniquely exchange element iff so is 1 − a.

Proof. (1) If a2 = a ∈ R, let e = a and we have e ∈ aR and 1 − e ∈ (1 − a)R. If
f ∈ aR and 1 − f ∈ (1 − a)R with f 2 = f , then (1 − a)f = 0 and a(1 − f ) = 0. It follows
that f = a.

If a ∈ J(R), let e = 0 and then e ∈ aR and 1 − e ∈ (1 − a)R. If f ∈ aR and 1 − f ∈
(1 − a)R with f 2 = f , then f ∈ J(R). Thus f = 0.

(2) This follows from the fact that a − e ∈ (a2 − a)R ⇔ (1 − a) − (1 − e) ∈ [(1 −
a)2 − (1 − a)]R. �

A ring R is called uniquely clean if every element of R is uniquely the sum of a unit
and an idempotent. These rings are the topic of [1, 6, 16, 18]. They are characterized
in [16] as the rings R such that R/J(R) is boolean, idempotents lift modulo J(R), and
all idempotents in R are central.

EXAMPLE 8. Every uniquely clean ring is a right uniquely exchange ring.

Proof. For a ∈ R, there exists e2 = e ∈ aR with 1 − e ∈ (1 − a)R. Suppose that
f 2 = f ∈ aR with 1 − f ∈ (1 − a)R. Then e − f ∈ aR ∩ (1 − a)R. By [16, Theorem 20],
aR ∩ (1 − a)R ⊆ J(R). So e − f ∈ J(R). From e + 0 = f + (e − f ), it follows by [16,
Theorem 20(4)] that e = f . So R is a right uniquely exchange ring. �

However, a right uniquely exchange ring need not be uniquely clean.
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EXAMPLE 9. Let R =(
�2 �2
0 �2

)
. Then R is clearly an exchange ring, but R is not un-

iquely clean because it has non-central idempotents. Note that a =(1̄ 1̄
0 1̄

)
is the only

element which is neither an idempotent nor an element in J(R). Since 1 − a ∈ J(R),
the unique idempotent e ∈ aR with 1 − e ∈ (1 − a)R is e = 1. So R is a right uniquely
exchange ring in view of Example 7.

PROPOSITION 10. Let R be a local ring. The following are equivalent:
(1) R is a right uniquely exchange ring.
(2) R is a uniquely clean ring.
(3) R/J(R) ∼= �2.

Proof. (3) ⇒ (2) ⇒ (1). This is true by [16, Theorem 15].
(1) ⇒ (3). Let u /∈ J(R). We show that 1 − u ∈ J(R). If 1 − u /∈ J(R) then 1 − u ∈

U(R) and 1 − (1 − u) = u ∈ U(R). So for a = 1 − u and for e ∈ {0, 1}, we have e ∈ aR
and 1 − e ∈ (1 − a)R. So a is not a right uniquely exchange element in R. Therefore
1 − u ∈ J(R) and hence u = 1̄. �

PROPOSITION 11. Let R be a right uniquely exchange ring and e2 = e ∈ R. The
following hold:

(1) eRe is a right uniquely exchange ring.
(2) If e �= 0, then e �= u + v for all u, v ∈ U(eRe). In particular, any matrix ring of

size greater than 1 is not a right uniquely exchange ring.

Proof. (1) By [13, Proposition 1.10], eRe is an exchange ring. If a ∈ eRe and
a − ei ∈ (a2 − a)eRe where e2

i = ei for i = 1, 2, then a − ei ∈ (a2 − a)R. Thus e1 = e2

because R is a right uniquely exchange ring.
(2) If e = u + v with u, v ∈ U(eRe), then u − e = −v. So (u2 − u)eRe =

u(−v)eRe = eRe. Hence u − 0, u − e ∈ (u2 − u)(eRe). This shows that eRe is not a
right uniquely exchange ring, contradicting (1). To show the last statement, note that
the identity matrix of a 2 × 2 matrix ring is clearly the sum of two invertible matrices.
So any 2 × 2 matrix ring is not a right uniquely exchange ring. Thus, any matrix ring
of size greater than 1 is not a right uniquely exchange ring by (1). �

