k-FOLD SYMMETRIC STARLIKE LMIVALENT FUNCTIONS

V. V. ANH

This paper establishes the radius of convexity, distortion and covering theorems for the class
$S_{k}^{*}(A, B)=\left\{f(z)=z+a_{k+1} z^{k+1}+a_{2 k+1} z^{2 k+1}+\ldots ; \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(A, B)\right\}$,
where

$$
\begin{aligned}
& P_{k}(A, B)=\left\{p(z)=1+p_{k} z^{k}+p_{2 k} z^{2 k}+\ldots ; p(z)=\frac{1+A w(z)}{1+B w(z)}\right\} \\
& -1 \leqslant B<A \leqslant 1, w(O)=0,|w(z)|<1 \text { in the unit disc. } \\
& \text { Coefficient bounds for functions in } S_{k}^{*}(A, B) \text { are also derived. }
\end{aligned}
$$

1. Introduction

Let B be the class of functions $w(z)$ regular in the unit disc $\Delta=\{z ;|z|<1\}$ and satisfying the conditions $w(O)=0,|w(z)|<1$ for $z \in \Delta$. We denote by $P(A, B),-1 \leqslant B<A \leqslant 1$, the class of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ defined by

$$
p(z)=\frac{1+A w(z)}{1+B w(z)}, w(z) \in B, z \in \Delta .
$$

The definition of $P(A, B)$ is suggested by the classical result (see Nehari [10,p. 169]) that any regular function $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$

```
Received 11 April 1985.
```

[^0]such that $\operatorname{Re}\{p(z)\}>0$ in Δ can be written in the form
$$
p(z)=\frac{1+w(z)}{1-w(z)}, w(z) \in B
$$

As is well-known, a necessary and sufficient condition for a function $f(z)=z+a_{2} z^{2}+\ldots$ to be univalent starlike in Δ is

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in \Delta .
$$

This condition suggests that starlike functions may be defined in terms of functions of positive real part in the unit disc. In fact, Janowski [6] defined a general class of starlike functions as

$$
S^{*}(A, B)=\left\{f(z)=z+a_{2} z^{2}+\ldots ; \frac{z f^{\prime}(z)}{f(z)} \in P(A, B)\right\}, z \in \Delta
$$

The following special cases of $S^{*}(A, B)$ are of interest:

$$
\begin{aligned}
& S^{*}(1-2 \alpha,-1)=\left\{f(z)=z+a_{2} z^{2}+\ldots ; \operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha, 0 \leqslant \alpha<1\right\} \\
& S^{*}(1,1 / M-1)=\left\{f(z)=z+a_{2} z^{2}+\ldots ;\left|z f^{\prime}(z) / f(z)-M\right|<M, M>\frac{1}{2}\right\} \\
& S^{*}(\alpha, 0)=\left\{f(z)=z+a_{2} z^{2}+\ldots ;\left|z f^{\prime}(z) / f(z)-1\right|<\alpha, 0<\alpha \leqslant 1\right\} \\
& S^{*}(\alpha,-\alpha)=\left\{f(z)=z+a_{2} z^{2}+\ldots ;\left|z f^{\prime}(z) / f(z)-1\right| /\left|z f^{\prime}(z) / f(z)+1\right|<\alpha, 0 \leqslant \alpha<1\right\}
\end{aligned}
$$

Several results on these subclasses of starlike functions may be found in Robertson [13], Janowski [5], McCarty [8] and Padmanabhan [12] respectively. It is seen that a study of $S^{*}(A, B)$ leads to unified results of properties of various subclasses of starlike functions.

In this paper, we pay attention to the class $S_{k}^{*}(A, B)$ of functions in $S^{*}(A, B)$ with k-fold symmetric expansion:

$$
S_{k}^{*}(A, B)=\left\{f(z)=z+a_{k+1} z^{k+1}+a_{2 k+1} z^{2 k+1}+\ldots ; \frac{z f^{\prime}(z)}{f(z)} \in P_{k}(A, B)\right\}
$$

where

$$
\begin{gathered}
P_{k}(A, B)=\left\{p(z)=1+p_{k} z^{k}+p_{2 k} z^{2 k}+\ldots \in P(A, B), k=1,2,3, \ldots\right\} \\
\text { The functions } f \in S_{k}^{*}(A, B) \text { are the } k \text {-th root transforms } \\
f(z)=\left[g\left(z^{k}\right)\right] 1 / k
\end{gathered}
$$

of functions $g \in S^{*}(A, B)$. In particular, the square-root transformation of $S^{*}(A, B)$ yields the class of odd functions in $S_{2}^{*}(A, B)$.

