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Abstract

We survey the current state of knowledge of bounds in the restricted Burnside problem. We make two
conjectures which are related to the theory of PI-algebras.
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1. Introduction

In 1902 William Burnside [7] wrote:

A still undecided point in the theory of discontinuous groups is whether the order
of a group may be not finite, while the order of every operation it contains is finite.

In modern terminology the most general form of this problem is:

Can a finitely generated group be infinite while every element of the group has finite
order?

Golod [8] answered this question in 1964 by constructing finitely generated infinite
p-groups. However Burnside was particularly interested in the question of whether
or not a finitely generated group of finite exponent can be infinite. We can state the
Burnside problem (as it has come to be known) in the following form. Let F,, be the
free group of rank m, and let B(m, n) = F,, /N, where N is the normal subgroup of
F,, generated by {g" | g € F,.}.
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For which values of m and n is B(m, n) finite?

The group B(m, n) is known as the m-generator Burnside group of exponent n. It
is easy to see that groups of exponent 2 are elementary Abelian, and so B(m, 2) is the
direct sum of m copies of the cyclic group of order 2. Burnside proved that B(m, 3)
is finite for all m, and also proved that B(2, 4) is finite. In 1940 Sanov [37] proved
that B(m, 4) is finite for all m, and in 1958 Hall [14] proved that B(m, 6) is finite
for all m. To date, no other Burnside groups (apart from the cyclic Burnside groups)
are known to be finite, although a great deal of work has been done in an attempt to
determine whether or not B(2, 5) is finite. In the other direction, Novikov and Adjan
[33-35] proved that B(m, n) is infinite if m > 1 and n is odd and n > 4381. Adjan
[2] improved this result and proved that B(m, n) is infinite if m > 1 and n is odd
and n > 665. Using a different, more geometrical method, Olshanskii has proved
that B(m, n) is infinite for m > 1 and n odd, n > 10%. Burnside groups of large
even exponent appear to be harder to deal with than groups of large odd exponent,
and this seems to be connected with the fact that the structure of the finite subgroups
of B(m, n) is more complicated when r is even. For large odd n the finite subgroups
of B(m, n) are cyclic, but Burnside groups of even exponent will always have finite
dihedral subgroups. However in 1994 Ivanov [20] proved that B(m, n) is infinite for
all m > 1, provided n > 2 and either n is odd or n is divisible by 2°. In 1996 .
Lysenok [26] improved this bound by proving that B(m, n) is infinite for all m > 1,
provided n > 8000.

Another variant of Burnside’s original question is the restricted Burnside problem,
which may be stated as follows.

Are there only finitely many finite m-generator groups of exponent n?

Equivalently, the question is whether there exists a universal finite m-generator
group R(m, n) of exponent n, such that every finite m-generator group of exponent
n is a homomorphic image of R(m, n). In view of the answers to the unrestricted
problem, it is perhaps surprising that the answer to the restricted Burnside problem
turns out to be ‘Yes’.

In 1956 Hall and Higman [15] proved the following reduction theorem. If n =
pf‘ pl.p % then (subject to certain assumptions about finite simple groups) a positive
solution of the restricted Burnside problem for exponent n follows from positive
solutions for each prime-power factor pf". The classification of finite simple groups
[9] implies that the assumptions made by Hall and Higman are valid. The restricted
Burnside problem for prime exponent was solved by Kostrikin in 1959 (see (21, 22]),
but it was a further 30 years before Zel’manov [45, 46] solved it for all prime-power
exponents p*. Zel’manov’s solution of the problem for exponent p*, together with
the Hall-Higman reduction and the classification of finite simple groups, implies that
for all positive integers m, n there exists a unique largest finite m-generator group
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R(m, n) of exponent n.