4. Structures and characterizations. A ring R is called semipotent if each left
ideal (resp., right ideal) not contained in J(R) contains a non-zero idempotent, and R
is called potent if, in addition, idempotents lift modulo J(R). By [17, Example 25], a
semipotent ring need not be potent. Following [18], a ring R is called semi-boolean if
R/J(R) is boolean and idempotents lift modulo J(R).

A set {eij : 1 ≤ i, j ≤ n} of non-zero elements of R is said to be a system of n2

matrix units if eijest = δjseit, where δjj = 1 and δjs = 0 for j �= s. In this case, e := �n
i=1eii

is an idempotent of R and eRe ∼= �n(S) where S = {r ∈ eRe : reij = eijr for all i, j =
1, 2, . . . , n}.

LEMMA 12. [11] Let R be a semipotent ring with J(R) = 0 and let n > 1. If an = 0
but an−1 �= 0 in R, then RaR contains a system of n2-matrix units.

THEOREM 13. The following are equivalent for a ring R:
(1) R is a potent ring and, for any 0 �= e2 = e ∈ R, e �= u + v for all u, v ∈ U(eRe).
(2) R is a potent ring and every non-zero idempotent of R is not the sum of two units.
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(3) R is an exchange ring and every non-zero idempotent of R is not the sum of two
units.

(4) R is a semi-boolean ring.

Proof. (4) ⇒ (3) ⇒ (2). These are clear.
(2) ⇒ (1). If e2 = e = u + v where u, v ∈ U(eRe), then e = [u + (1 − e)] + [v −

(1 − e)] is the sum of two units of R.
(1) ⇒ (4). Let R = R/J(R) and write x = x + J(R) for all x ∈ R.

Claim 1. R is a reduced ring.
Assume on the contrary that ā2 = 0̄ but ā �= 0̄. Since R is semipotent, RāR contains a
system of 22-matrix units by Lemma 12. Thus, there exists e ∈ R such that ē2 = ē ∈ R
and ēRē ∼= �2(S) for some non-trivial ring S. Since idempotents lift modulo J(R), we
may assume that e2 = e. Clearly, the identity of �2(S) can be written as the sum of
two units of �2(S), so ē is the sum of two units of ēRē. Because ēRē ∼= eRe/J(eRe)
and because units lift modulo the radical, it follows that e is the sum of two units of
eRe, a contradiction.

Claim 2. a2 − a ∈ J(R) for each a ∈ R.
Suppose that a2 − a /∈ J(R) for some a ∈ R. Then there exists 0 �= e = e2 ∈ (a2 − a)R.
Write e = (a2 − a)b with be = b, so b(a2 − a) is an idempotent. By Claim 1, idempotents
of R are central, so b̄(ā2 − ā) = b̄(ā2 − ā)ē = (ā2 − ā)[b̄(ā2 − ā)]b̄ = ē. Thus, b̄ and ēā
are units of ēRē, and hence ē = ā2b̄ + (−āb̄) is the sum of two units of ēRē. As in the
proof of Claim 1, it follows that e is the sum of two units of eRe, a contradiction. �

There exist exchange rings R such that 1 �= u + v for any u, v ∈ U(R), but they are
not semi-boolean.

EXAMPLE 14. Let R be the group ring �2C3 where C3 is the cyclic group of order 3.
Then R is a semi-simple ring by Maschke’s Theorem, hence an exchange ring with
J(R) = 0. Assume that 1 = u + v for some u, v ∈ U(R). Applying the augmentation
mapping to the equality gives that 1 is the sum of two units in �2, a contradiction.
However, R is not boolean because it has non-trivial units.

The next example was suggested to us by the referee. It gives a ring S with S/J(S)
boolean but such that idempotents do not lift modulo J(S).