The study of k-fold symmetric starlike functions was initiated in the early 1930's with the work of Golusin [4], Robertson [13] and Noshiro [11], each of whom established coefficient bounds for these functions. Noshiro [11] investigated in detail geometric properties, including bounds for $|f(z)|,\left|f^{\prime}(z)\right|$, of the class $S_{k}^{*} \equiv S_{k}^{*}(1,-1)$.

This paper will establish distortion and covering theorems and the radius of convexity for $S_{k}^{*}(A, B)$. Coefficient bounds for functions in $S_{k}^{*}(A, B)$ are also derived. The results are sharp and extend the previously known results for starlike functions, particularly those of the classes listed above.

$$
\text { 2. Extremal Problems over } P_{k}(A, B)
$$

By definition the radius of convexity of $S_{k}^{*}(A, B)$ is the smallest root in $(0,1]$ of the equation $\Omega(r)=0$, where

$$
\Omega(r)=\min \left\{\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} ;|z|=r<1, f \in S_{k}^{*}(A, B)\right\}
$$

From the definition of $S_{k}^{*}(A, B)$, we derive that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)}, p(z) \in P_{k}(A, B)
$$

Thus, the radius of convexity of $S_{k}^{*}(A, B)$ is obtained if we can determine the value of

$$
\begin{equation*}
\min _{|z|=r<1}^{\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\}} \tag{2.1}
\end{equation*}
$$

over $P_{k}(A, B)$.
larious methods have been developed to deal with extremal problems of the form (2.1), or more generally

$$
|z|=r<1 \quad \operatorname{Re}\left\{F\left(p(z), z p^{\prime}(z)\right)\right\}
$$

over $P \equiv P(1,-1)$. Based upon a variational formula for functions in P, Robertson [14] proved

THEOREM 2.1. [14] Let $F(u, v)$ be regular in the $v-p l a n e$ and in the half-plane Re $u>0$; then for every $r, 0<r<1$, the value of

$$
\min _{p(z) \in P} \min _{|z|=r}^{\operatorname{Re}\left\{F\left(p(z), z p^{\prime}(z)\right)\right\}}
$$

occurs on ly for a function of the form

$$
\begin{equation*}
p(z)=\frac{1+\alpha}{2} \frac{1+z e^{i \theta}}{1-z e^{i \theta}}+\frac{1-\alpha}{2} \frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}, \tag{2.2}
\end{equation*}
$$

where $-1 \leqslant \alpha \leqslant 1, \quad 0 \leqslant \theta \leqslant 2 \pi$.
Thus, to solve an extremal problem such as (2.1) over P, we only have to substitute into (2.1) the function $p(z)$ defined by (2.2) and to find the minimum of the resulting function of three variables. However, this is precisely where the remaining difficulties lie (see Robertson [15, Theorem 3] and Libera [7, Theorem 1]). Zmorovic [18] developed a useful result to overcome these difficulties. This is described in the following theorem.

THEOREM 2.2. [18] Let $p(z)$ be as given by (2.2); then $z p^{\prime}(z)$ can be written in the form

$$
\begin{equation*}
z p^{\prime}(z)=\frac{1}{2}\left(p(z)^{2}-1\right)+\frac{1}{2}\left(\rho^{2}-\rho_{0}^{2}\right) e^{2 i \psi} \tag{2.3}
\end{equation*}
$$

where $\left(1+\epsilon_{k} z\right) /\left(1-\epsilon_{k} z\right)=a+\rho e^{i \psi_{k}}, k=1,2, \epsilon_{1}=e^{i \theta}, \epsilon_{2}=e^{-i \theta}, p(z)=a+\rho_{0} e^{i \psi_{0}}$, $0 \leqslant \rho_{0} \leqslant \rho, a=\left(1+r^{2}\right) /\left(1-r^{2}\right), \rho=2 r /\left(1-r^{2}\right), e^{i \psi}=e^{i\left(\psi_{1}+\psi_{2}\right) / 2}$.

If we put $F(u, v)=M(u)+N(u) \cdot v$, where $M(u), N(u)$ are regular in the half - plane Re $u>0, u=p(z), v=z p \prime(z)$ as given by (2.2), then it follows from (2.3) that
(2.4) $\min \operatorname{Re}\{F(u, v)\}=\operatorname{Re}\left\{M(u)+\frac{1}{2}\left(u^{2}-1\right) N(u)\right\}-\frac{1}{2}|N(u)|\left(\rho^{2}-\rho_{0}^{2}\right)$.