2. Bounds

Once we know that R(m, n) is finite it is natural ask what order it has. In general
this seems to be a very difficult problem, but there has been some success in obtaining
bounds on the order. For prime exponent p a primitive recursive upper bound for
the order of R(m, p) was found by Adjan and Razborov [3]. Their proof is based
on Kostrikin’s original solution of the restricted Burnside problem for exponent p.
Another bound of this type is given by Kostrikin in [23]. Both these bounds are
wowsers: that is they lie in the class Gr° of the Grzegorczyk hierarchy (see [1, 11]).
A toweric bound (that is a bound in Gr*) for the order of R(m, p) is given in [42],
where it is shown that

[R(m,p)l < m
3r
In the same article we proved that if G is a finite m-generator group (m > 1) of
prime-power exponent g, then

Gl < m™
S——
q9*
Using the Hall-Higman reduction and the classification of finite simple groups, we
were able to extend this result to general exponent in [43]. If G is a finite m-generator
group (m > 1) of exponent n, then

m

|Gl < m™ .
———
"
A slightly different way of expressing our result is: if G is a finite m-generator group
of exponent n, then
2’"

IG] < 2%,

with n"" twos in the tower.

Numbers of this magnitude are incomprehensibly large. Furthermore the formu-
lation of our results owes as much to our wish to find bounds which we could write
down as it does to the underlying mathematics. Nevertheless there is an elegant,
simple argument due to Mike Newman which shows that bounds of this sort may be
the best that can be hoped for. He observed that

o

IR(m, 25| > 2%,
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where there are k twos in the tower. To see this let F be the free group of rank m, and
consider the series

F=F>F >F>---,

where F;;; = (F;)> fori = 0,1,.... For each i the quotient group F;/F;,; is
elementary Abelian, and so F/F, is an m-generator group of exponent 2*. We obtain
Newman's lower bound for the order of R(m, 2*) by showing that

2m

|F/F > 2%

First note that | F/ F|| = 2", which establishes the lower bound for £ = 1. Suppose

by induction that | F/ F,_,| has order n > 2% (with k — 1 2’s in the tower). Then by
Schreier’s formula Fy_, is a free subgroup of F of rank 1 + (m — 1)n, which implies
that F,_,/F, has order 2!*"=b" > 2" Hence |F/F,| > 2", as required. This should
be compared with the recent striking result of Gowers [10], who showed that some
classical Ramsey theorems have elementary functions (that is functions in Gr?) as
bounds.

Mike Newman conjectures that for all n there are polynomials f, g such that

2/ 2 8tm)
2 <|R(m,m)| <2*
—— ——

k k

where k = [log, n]. This would imply that the arithmetic nature of n has little bearing
on the size of R(m, n). An alternative conjecture might be on similar lines, but with
the height of the tower being related to the number of prime divisors of ».

In particular, groups of prime exponent seem to be more amenable than groups of
general exponent. Their associated Lie rings are (p — 1)-Engel Lie algebras over Z,,,
and it has been conjectured (Conjecture A) that if L is a (p — 1)-Engel Lie algebra
over a field of characteristic p, then an arbitrary element a € L generates a nilpotent
ideal. If Conjecture A is true then there is an integer N = N (p) such that an arbitrary
element @ € L generates an ideal which is nilpotent of class at most N. This would
imply that the free m-generator (p — 1)-Engel Lie algebra over Z, has class at most
mN . It would follow from this that R(m, p) has class at most mN and order at most
p™" . Conjecture A was proved correct for p = 5 by Higman [19]. Havas, Newman
and Vaughan-Lee [16] showed that it is possible to take N = 6 in Higman'’s theorem.

A slightly weaker conjecture (Conjecture B) is that for each prime p there exist

integers r and N (depending on p) such that if a,, a,, . .. , a, are arbitrary elements
ofa {p — 1)-Engel Lie algebra L over a field of characteristic p then the Lie product
[a;, @, ..., a]) generates anideal of L which is nilpotent of class at most N. Vaughan-

Lee [41] showed that this holds for p = 7, with r = 8. If Conjecture B holds true for
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a prime p, then there is a polynomial function f (depending on p) such that R(m, p)
has class at most f (m).

On the other hand, Mike Newman’s lower bound for the order of R(m, 8) shows
that its class cannot be bounded by a polynomial in m. So the associated Lie rings of
groups of exponent 8 cannot satisfy a condition of this sort.

Conjecture A and Conjecture B are related to the theory of Pl-algebras. For a Lie
algebra L over a field F let R(L) be the subalgebra of Endp(L) generated by the
adjoint operators ad(a) (a € L), where if x € L then xad(a) = [x, a]. A Lie algebra
L is said to be SPI if the algebra R(L) satisfies a polynomial identity, that is if R(L)
is a Pl-algebra.