EXAMPLE 15. Let k = �2 and let k〈x, y〉 be the free algebra in the non-commuting
variables x and y. Let R = k〈x, y〉/yx = 0 be the factor ring of k〈x, y〉 modulo the ideal
generated by yx. Following [8], let R� be the universal localization of R with respect
to the set � of all square matrices that become invertible under each of the following
evaluations: x �→ 0, y �→ 1 and x �→ 1, y �→ 0. By [8, Corollary 6.4], R� has no non-
trivial idempotents. However, R�/J(R�) ∼= k × k by [8, Fact 4.1]. Thus, idempotents
do not lift modulo J(R�), so R� is not semi-boolean.

A ring is called abelian if each of its idempotents is central.

LEMMA 16. Let R/J(R) be an abelian ring. Suppose that a ∈ R and e2 = e ∈ R. If
a − e ∈ (a2 − a)R or a − e ∈ R(a2 − a), then a − (1 − e) is a unit of R.

Proof. Let us assume that a − e ∈ (a2 − a)R. Then e ∈ aR and 1 − e ∈ (1 − a)R
by Lemma 1. Write e = ar with r = re and 1 − e = (1 − a)s with s = s(1 − e). Let
u = a − (1 − e) and v = r − s. Because R/J(R) is abelian, we have ēr̄ = r̄ = r̄ē and
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ēs̄ = s̄ē = 0 and so

ūv̄ = [ā − (1̄ − ē)](r̄ − s̄)

= ār̄ − (1̄ − ē)r̄ + (−ā + 1̄ − ē)s̄

= ē + (1̄ − ā)s̄ = ē + (1̄ − ē) = 1̄.

So v̄ū = (v̄ū)(ūv̄) = ū(v̄ū)v̄ = 1̄. Hence ū is a unit of R/J(R), so u is a unit of R. �

A ring R is said to satisfy (∗) if, whenever a − e ∈ (a2 − a)R with e2 = e, we
have ae = ea. It is interesting to compare part (4) of the next theorem with [16,
Theorem 20(4)].

THEOREM 17. The following are equivalent for a ring R:
1. R is a right uniquely exchange ring.
2. ∀a ∈ R, ∃|e2 = e such that a − e ∈ U(R) and ae = ea, and R satisfies (∗).
3. ∀a ∈ R, ∃|e2 = e such that a − e ∈ J(R) and ae = ea, and R satisfies (∗).
4. R is semi-boolean and the idempotents e satisfying a − e ∈ (a2 − a)R commute

with each other for each a ∈ R.

Proof. (1) ⇒ (3). Suppose that (1) holds. Then, by Proposition 11, R satisfies
Theorem 13(1). So R/J(R) is boolean by Theorem 13.

We first show that (∗) holds. Suppose that a − e ∈ (a2 − a)R where e2 = e. By
Lemma 16, a = (1 − e) + u where u = a − (1 − e) ∈ U(R). So a − ueu−1 ∈ (a2 − a)R
by Lemma 3. Thus, e = ueu−1 or eu = ue by (1). So ae = ea and (∗) holds.

Claim. For a, e2 = e ∈ R,

a − e ∈ J(R) and ae = ea ⇔ (a + 1) − (1 − e) ∈ [(a + 1)2 − (a + 1)]R.

In fact, if (a + 1) − (1 − e) ∈ [(a + 1)2 − (a + 1)]R, then (a + 1)(1 − e) = (1 − e)(a + 1)
by (∗), i.e. ae = ea, and u := (a + 1) − e ∈ U(R) by Lemma 16. Thus, 1̄ = ū = ā + 1̄ −
ē, so ā = ē. Hence a − e ∈ J(R) and ae = ea. Conversely, if a − e ∈ J(R) and ae = ea,
then u := (a + 1) − e = 1 + (a − e) ∈ U(R). Thus (a + 1) − (1 − e) ∈ [(a + 1)2 − (a +
1)]R by Lemma 3. Now (3) follows.