In view of Robertson's Theorem 2.1 and equation (2.4), problem (2.1) is reduced to finding the minimum of a function of u in the disc $|u-a| \leqslant \rho$. This is a significant simplification. Employing this technique, zmorovic [18] found the radius of convexity for $S^{*}(1-2 \alpha,-1)$.

For the general class $P(A, B)$, it can be shown that $q(z)$ is in $P(A, B)$ if and only if

$$
\begin{equation*}
q(z)=\frac{(1+A) p(z)+1-A}{(1+B) p(z)+1-B} \tag{2.5}
\end{equation*}
$$

for some $p(z) \in P$. Robertson's result then implies that the functions which minimise the functional $\operatorname{Re}\left\{F\left(p(z), z p^{\prime}(z)\right)\right\}$ over $P(A, B)$ must be of the form (2.5) where $p(z)$ is now given by (2.2). Ising this result, Janowski [6] extended Zmorovic's technique and solved the problems $\min \operatorname{Re}\left\{p(z)+z p^{\prime}(z) / p(z)\right\}$ and $\min \operatorname{Re}\left\{z p^{\prime}(z) / p(z)\right\}$ over $P(A, B)$. The analysis is, however, lengthy and extremely complicated.

For k-fold symmetric functions, Zawadzki [17] extended Robertson Zmorovic's techniques and derived the radius of convexity for the class $S_{k}^{*}(\alpha, 0)$. Again, the development is rather involved.

In this paper, we employ classical tools to solve the following more general problem:
(2.6) $\quad \min _{p(z) \in P_{k}(A, B)}|z|=r<1 \operatorname{me}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right\}, \alpha \geqslant 0, \beta \geqslant 0$.

The results by Zmorovic [18], Janowski [6], Zawadzki [17] are several special cases of (2.6).

Let B_{k} denote the class of functions $w(z)$ in B with the expansion

$$
w(z)=b_{k} z^{k}+b_{2 k} z^{2 k}+\ldots
$$

Then, for every $p(z) \in P_{k}(A, B)$, we have that

$$
\begin{equation*}
p(z)=H(w(z)), z \in \Delta \tag{2.7}
\end{equation*}
$$

for some $w(z) \epsilon B_{k}$, where $H(z)=(1+A z) /(1+B z)$. Consequently, an application of the Subordination Principle (see Duren [3, p. 190-191]) yields that the image of $|z| \leqslant r$ under every $p(z) \in P_{k}(A, B)$ is contained in the disc

$$
\begin{equation*}
\left|p(z)-a_{k}\right| \leqslant d_{k}, a_{k}=\frac{1-A B r^{2 k}}{1-B_{r}^{2} r^{2 k}}, d_{k}=\frac{(A-B) r^{k}}{1-B^{2} r^{2 k}} \tag{2.8}
\end{equation*}
$$

It follows immediately from (2.8) that if $p(z) \epsilon P_{k}(A, B)$, then on
$|z|=r<1$,

$$
\begin{equation*}
\frac{1-A r^{k}}{1-B r^{k}} \leqslant \operatorname{Re}\{p(z)\} \leqslant|p(z)| \leqslant \frac{1+A r^{k}}{1-B r^{k}} . \tag{2.9}
\end{equation*}
$$

The inequalities are sharp for the function

$$
\begin{equation*}
p_{0}(z)=\frac{1+A z^{k}}{1+B z^{k}} \tag{2.10}
\end{equation*}
$$

For the solution of (2.6), we require the following lemma.
LEMMA 2.3. If $w(z) \in B_{\mathcal{K}}$, then for $z \in \Delta$,
(2.11)

$$
\left|z w^{\prime}(z)-k w(z)\right| \leqslant \frac{k\left(|z|^{2 k}-|w(z)|^{2}\right)}{1-|z|^{2 k}}
$$