PROPOSITION 1. If Conjecture A holds true for the prime p, then (p — 1)-Engel Lie
algebra over fields of characteristic p are SPL. And if (p — 1)-Engel Lie algebras over
fields of characteristic p are SPI then Conjecture B holds true for p.

PROOF. The proof of the first part of this proposition is based on an idea of Latyshev
[24]. Let L be the free (p — 1)-Engel Lie algebra of countably infinite rank over a
field F of characteristic p, with free generators x,, x5, .... Kostrikin showed that
the algebra R(L) is spanned by elements of the form ad(a,)ad(a,) - - - ad(a,), where
a,a,...,a € L,andwhere 1 < r < p — 1. His argument also shows that R(L)?~}
is spanned by elements of the form ad(a;)ad(a;) ---ad(a,-;). Fori =1,2,... we
let

w; = ad(x(p—l)(i—l)+1)ad(x(p—l)(i——l)+2) te ad(x(p-l)i)~

To prove that L is SPI we need to find a number m and coefficients o, € F foro € §,,
(with not all @, = 0) such that

§ Ay Wig Wy * * * Wme = 0.

€S,

In other words, we have to find m > 1 such that the m! elements w, - - - w,,, are
linearly dependent. Note that all the elements w, - - - Wy, lie in the subspace V,,(,—;)
of R(L) spanned by {ad(x1,)ad(xy) - - ad(Xmp-10) | & € Smp-1}-

If we assume that Conjecture A holds true, then there is an integer N such that if a
is any element of L, then the ideal of R(L) generated by ad(a) is nilpotent of class at
most N. In other words, if vy, vy, ... , vy are any elements of R(L), then

voad(a)viad(a)v, - - - vy_1ad(@)vy = 0.

(Note that this identity also holds true if some of the v; are omitted.) Linearizing we
obtain

Y wad(ais)viad(ay)v; - - vy-1ad(ans)vn =0,

oSy
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or equivalently
(1) voad(a))vy - - -ad(an)vy = — Z voad(ais)v; - - - ad(ans)vn.

1#0 €Sy
(Once again, this identity holds true if some of the v; are omitted.) Now let k > N
andleto € S;. Letl < i, < i, < --- < iy < k, and consider the subsequence
(io, (o, ..., (iy)o of 1o, 20, . .. , ko. This subsequence is called an N-disorder

if (iy)o > (L)o > --- > (iy)o. We let V; be the subspace of R(L) spanned
by the products ad(x;,)ad(x3) - - - ad(xy,) (0 € S;). Equation (1) implies that if
the sequence 1o, 20, ... , ko contains a subsequence which is an N-disorder, then
ad(x,;)ad(xy,) - - - ad(x,) can be expressed as a linear combination of elements
ad(x,;)ad(x,.) - - - ad(x;,) such that the sequence 17, 27, ... , kt is lexicographically
earlier than the sequence 10, 20, ... , ko. It follows that V; is spanned by elements
ad(x,) - - - ad(xy, ) where 1o, 20, ... , ko does not contain an N-disorder. Now by
Lemma 1 in [5, p. 176], the number of permutations ¢ € §; such that 1o, 20, ... , ko
does not contain an N-disorder is at most (N — 1)2*. So dims(V;) < (N — 1)*, and
dimp(V,p-yy) < (N—1)2"¢-D_ For m sufficiently large we have (N — 1)2me-D < ml,
and so L is SPL "
The second part of the proposition follows from a result of Amitsur. He proved that
if A is an associative, locally nilpotent algebra which satisfies a polynomial identity
of degree d, then an arbitrary product of |d?/4] elements of A generates a nilpotent
ideal. This implies our assertion. (From Kostrikin’s solution of the restricted Burnside
problem for prime exponent we know that if L is a (p — 1)-Engel Lie algebra over a
field of characteristic p, then L and R(L) are locally nilpotent.) d

The question of whether or not the class of R(m, p) can be bounded by a polynomial
in m relates to Problem 4 of Hanna Neumann’s book [29]: Does there exist an integer
d = d(p) such that a group of exponent p is locally finite provided all its d-generator
subgroups are finite?