(3) ⇒ (2). Let a ∈ R. By (3), there exists e2 = e ∈ R such that (a − 1) − e ∈ J(R)
and (a − 1)e = e(a − 1). Thus, a − e = 1 + [(a − 1) − e] ∈ U(R) with ae = ea. Suppose
that a − f ∈ U(R) where f 2 = f and a f = f a. By (3), there exists g2 = g ∈ R such that
(a − f ) − g ∈ J(R). Then ḡ = a − f ∈ U(R), so ḡ = 1̄. Thus, (a − 1) − f = (a − f ) −
1 ∈ J(R) with (a − 1)f = f (a − 1). So f = e by (3).

(2) ⇒ (1). Suppose that (2) holds. Then R is clearly an exchange ring. Assume
a − ei ∈ (a2 − a)R where ei is an idempotent for i = 1, 2. Then aei = eia by hypothesis.
Thus it follows from Lemma 3 that a − (1 − ei) ∈ U(R) for i = 1, 2, so 1 − e1 = 1 − e2

by (2). That is e1 = e2. Hence R is a right uniquely exchange ring.
(1) ⇒ (4). This is clear.
(4) ⇒ (1). Suppose that a − ei ∈ (a2 − a)R where e2

i = ei for i = 1, 2. By Lemma
16, ui := a − (1 − ei) ∈ U(R), and so 1̄ = ūi = ā − (1̄ − ēi) for i = 1, 2. Hence ē1 = ē2,
that is e1 − e2 ∈ J(R). By (4), e1e2 = e2e1. So e1(1 − e2) = (e1 − e2)(1 − e2) ∈ J(R) is an
idempotent. It follows that e1 = e1e2. Similarly, (1 − e1)e2 = (1 − e1)(e1 − e2) ∈ J(R)
is an idempotent, so e2 = e1e2. Hence e1 = e2. �
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It is worth noting that, in a right uniquely exchange ring R, a − e ∈ (a2 − a)R with
e2 = e implies a − e ∈ R(a2 − a). Thus, the next result is an immediate consequence of
Theorem 17.

COROLLARY 18. The following are equivalent for a ring R:
(1) R is a left and right uniquely exchange ring.
(2) R is semi-boolean and, for each a ∈ R, the idempotents e satisfying a − e ∈

(a2 − a)R ∪ R(a2 − a) commute with each other.

The next example shows that a semi-boolean ring need not be a right uniquely
exchange ring.

EXAMPLE 19. Let R = �2(�4). Then R is semi-boolean, but it is neither a right nor
a left uniquely exchange ring.

Proof. It is clear that R is a semi-boolean ring. It follows by Theorem 21 that R is
neither a right nor a left uniquely exchange ring. �

Later we will see that right uniquely exchange rings need not be left uniquely
exchange rings.

5. Extensions of rings. An easy argument proves the following result.

EXAMPLE 20. A direct product
∏

i Ri of rings is a right uniquely exchange ring if
and only if each Ri is a right uniquely exchange ring.

The next theorem answers when a triangular matrix ring is a right uniquely
exchange ring. Maybe it is worth noting that the ring S := �2(R) in part (2) of next
theorem has the property that, for each a ∈ S, e = a2 is the only idempotent of S such
that a − e ∈ (a2 − a)S.

THEOREM 21. Let n ≥ 2. The following hold for a ring R:
(1) �n(R) is not a right (left) uniquely exchange ring for each n ≥ 3.
(2) �2(R) is a right (left) uniquely exchange ring iff R is a boolean ring.

Proof. (1) Because of Proposition 11, it suffices to show that S := �3(R) is not a
right uniquely exchange ring. Let

a =
⎛
⎝0 1 0

0 0 1
0 0 1

⎞
⎠ and e =

⎛
⎝0 0 0

0 0 1
0 0 1

⎞
⎠ .

