
P 85. Denote by f (n) the number of Abelian groups of 

order n and by f (n) the number of semi-s imple rings of 

order n (see I. G. Connell, this Bulletin 7(1964), 23-34. 
Prove that 

L,im log f.(n)/(log n/log log n) = k. , i = 1, 2, 

and determine the constants k. 
l 

P. Erdos 

SOLUTIONS 

P 6. (Conjecture). If a < a < . . . is a sequence of ____- /̂  ^ 

positive integers with a /a a -+1, and if for every d, 
n n+1 

every residue c lass (mod d) is representable as the sum of 
distinct a' s, then at most a finite number of positive integers 
a re not representable as the sum of distinct af s. 

P. Erdos 

In its present generality the conjecture is false; this is 
shown by an example due to J. W. S. Cas se ls , On the r ep re 
sentation of integers as the sums of distinct summands taken 
from a fixed set, Acta Sci. Math. Szeged 21(1960), 111-124 
(Math. Rev. 24(1962), A103). See also P. Erdos , On the 
representat ion of large integers as sums of distinct summands 
taken from a fixed set, Acta Arith. 7(1961/62), 345-354 
(Math. Rev. 26(1963), no. 2387). 

P 27. Prove that 

oo n 
S 2 d ' < o o , F = 2 + 1 

n = l d l F n 

n 
d > l 

P. Erdos 
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P a r t i a l s o l u t i o n by t h e p r o p o s e r . 

We o u t l i n e t h e p r o o f of 

(1) S = 2 c f 1 / 2 < c / n ; 

d | F 
1 n 

d > 1 

t h i s i s n o t s t r o n g e n o u g h t o s o l v e t h e o r i g i n a l p r o b l e m . 

(I p r o b a b l y m a d e a m i s t a k e i n e s t i m a t i n g (1) w h e n I p o s e d 

t h e p r o b l e m . ) If F = 0 ( m o d p) t h e n t h e e x p o n e n t of 2 m o d p 

n~{^^ n + 1 
i s 2 , a n d t h e r e f o r e p = l ( m o d 2 ). If t h e p r i m e f a c t o r s 
of F a r e q < q < . . . , t h e n a s t r a i g h t f o r w a r d a p p l i c a t i o n 

n 1 2 

of B r u n ' s m e t h o d g i v e s 

n + 1 
(2) q > C 2 i l o g i , 

- 1 / 2 
w h e n c e S < n (1+P ) 

l < 2 / n 

< e x p ( 2 p . " 1 / 2 ) < 2 S p ~ 1 / 2 

l i 
i < 2 / n i < 2 / n 

- ( n + l ) / 2 - 1 / 2 
< 2 . 2 S ( C , 1 l ° g 1) < c / n » 

i < 2 / n 

w h i c h i s ( 1 ) . I t i s e a s y t o s e e t h a t (1) i m p l i e s 

oo 

2) S d ( l o g l o g d) < oo 

n = l d | F 
n 

d > l 

f o r a l l € > 0 . 
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P 46. Given infinitely many points in the plane such that 

(a) the distance between any two of them is greater than 1, 

2 
(b) for infinitely many n, there are more than en 

points in the circle | z | f n . 

Show that for any € > 0 there is a line through the origin 
which comes closer than € to infinitely many of the points. 

P. Erdos 

Solution by the proposer . 

A simple argument shows that our second condition 
implies the existence of a sequence n < n < . . . , n -*• co, 

1 2 k 
so that the number of our points z. satisfying n < | z. | <n + — 

1 K. 1 iC ù 
is greater than e n (c is an absolute constant which depends 

I k 1 
only on c). 

Project the points z onto the circle jzl =n . Thus 
(k) l k 

we obtain the points w. , l < i < i . i > c n . Clearly, 
l — - k k— 1 k 

the distance between any two w. is at least y. Denote now 

by S (€ ) the set of those points on the circle |z j =n whose 
K K 

(k) * 
distance from at least one of the points w. is less than — . 

F i 2 
Clearly for € small enough S (c ) consists of i disjoint 
a rc s of length >€ . Thus the measure of S (̂€ ) is greater 
than c € n . Project finally S, (s ) onto the unit c i rc le . 

I k k 
This gives a set E. (e ) on the unit circle of measure > c € . 

k 1 
Therefore by a well known theorem in measure theory there is 
a point z, jz j = 1 which is contained in infinitely many E (e ). 

By our construction it is evident that the line connecting 
z with the origin comes closer than « to infinitely many of 
our points z,* 
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I would like to make three r e m a r k s . 

1. Since I can not give a reference to "the well known 
theorem" I give the proof. Put 

F (c ) = ( J E (c ) • 
i > k 

Clearly F , (€ ) C F (e ) and each F (c ) has measu re 

> c € . Since by a well known theorem of Lebesgue a descend

ing sequence of bounded sets of measure > a have a non-empty 

intersect ion, our theorem is proved. 