Proof. In view of the general Schwarz lemma, we have for $w(z) \in B_{k}$ that $|w(z)| \leqslant|z|^{k}$. Therefore, we may write

$$
w(z)=z^{k} \psi\left(z^{k}\right), z \in \Delta,
$$

where $\psi(z)$ is regular and $|\psi(z)| \leqslant 1$ in Δ. An application of Caratheodory's inequality

$$
\left|\psi^{\prime}(z)\right| \leqslant \frac{1-|\psi(z)|^{2}}{1-|z|^{2}}, z \in \Delta
$$

now yields

$$
\begin{aligned}
\mid z w^{\prime}(z)- & \left.k w(z)|\leqslant k| z\right|^{2 k} \frac{1-\left|\psi\left(z^{k}\right)\right|^{2}}{1-|z|^{2 k}} \\
& =\frac{k\left(|z|^{2 k}-|w(z)|^{2}\right)}{1-|z|^{2 k}} .
\end{aligned}
$$

Equality in (2.11) occurs for functions of the form $z^{k}\left(z^{k}-c\right) /\left(1-c z^{k}\right),|c| \leqslant 1$.

Going back to the expression $\alpha p(z)+\operatorname{Bzp}(z) / p(z)$, we see from the representation (2.7) that

$$
\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}=\alpha \frac{1+A w(z)}{1+B w(z)}+\beta \frac{(A-B) z w^{\prime}(z)}{(1+A w(z))(1+B w(z))}, w(z) \in B_{k} .
$$

Applying (2.11) to the second term of the right-hand side, we find

$$
\begin{gathered}
\operatorname{Re}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right\} \geqslant \operatorname{Re}\left\{\alpha \frac{1+A w(z)}{1+B w(z)}+\frac{B(A-B) k w(z)}{(1+A w(z))(1+B w(z))}\right\} \\
-\frac{k \beta(A-B)\left(|z|^{2 k}-|w(z)|^{2}\right)}{\left(1-|z|^{2 k}\right)|1+A w(z)||1+B w(z)|^{2}}
\end{gathered}
$$

From (2.7), we also have for $w(z) \in B_{k}$ that

$$
w(z)=\frac{p(z)-1}{A-B p(z)}, p(z) \in P_{k}(A, B)
$$

Hence, in terms of $p(z)$, the above inequality becomes
(2.12) $\operatorname{Re}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right\} \geqslant \beta k \frac{A+B}{A-B}+\frac{1}{A-B} \operatorname{Re}\left\{[\alpha(A-B)-\beta k B] p(z)-\frac{\beta k A}{p(z)}\right\}$

$$
-\frac{k B\left(r^{2 k}|A-B p(z)|^{2}-|p(z)-1|^{2}\right)}{(A-B)\left(1-r^{2 k}\right)|p(z)|}
$$

At this point, we see that the solution to (2.6) may be obtained by minimising the right-hand side of (2.12) where $p(z)$ takes its values in the disc $\left|p(z)-a_{k}\right| \leq d_{k}$ as defined by (2.8). It can be shown that the minimum is reached on the diameter of this disc. In fact, using the same argument as in Theorem 1 of Anh and Tuan [1] with r replaced by r^{k} and β replaced by βk, we can establish the following result.

THEOREM 2.4. If $p(z) \in P_{k}(A, B), \alpha \geqslant 0, B \geqslant 0$, then on $|z|=r<1$, $\operatorname{Re}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{\rho(z)}\right\} \geqslant\left\{\begin{array}{l}\frac{\alpha-[\beta k(A-B)+2 \alpha A]_{r}^{k}+\alpha A^{2} r^{2 k}}{\left(1-A r^{k}\right)\left(1-B r^{k}\right)}, R_{1} \leqslant R_{2}, \\ \beta k \frac{A+B}{A-B}+\frac{2}{(A-B)\left(1-r^{2 k}\right)}\left[(L K)^{\frac{3}{2}}-\beta k\left(1-A B r^{2 k}\right)\right], R_{2} \leqslant R_{1},\end{array}\right.$
where $R_{1}=(L / K)^{\frac{1}{2}}, R_{2}=\left(1-A r^{k}\right) /\left(1-B r^{k}\right), L=B k(1-A)\left(1+A r^{2 k}\right)$, $K=\alpha(A-B)\left(1-r^{2 k}\right)+\beta k(1-B)\left(1+B r^{2 k}\right)$.

The result is sharp for the functions

$$
p_{0}(z)=\frac{1+A z^{k}}{1+B z^{k}} \text { for } R_{1} \leqslant R_{2}
$$

and

$$
p_{1}(z)=\frac{1+A w_{1}(z)}{1+B w_{1}(z)} \text { for } R_{2} \leqslant R_{1}
$$

where $w_{1}(z)=z^{k}\left(z^{k}-c\right) /\left(1-c z^{k}\right)$ is extremal for (2.11) with c now defined by the condition $\operatorname{Re}\left\{\left(1+A w_{1}\{z)\right) /\left(1+B w_{1}(z)\right)\right\}=R_{1}$ at $z=-r$.