Then e2 = e and

a − e =
⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 1 −1

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ = (a − a2)

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ ∈ (a2 − a)S.

But

ae =
⎛
⎝0 0 1

0 0 1
0 0 1

⎞
⎠ and ea =

⎛
⎝0 0 0

0 0 1
0 0 1

⎞
⎠ .

So ae �= ea. Thus, S is not a right uniquely exchange ring by Theorem 17.
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(2) ‘⇒’. Suppose that �2(R) is a right uniquely exchange ring. Because of
Proposition 11, it follows that R is a right uniquely exchange ring. Thus, by Theorem
17, R/J(R) is boolean. So to show that R is boolean, it suffices to show that J(R) = 0.
Let r ∈ J(R). Write a = ( r r

0 1

)
and e = (0 0

0 1

)
. Then e2 = e and a − e = ( r r

0 0

)=(r−r2 −r2

0 0

)((1−r)−1 (1−r)−1

0 0

) ∈ (a2 − a)�2(R). Moreover, ae = (0 r
0 1

)
and ea = (0 0

0 1

)
. But,

by Theorem 17, ae = ea. So r = 0.
(2) ‘⇐’. Suppose that R is boolean. Then S := �2(R) is an exchange ring. Now

assume that a − e ∈ (a2 − a)S with e2 = e. We prove that e is uniquely determined by
a. Further assume that a − e = (a − a2)b with b ∈ S. Write

a =
(

r1 r2

0 r3

)
, b =

(
s1 s2

0 s3

)
, and e =

(
e1 e2

0 e3

)
.

It follows from a − e = (a − a2)b that e1 = r1, e3 = r3 and e2 = r2 + r2(1 − (r1 + r3))s3.
Thus, since e2 = e, one obtains

e2 = (e1 + e3)e2

= (r1 + r3)[r2 + r2(1 − (r1 + r3))s3]

= (r1 + r3)r2 + r2(r1 + r3)(1 − (r1 + r3))s3

= (r1 + r3)r2.

So e = a2 is uniquely determined by a.
The left versions of (1) and (2) can be similarly proved. �
The factor rings of a right uniquely exchange ring are right uniquely exchange

rings. This follows from the result of Pedersen and Perera [20]. We refer to Ara [2] for
the discussion of exchange rings without unity.

LEMMA 22 [20, Lemma 1.3]. Let π : R → S be a surjective morphism between (not
necessarily unital) exchange rings, and let x, y and z be elements in S such that with
e = x y we have

y = y e, 1 − e = (1 − x)(1 − z), (1 − z)e = 0.

For each choice of x in R with π (x) = x there are then elements y and z in R with π (y) = y
and π (z) = z, such that with e = xy we have

y = ye, 1 − e = (1 − x)(1 − z), (1 − z)e = 0.

THEOREM 23. Let R be a right uniquely exchange ring and let I be an ideal of R.
Then R/I is a right uniquely exchange ring.

Proof. Write R = R/I and write r = r + I for all r ∈ R. It is well known that the
factor ring of an exchange ring is again an exchange ring. So R is an exchange ring.
Now suppose that for some x ∈ R and some e2

i = ei ∈ R (i = 1, 2), there are yi, zi ∈ R
(i = 1, 2) such that

ei = x yi with yi = y ei, and 1 − ei = (1 − x)(1 − zi) with (1 − zi)ei = 0.

Then, by Lemma 22, there exist y′
i, z′

i ∈ R (i = 1, 2) with y′
i = yi and z′

i = zi, such that
with fi = xy′

i we have y′
i = y′

ifi, 1 − fi = (1 − x)(1 − z′
i), (1 − z′

i)fi = 0. Thus, f 2
i = fi.
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Because R is a right uniquely exchange ring, it must be that f1 = f2. So e1 = f 1 = f 2 =
e2. Hence R is a right uniquely exchange ring. �

THEOREM 24. The following are equivalent for a ring R:
(1) R[[x]] is a right uniquely exchange ring.
(2) R[x]/(xn) is a right uniquely exchange ring for all n ≥ 1.
(3) R[x]/(xn) is a right uniquely exchange ring for some n ≥ 2.
(4) R[x]/(x2) is a right uniquely exchange ring.
(5) R is an abelian, right uniquely exchange ring.
(6) R is a uniquely clean ring.