To see this connection let w, = [x,, x;, x;], and for m > 2 inductively define
Wy = [Xp, Wny, Wn_y]. Then w, involves m variables, but the weight of w,, is
2™ — 1. So if the class of R(m, p) is bounded by a polynomial in m, then there is
some integer d such that w, = 1 is an identical relation in R(d, p). This implies that
wy = 1 is an identical relation in any locally finite group of exponent p. On the other
hand, let G be a group of exponent p satisfying the identical relation w,; = 1. Then
any value of w,_; in G commutes with all its conjugates, and so lies in an Abelian
normal subgroup of G. Thus the values of w,_; lie in the Hirsch-Plotkin radical of G.
(The Hirsch-Plotkin radical is the unique maximal locally nilpotent normal subgroup.)
Since G has exponent p the Hirsch-Plotkin radical of G is locally finite, and an easy
induction shows that G is locally finite. Thus a group of exponent p is locally finite if
and only if it satisfies the identity w,; = 1. So the assumption that the class of R(m, p)
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can be bounded by a polynomial in m implies the existence of an integer d with the
property that a group of exponent p is locally finite if and only if its d-generator
subgroups are finite.

Although it remains an open question whether the class of R(m, p) can always
be bounded by a polynomial in m, there is a theorem of Zel’manov {47] which also
implies the existence of such an integer d. For a group G we let N, (G) be the product
of all the Abelian normal subgroups of G, and for i > 1 we inductively define N;,,(G)
to be the subgroup of G such that

Ni11(G)/Ni(G) = Ni(G/Ni(G)).

Zel’manov proves that for any prime p there is an integer s = s(p) such thatif Gis a
locally finite group of exponent p then G = N,(G). This result also implies a positive
solution to Hanna Neumann’s problem.

Another area of interest is in obtaining bounds for the derived length of R(m, p*).
The most significant results in this area follow from work of Bachmuth, Mochizuki
and Walkup and of Razmyslov. Bachmuth, Mochizuki and Walkup [4] showed that
there are insoluble locally finite groups of exponent 5, and Razmyslov [36] extended
this result to all prime-power exponents p* > 4. (Groups of exponent 2 are Abelian,’
and groups of exponent 3 are nilpotent of class 2 and hence metabelian.) The proofs
of these results imply that if p* > 4, then the derived length of R(m, p*) is greater
than [log, m].

3. Small exponent

For n < 7 we have the following bounds for the order of R(m, n). (Groups of expo-
nent 2, 3, 4, and 6 are locally finite so R(m, n) = B(m, n) for these exponents.)
(1) |B(m,2)| =27 '
(2) |1B(m,3)| = 3"+(D+() (Levi and van der Waerden [25]);
(3) |B(m,4)| = 2* where %4’" <k < %(4 + 2+4/2)™ (Mann [28));
4) |[R(m,5)| < 5m*" (Havas, Newman and Vaughan-Lee [16]);
(5) |B(m,6)] =2¢-37@*C) wherea = 14 (m—1)3"D+5) b =1 + (m — 1)2"
(Hali [14]);
6) IR(m, )| =7

Sim

" (Vaughan-Lee [41]).

4. Use of computers

One of Mike Newman’s major interests over the last 25 years has been in using
computers to investigate Burnside groups. The main computational tools that have
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been used for this are the p-quotient algorithm and the nilpotent quotient algorithm for
graded Lie rings. These have been used to obtain detailed information about groups
of exponent 4, 5, 7, §, and 9.

If G is a group of prime-power order p”, then G can be described using a
power-commutator presentation (PCP). This is a presentation on a generating set

{ai, @, ..., a,} with n power relations
p a(i,i+1) a(i,i+2) a(in)
a; =4y 2 4,

with) < (i, k) <pforl <i <k <n,and (;) commutator relations

(4, 4] = a?j‘;f'i+"afj;f'i+2’ g

with 0 < «(i,j, k) < pforl < j < i < k < n. These presentations have been
of central importance in allowing effective computation with finite p-groups (see
Sims [38]). The p-quotient algorithm can be used to compute power-commutator
presentations.

The first p-quotient algorithm was described by Macdonald [27]. The version
of the algorithm in common use today is based on the ‘Canberra nilpotent quotient
algorithm’ originally developed by Havas and Newman (see [17]). Over the years this
algorithm has been improved and extended in a number of ways—for a description of |
some of these improvements see Newman and O’Brien [30].