2. The theorem is best possible in the following sense: 
Let f(n) -*- oo as slowly as we wish. Then there is a set of 
points z any two of which have distance > 1, the number of 

k en2 

|z I < n is > TTT ^ o r every n, and never theless if L is any 1 k ' f(n) 
line then for every A there a re only a finite number of z1 s 
at distance < A from L. 

The construction is very simple. Let g(n)/n -> 0 but 
sufficiently slowly. Let the z1 s be the points (2u, 2v) where 

2u 
log 2u < 2v < . . 

g(2u) 

A simple argument shows that the z1 s have all the required 
p roper t i e s . 

3. I now prove that the assumption of P 46 implies that 
there is a line through the origin L so that for every € there 
a re infinitely many z. c loser than € to L. 

In view of the proof of P 46 it will suffice to show the 
following. 

LEMMA. Let n < n < . . . be an infinite sequence of 
(k) 

numbers tending to infinity. Let w , 1 < i < i , i > c n 
l — — k k — l k 

be a sequence of points on | z | =1 satisfying 

, (k) (k) , 1 
w. - w. > \ h 2nk 

310 

https://doi.org/10.1017/S0008439500027089 Published online by Cambridge University Press

https://doi.org/10.1017/S0008439500027089


Denote by S (k) the set of points on |z j =1 for which at least 

one w. satisfies |z-w. I < c / n (then m(S) denotes 
ii ' l k 

the Lebesgue measure of S): 

(1) m( ( J S€ (i ))> c . 
i > k 

To see this it will suffice to show that to every n > 0 there is 
a K = K(n) so that 

(2) m( ( J Sc (i )) > c - T, . 
k<i <K 

If (2) would be false put 

(3) lim m( ( J (S€ ( i ) ) = D < c 
K=oo k<i<K 

Then if K = K(-q) is large enough 

(4) m( ( J S6 (i ) > D - TI 
k<i<K 

The set S (i ) consists of a finite number of disjoint a rc s 
€ 

the sum of whose lengths is between D - r\ and D. Let now 
n be very large (compared to n of (4)). By assumption 

r K 
there are at least e n points w j r ' , and since n is large 

1 r l r 
compared to n a simple argument shows that there a re less 

K . . 
than Dn of the w in vj S (i ) . But then there a re 

* i k< i<K € 

at least (c , - D)n points w ( r ' not in U S (I ) and 
1 r l € 

k<i<K 
therefore the measure of those points in S (r) which is not 

contained in O S (i ) is greater than (c - D) € / 2 . 
k<i<K 

Thus by (4) 

m( U S€ (I )) > D - TI + (c - D)€ /2 > D 
k<i <r 
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if r| = T|(€ ) is sufficiently small . But this contradicts (3) and 
hence our Lemma is proved. 

I was led to P 46 by problem 93, p. 39 of the book of 
Hadwiger and Debrunner "Combinatorial Geometry of the Plane". 

P 74. Let f(n) denote the number of (associative) r ings 
with n e lements . Show that f is multiplicative, that i s , if the 
g . c . d . (m,n) = 1 , then f(mn) = f(m)f(n). Similarly if f enumerates 
the r ings with 1, the commutative r ings , or the commutative 
r ings with 1. 

I. G. Connell, McGill University 

Solution by H. Gonshor, Rutgers University. 

Let us first consider the case of Abelian groups. Then if 
G is a group of order m and H is a group of order n, G (ï) H 
is a group of order mn. Thus the direct sum operation maps 
pa i r s of groups of o rders m and n onto groups of order mn. 
Since m is pr ime to n it is c lear from the fundamental theorem 
for finite Abelian groups that this map is onto. Fu r the rmore if 
K = G © H whe re G is of order m and H is of order N then 
G is exactly the set of all elements of K whose order divides m. 
Thus K determines G and H uniquely, hence the mapping is 
one-one. This shows that f is mult ipl icative. 

The extension to var ious types of r ings is essential ly a 
corol lary . The direct sum operation maps pa i r s of r ings of 
o rde r s m and n into r ings of order mn. The one-oneness 
is a fort iori t rue (modulo logical quibling, i. e. one should think 
in t e r m s of the internal direct sum). To prove that the map is 
onto we consider a ring of order mn and express it as a direct 
sum of groups of order m and n. It suffices to show that the 
components a re ideals . Let K = G (J) H. By symmetry it is 
enough to show that G is a right ideal. This is t r iv ia l in view 
of the above character izat ion of G, for ma = 0=^m(ax) 
= (ma)x = 0. Thus a * G = > a x € G . 

Now in order to complete the solution to the problem as 
stated one need only r e m a r k that the proper t ies of commutativity, 
associat ivi ty, and possession of an identity a re p rese rved by 
taking direct sums and direct summands. (Incidentally this 
takes ca re of 8 possible cases ra ther than the 4 listed in the 
problem. ) 
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