In this case, R[[x]] is a uniquely clean ring.

Proof. (1) ⇒ (2). For any n ≥ 1, R[x]/(xn) ∼= R[[x]]/(xn), so (2) holds by
Theorem 23.

(2) ⇒ (3). This is obvious.
(3) ⇒ (4). If n ≥ 2, then R[x]/(x2) is a homomorphic image of R[x]/(xn). So the

implication follows by Theorem 23.
(4) ⇒ (5). Let S = R[x]/(x2). Then S = {r + sx : r, s ∈ R} with x2 = 0. Since R is

a homomorphic image of S, it follows from (4) that R is a right uniquely exchange
ring by Theorem 23. Now let r, e ∈ R with e2 = e, and let a = e + (1 + er − re)x ∈ S.
Then a − a2 = (1 − 2e)x. Consider two idempotents e and f := e + (re − ere)x of S.
We have

a − e = (1 + er − re)x = [(1 − 2e)x][(1 − 2e)(1 + er − re) + x] ∈ (a − a2)S

and

a − f = (1 + er − 2re + ere)x = [(1 − 2e)x][(1 − 2e)(1 + er − 2re + ere) + x] ∈ (a − a2)S.

Because S is a right uniquely exchange ring, one obtains e = f and ae = ea (by
Theorem 17). This gives re = ere and ere − re = er − ere. It follows that er = re.

(5) ⇒ (6). This follows by Theorem 17(4).
(6) ⇒ (1). Suppose that R is uniquely clean. Then by [16, Corollary 10], R[[x]] is

uniquely clean, so it is a right uniquely exchange ring. �
Theorem 24 shows that a power series ring is a right uniquely exchange ring if

and only if it is uniquely clean. Let σ be an endomorphism of R. Notice that, by
[16, Example 9], R[[x; σ ]] is uniquely clean iff R is uniquely clean and σ (e) = e for all
e2 = e ∈ R. The next example gives an interesting contrast to Theorem 24 for skew
power series rings.

EXAMPLE 25. Let R = �2 ⊕ �2 and let σ : R → R, (r, s) �→ (s, r).
(1) R[x; σ ]/(x3) is a right uniquely exchange ring, and so is R[x; σ ]/(x2).
(2) R[x; σ ]/(x4) is not a right uniquely exchange ring; hence R[x; σ ]/(xn) (n ≥ 4) and

R[[x; σ ]] are not right uniquely exchange rings.

Proof. (1) Let S = R[x; σ ]/(x3). Then J(S) = xS, and S is clearly an exchange
ring. By Example 7, for any b ∈ xS, b and 1 − b are right uniquely exchange elements
in S; so we only need to show that (1, 0) + b and (0, 1) + b are right uniquely
exchange elements in S. Since (0, 1) + b = 1 − [(1, 0) + b], it suffices to show that
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(1, 0) + b is a right uniquely exchange element in S by Example 7. Write b =
rx + sx2 and let a = (1, 0) + b = (1, 0) + rx + sx2. Then a2 = (1, 0) + rx + rσ (r)x2 and
a2 − a = [rσ (r) + s]x2. Suppose that a − e ∈ (a2 − a)S where e2 = e = e0 + e1x +
e2x2 ∈ S. Thus for some b = b0 + b1x + b2x2,

a − e = (a2 − a)b = [rσ (r) + s]x2 · (b0 + b1x + b2x2)

= [rσ (r) + s]b0x2.