In principle, the p-quotient algorithm can be used to compute a PCP for R(m, q)
for any number of generators m and any prime-power exponent ¢, but in practice we
are limited to small values of m and ¢. Once a PCP has been computed for R(m, q),
then the order and nilpotency class can be read off from the presentation, and other
useful information can be readily obtained.

The first major successes of the p-quotient algorithm were the computations of
PCPs for R(2, 5) (Havas, Wall and Wamsley [18]) and for B(3, 4) (Bayes, Kautsky and
Wamsley [6]). Mike Newman computed a PCP for B(4, 4) in 1989, and Newman and
O’Brien [30] have computed PCPs for B(5, 4) and R(3, 5). However, the computation
of PCPs for B(6, 4), R(4, 5), and R(2, 7) are daunting tasks because of the size of the
presentations involved and the CPU-time required. A PCP for the class 21 quotient of
R(2, 7) has been computed by Newman, O’Brien and Vaughan-Lee. This quotient has
order 77! Further computations in R(2, 7) are in progress, but are taking months
of CPU-time on a computer with over a gigabyte of RAM,

The detailed information about groups of exponent 4 and 5 obtained from these
PCPs has been used to obtain quite general ‘theoretical’ results. For example Gupta
and Newman [13] together with Razmyslov [36] showed that B(m, 4) has class 3m —2
for m > 2, and Vaughan-Lee [40] showed that if m > 2 then B(m, 4) has derived
length k where 2! < 3m —2 < 2*. Mann [28] used information from these PCPs to
obtain his bounds on the order of B(m, 4).
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Information about groups of exponent 7, 8, and 9 has been obtained by computing
certain quotients of R(2,7), R(2, 8), and R(2,9). For example Grunewald, Havas,
Mennicke and Newman [12] showed that if B(2, 8) has free generators a, b, then
the subgroup M generated by (a*b*)?, b* is finite. Newman [31] used a PCP for the
class 14 quotient of B(2, 8) to show that M has class at least 4 and order at least 2.
This contrasts with Ivanov’s solution of the Burnside problem for all sufficiently large
exponents [20], in which he shows that if k > 48 then the finite subgroups of B(m, 2¥)
have class at most k.

Another important tool (especially for groups of exponent 5 and 7) has been the
nilpotent quotient algorithm for graded Lie rings (see Havas, Newman and Vaughan-
Lee [16]). It is known that the associated Lie rings of groups of prime exponent p
satisfy the (p — 1)-Engel identity [x, y,y,...,y] = 0. These Lie rings also have
characteristic p, and so can be viewed as Lie algebras over Z,. It follows that the
associated Lie ring of R(m, p) is a homomorphic image of E(m, p), the free m-
generator (p — 1)-Engel Lie algebra over Z,. Since R(m, p) has the same order and
same nilpotency class as its associated Lie ring, the order and class of E (m, p) provide
upper bounds for the order and class of R(m, p). Kostrikin used hand calculation
to show that E(2, 5) has order at most 5* and class at most 12, providing upper
bounds for the order and class of R(2,5). Havas, Wall and Wamsley [18] used the
nilpotent quotient algorithm for graded Lie rings to compute E (2, 5), and showed that
Kostrikin’s bounds were sharp. They also used a theorem of Wall [44] to show that
E(2,5) is the associated Lie ring of R(2, 5), providing a proof that R(2, 5) has order
5% which is independent of their calculations with the p-quotient algorithm. The Lie
algebras E(3, 5) and E(2, 7) have also been computed (see [16, 32]).

The associated Lie rings of groups of exponent p are known to satisfy a sequence of
multilinear identities K, = Oforn > p. (See [40, Theorem 2.4.7 and Theorem 2.5.1].
The (p —1)-Engel identity is equivalent to the multilinear identity K, = 0.) We denote
the (relatively) free m-generator Lie algebra over Z,, satisfying all these identities by
W(m, p). Thus L(m, p), the associated Lie ring of R(m, p), is a homomorphic image
of W(m, p) which in turn is a homomorphic image of E(m, p). The nilpotent quotient
algorithm for graded Lie rings has been used to compute W(3,5) and W(2,7) (see
[16,32]). They have orders 52282 and 7**!® and classes 17 and 29 respectively. It
turns out that L(m,5) = W(m,5) for m = 2,3 (see [39]), and it seems likely that
L(2,7) = W(2,7). But it remains an open question whether L(m, p) = W(m, p) in
every case.

As with the p-quotient algorithm, the nilpotent quotient algorithm for graded Lie
rings has been used to obtain more general results. Havas, Newman and Vaughan-Lee
[16] proved that R(m, 5) has nilpotency class at most 6m, and hence that it has order
at most 5. And Vaughan-Lee [41] proved that R(m, 7) has class at most 51m?®. It
follows from this that R(m, 7) has order at most 7" .

https://doi.org/10.1017/5144678870000121X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000121X

270

{1]
f2]

(3]
(4]

£5]
t6]

{7
(8]
{9
[10]
[11]
(12]

[13]

{14]
[15]

[16]
{17]
[18]

(19]
{20]

f21]
[22]
(23]
{24]
{25]
[26]

27

{28]

Michael Vaughan-Lee and E. 1. Zel’manov [10]

References

W. Ackermann, ‘Zum Hilbertschen Aufbau der reellen Zahlen’, Math. Ann. 99 (1928), 118-133.
S. 1. Adjan, The Burnside problem and identities in groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete 95 (Springer, Berlin, 1979).

S.1. Adjan and A. A. Razborov, ‘Periodic groups and Lie algebras’, Uspekhi Mat. Nauk 42 (1987),
3-68.

S. Bachmuth, H. Y. Mochizuki and D. Walkup, ‘A nonsolvable group of exponent 5°, Bull. Amer.
Math. Soc. 76 (1970), 638-640.

Yu. A. Bahturin, Identical relations in Lie algebras (VNU Science Press BV, 1987).

A.J. Bayes, ]. Kautsky and J. W. Wamsley, Computation in nilpotent groups (application), Lecture
Notes in Math. 372 (Springer, Berlin, 1974) pp. 82-89.

W. Burnside, ‘On an unsettled question in the theory of discontinuous groups’, Quart. J. Pure
Appl. Math. 33 (1903), 230-238.

E. S. Golod, ‘On nil-algebras and residually finite p-groups’, Izv. Akad. Nauk SSSR, Ser. Mat. 28
(1964), 273-276.

D. Gorenstein, Finite simple groups (Plenum Press, New York, 1982).

W. T. Gowers, personal communication.

R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory, Ser. in Discrete Math. (Wiley-
Interscience, New York, 1990).

F.J. Grunewald, G. Havas, J. L. Mennicke and M. F. Newman, Groups of exponent eight, Lecture
Notes in Math. 806 (Springer, Berlin, 1981) pp. 49-188.

N. D. Gupta and M.F. Newman, The nilpotency class of finitely generated groups of exponent four,
Lecture Notes in Math. 372 (Springer, Berlin, 1974) pp. 330-332. '
M. Hall, ‘Solution of the Burnside problem for exponent six’, lllinois J. Math. 2 (1958), 764-786.
P. Hall and G. Higman, ‘On the p-length of p -soluble groups and reduction theorems for Burnside’s
problem’, Proc. London Math. Soc. 6 (1956), 1-42.

G. Havas, M. F. Newman and M. R. Vaughan-Lee, ‘A nilpotent quotient algorithm for graded Lie
rings’, J. Symbolic Computation 9 (1990), 653—664.

G. Havas and M. F. Newman, Applications of computers to questions like those of Burnside, Lecture
Notes in Math. 806 (Springer, Berlin, 1980) pp. 211-230.

G. Havas, G. E. Wall and J. W. Wamsley, ‘The two generator restricted Burnside group of exponent
five’, Bull. Austral. Math. Soc. 10 (1974), 459-470.

G. Higman, ‘On finite groups of exponent five’, Proc. Camb. Phil. Soc. 52 (1956), 381-390.

S. V. Ivanov, ‘The free Burnside groups of sufficiently large exponent’, Internat. J. Algebra and
Comput. 4 (1994), 1-308.