It follows that e0 = (1, 0), e1 = r and s − e2 = [rσ (r) + s]b0. So e = (1, 0) + rx +
[s + (rσ (r) + s)b0]x2. Thus, e2 = (1, 0) + rx + rσ (r)x2. Since e2 = e, e = (1, 0) + rx +
rσ (r)x2 is uniquely determined by a. So a is a right uniquely exchange element in S.
Hence S is a right uniquely exchange ring. As an image of S, R[x; σ ]/(x2) is a right
uniquely exchange ring.

(2) Let S = R[x; σ ]/(x4), and let a = (1, 0) + x + (1, 0)x2 + x3 and e = (1, 0) +
x + x2 + (0, 1)x3 be in S. By direct calculation, one obtains that e2 = e and

a − e = (0, 1)x2 + (1, 0)x3

= [(0, 1)x2 + x3](1 + x)

= (a2 − a)(1 + x) ∈ (a2 − a)S.

But ea = (1, 0) + x + x2 + (0, 1)x3 and ae = (1, 0) + x + x2. So ae �= ea. Hence S is
not a right uniquely exchange ring by Theorem 17. For any n ≥ 4, S is an image of
R[x; σ ]/(xn) and the latter is an image of R[[x; σ ]]. It follows that R[x; σ ]/(xn) and
R[[x; σ ]] are not right uniquely exchange rings. �

QUESTION 2. Let σ be an endomorphism of a ring R and n ≥ 2 be an integer.
When is R[[x; σ ]] a right uniquely exchange ring? When is R[x; σ ]/(xn) a right uniquely
exchange ring?

6. The asymmetry. The definition of an exchange ring is left–right symmetric.
Here we prove that right uniquely exchange rings need not be left uniquely exchange
rings.

Let R, S be rings and M be an (R, S)-bimodule. Consider the formal triangular
ring T =(R M

0 S

)
.

LEMMA 26. Given T =(R M
0 S

)
, the following hold:

(1) If T is a right uniquely exchange ring, then R, S are right uniquely exchange rings
and J(R)M = 0.

(2) If T is a left uniquely exchange ring, then R, S are left uniquely exchange rings
and MJ(S) = 0.

Proof. We prove (1) only. Suppose that T is a right uniquely exchange ring.
Then R, S are right uniquely exchange rings by Proposition 11. For a ∈ J(R)
and m ∈ M, let α =(a m

0 1

)
and e =(0 m

0 1

)
. Then e2 = e and α − e =(a 0

0 0

) =( a(1−a) −am
0 0

)((1−a)−1 0
0 0

)= (α − α2)
((1−a)−1 0

0 0

)∈ (α − α2)T . By Theorem 17, αe = eα.
It follows that am = 0. �

THEOREM 27. Given T = (R M
0 S

)
, the following are equivalent:

(1) T is a uniquely exchange ring.
(2) R and S are uniquely exchange rings and J(R)M = 0 = MJ(S).
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Proof. (1) ⇒ (2). This is by Lemma 26.
(2) ⇒ (1). We prove T to be a right uniquely exchange ring only. Clearly, T is

an exchange ring. Let α = (a m
0 b

)∈ T . Suppose that α − ηi = (α − α2)βi, where ηi =(ei mi
0 fi

)
is an idempotent of T and βi = (ri ki

0 si

)∈ T for i = 1, 2. Thus, one obtains

(
a − ei m − mi

0 b − fi

)
=

(
a − a2 m − am − mb

0 b − b2

)(
ri ki

0 si

)

=
(

(a − a2)ri (a − a2)ki + (m − am − mb)si

0 (b − b2)si

)

=
(

(a − a2)ri (m − am − mb)si

0 (b − b2)si

)
,

because (a − a2)ki = 0 (as a − a2 ∈ J(R)). Thus, we have

a − ei = (a − a2)ri

b − fi = (b − b2)si (6.1)

m − mi = (m − am − mb)si.