A. L. Kostrikin, ‘The Burnside problem’, Izv. Akad. Nauk SSSR, Ser. Mat. 23 (1959), 3-34.

, ‘Sandwiches in Lie algebras’, Mat. Sb. 110 (1979), 3-12.

, Around Burnside, Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin,
1990).
V. N. Latyshev, ‘V. N. Regev’s theorem on identities of tensor products of Pl-algebras’, Uspekhi

Mat. Nauk 27 (1972), 213-214.

F. Levi and B. L. Van der Waerden, ‘Uber eine besondere Klasse von Gruppen’, Abh. Math. Sem.
Univ. Hamburg 9 (1933), 154-158.

I. G. Lysenok, ‘Infinite Burnside groups of even period’, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996),
3-224.

I. D. Macdonald, ‘A computer application to finite p-groups’, J. Austral. Math. Soc. Ser. A 17
(1974), 102-112.

A.J. Mann, ‘On the orders of groups of exponent four’, J. London Math. Soc. 26 (1982), 64-76.

https://doi.org/10.1017/5144678870000121X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000121X

{11]
(29]
{30

[31]
[32]

(33]
[34]
[35]
[36]
[37]
[38]
[39]

(40]
f41]

{42]
[43]
[44]
{45]
f46]

(47

Bounds in the restricted Burnside problem 271

H. Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 37 (Springer,
Berlin, 1967).

M. F. Newman and E. A. O'Brien, ‘Applications of computers to questions like those of Burnside,
I, Internat. J. Algebra and Comput. 6 (1996), 593-605.

M. F. Newman, ‘Groups of exponent 8 are different’, Bull. London Math. Soc. 25 (1993), 263-264.
M. F. Newman and M. Vaughan-Lee, ‘Some Lie rings associated with Burnside groups’, ERA
Amer. Math. Soc. 4 (1998), 1-3.

P. S. Novikov and S. 1. Adjan, ‘Infinite periodic groups I', Izv. Akad. Nauk SSSR, Ser. Mar. 32
(1968), 212-244.

, ‘Infinite periodic groups II’, Izv. Akad. Nauk SSSR, Ser. Mar. 32 (1968), 251-524.

, ‘Infinite periodic groups III’, Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), 709-731.

Ju. P. Razmyslov, ‘On a problem of Hall-Higman’, Izv. Akad. Nauk SSSR, Ser. Mat. 42 (1978),
833-847.

I. N. Sanov, ‘Solution of Burnside’s problem for exponent four’, Leningrad State Univ. Ann. Math.
Ser. 10 (1940), 166-170.

C. C. Sims, Computation with finitely presented groups (Cambridge University Press, Cambridge,
1994).

M. R. Vaughan-Lee, ‘Lie rings of groups of prime exponent’, J. Austral. Math. Soc. Ser. A 49
(1990), 386-398.

———, The restricted Burnside problem, second edition (Oxford University Press, Oxford, 1993).
———, ‘The nilpotency class of finite groups of exponent p’, Trans. Amer. Math. Soc. 346 (1994),
617-640. :
M. R. Vaughan-Lee and E. 1. Zel’'manov, ‘Upper bounds in the restricted Burnside problem’, J.
Algebra 162 (1993), 107-145.

, ‘Upper bounds in the restricted Burnside problem II’, Internat. J. Algebra and Comput. 6
(1996), 735-744.

G. E. Wall, ‘On the Lie ring of a group of prime exponent II’, Bull. Austral. Math. Soc. 19 (1978),
11-28.

E. I. Zel’manov, ‘The solution of the restricted Burnside problem for groups of odd exponent’, Izv.
Math. USSR 36 (1991), 41-60.

, ‘The solution of the restricted Burnside problem for 2-groups’, Mar. Sb. 182 (1991),
568-592.

, ‘On additional laws in the Burnside problem on periodic groups’, Internat. J. Algebra and
Comput. 3 (1993), 583-609.

Christ Church Department of Mathematics
Oxford, OX1 1DP PO Box 208283
England 10 Hillhouse Avenue
URL.: http://users.ox.ac.uk/"vlee/ New Haven CT 06520-8283
e-mail: vlee@maths.ox.ac.uk USA

e-mail: zelmanov@pascal.math.yale.edu

https://doi.org/10.1017/5144678870000121X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000121X