From η2
i = ηi, it follows that

e2
i = ei, f 2

i = fi and mi = eimi + mifi. (6.2)

Thus, since R and S are uniquely exchange rings, we obtain that e := e1 = e2 and
f := f1 = f2. Since (a − a2)ri ∈ J(R) and (b − b2)si ∈ J(S), am = em and mb = m f
by (6.1) and our assumption. So mi = m − (m − am − mb)si = m − (m − em − m f )si,
and hence emi = em − e(m − em − m f )si = em + em f si and mi f = m f − (m − em −
m f )si f . Now from (6.2) we have for i = 1, 2 that

mi = eimi + mi fi = emi + mi f

= em + em f si + m f − (m − em − m f )si f

= em + m f + em( f si − si f ) + m( f − 1)si f

= em + m f,

because both f si − si f and ( f − 1)si f are in J(S). So m1 = m2 and hence η1 = η2. �

Our concluding example gives a right uniquely exchange ring that is not a left
uniquely exchange ring.

EXAMPLE 28. Let T = (R M
0 S

)
, where R = �2, S = �2[[x]] and M = �2[[x]]. Then

T is a right uniquely exchange ring that is not a left uniquely exchange ring.

Proof. Since J(S) = xS and MJ(S) �= 0, T is not a left uniquely exchange ring
by Lemma 26. T is clearly an exchange ring. To show that T is a right uniquely
exchange ring, let α = (a f (x)

0 g(x)

)∈ T ; we show that there exists a unique η2 = η ∈ T
such that α − η ∈ (α − α2)T . Because of Example 7, we may assume that α2 �= α and
α /∈ J(T) = (0 M

0 xS

)
. Thus, there are two cases: (i) a = 0 and g(x) ∈ U(S); and (ii) a = 1.
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Write α − η = (α − α2)
(a0 f0(x)

0 g0(x)

)
. Then

η =
(

a f (x)

0 g(x)

)
−

(
a − a2 f (x)(1 − a − g(x))

0 g(x)(1 − g(x))

) (
a0 f0(x)

0 g0(x)

)

=
(

a − (a − a2)a0 f (x)[1 − (1 − a − g(x))g0(x)] − (a − a2)f0(x)

0 g(x)[1 − (1 − g(x))g0(x)]

)
.

Case 1. a = 0 and g(x) ∈ U(S). Then

η =
(

0 f (x)[1 − (1 − g(x))g0(x)]

0 g(x)[1 − (1 − g(x))g0(x)]

)

and

η2 =
(

0 f (x)g(x)[1 − (1 − g(x))g0(x)]2

0 g(x)2[1 − (1 − g(x))g0(x)]2

)
.

Being both an idempotent and a unit in S, g(x)[1 − (1 − g(x))g0(x)] must be 1. So

1 − (1 − g(x))g0(x) = g(x)−1 and hence η = (0 f (x)g(x)−1

0 1

)
.

Case 2. a = 1. Then

η =
(

1 f (x)[1 + g(x)g0(x)]

0 g(x)[1 − (1 − g(x))g0(x)]

)

and

η2 =
(

1 f (x)[1 + g(x)g0(x)][1 + g(x)(1 − (1 − g(x))g0(x))]

0 g(x)2[1 − (1 − g(x))g0(x)]2

)
.

If g(x) ∈ U(S), then g(x)[1 − (1 − g(x))g0(x)] = 1 as above, and this gives f (x)[1 +
g(x)g0(x)] = 0. So η = (1 0

0 1

)
.

If g(x) /∈ U(S), then g(x) ∈ J(S). Thus, g(x)[1 − (1 − g(x))g0(x)] is both an
idempotent and an element in J(S), so it must be that g(x)[1 − (1 − g(x))g0(x)] = 0.
This also gives that g(x) = g(x)(1 − g(x))g0(x). It follows that g(x)g0(x) = g(x)(1 −
g(x))−1. So η = (1 f (x)[1+g(x)(1−g(x))−1]

0 0

)
. The proof is now complete. �
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