REMARK 2.5. It should be observed that a function $q(z)$ is in $P_{k}(A, B)$ if $q(z)=p\left(z^{k}\right)$ for some $p(z) \in P(A, B)$. In this representation,

$$
\alpha q(z)+\beta \frac{z q^{\prime}(z)}{q(z)}=\alpha p\left(z^{k}\right)+\beta k \frac{z^{k} p^{\prime}\left(z^{k}\right)}{p\left(z^{k}\right)}, z \in \Delta
$$

It therefore follows that the lower bound for $\operatorname{Re}\left\{\alpha q(z)+B z q^{\prime}(z) / q(z)\right\}$ over $P_{k}(A, B)$ can be derived immediately from Theorem 1 of Anh and Tuan [1] with r replaced by r^{k} and B replaced by $B k$. The argument leading to Theorem 2.4 of this section is presented to highlight the power and simplicity of the classical method compared to the variational method as employed by Zawadzki [17].

3. Some Geometric Properties of $S_{k}^{\star}(A, B)$

As noted at the beginning of Section 2 , the radius of convexity of $S_{k}^{*}(A, B)$ is given by the smallest root in $(0,1]$ of the equation $\Omega(r)=0$, where.

$$
\Omega(r)=\min \left\{\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\} ;|z|=r<1, p(z) \in P_{k}(A, B)\right\}
$$

An application of Theorem 2.4 with $\alpha=1, \beta=1$ gives $\Omega(r)$, and solving $\Omega(x)=0$ we obtain

THEOREM 3.1. The radius of convexity of $S_{k}^{*}(A, B)$ is given by the smallest root in $(0,1]$ of
(i) $A^{2} r^{2 k}-[(2+k) A-k B] r^{k}+1=0$, if $R_{1} \leqslant R_{2}$,
(ii) $[k(A-B)+4 A(1-A)] r^{4 k}+2\left[k(A-B)+2(1-A)^{2}\right] r^{2 k}+k(A-B)-4(1-A)=0$,

$$
\text { if } R_{2} \leqslant R_{1}
$$

where R_{1}, R_{2} are as given in Theorem 2.4.
The result previously obtained by Zmorovic [18] corresponds to the case $k=1, A=1-2 \alpha, B=-1$.

We next derive sharp bounds for $|f(z)|,\left|f^{\prime}(z)\right|$ in the class $S_{k}^{*}(A, B)$. Letting $r \rightarrow 1$ in the lower bound for $|f(z)|$ we obtain the disc which is covered by the image of the unit disc under every $f(z)$ in $S_{k}^{*}(A, B)$.

THEOREM 3.2. Let $f(z) \in S_{k}^{*}(A, B)$; then on $|z|=r<1$,
(i) $r\left(1-B r^{k}\right)^{(A-B) / k B} \leqslant|f(z)| \leqslant r\left(1+B r^{k}\right)^{(A-B) / k B}$, if $B \neq 0$,

$$
r \exp \left(-\frac{A r^{k}}{k}\right) \leqslant|f(z)| \leqslant r \exp \left(\frac{A r^{k}}{k}\right), \text { if } B=0 \text {; }
$$

(ii) $\left(1-A r^{k}\right)\left(1-B r^{k}\right)^{[A-(1+k) B] / B} \leqslant\left|f^{\prime}(z)\right| \leqslant\left(1+A r^{k}\right)\left(1+B r^{k}\right)^{[A-(1+k) B] / B}$,

$$
\begin{gathered}
\text { if } B \neq 0, \\
\left(1-A r^{k}\right) \exp \left(-\frac{A r^{k}}{k}\right) \leqslant\left|f^{\prime}(z)\right| \leqslant\left(1+A r^{k}\right) \exp \left(\frac{A r^{k}}{k}\right) \text {, if } B=0 .
\end{gathered}
$$

Proof. Write $z f^{\prime}(z) / f(z)=p(z), p(z) \in \mathrm{P}_{k}(A, B)$; then

$$
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{1}{z}[p(z)-1]
$$

Hence, on integrating both sides, we get

$$
\log \frac{f(z)}{z}=\int_{0}^{z}[p(\xi)-1] \frac{d \xi}{\xi},
$$

that is,

$$
\frac{f(z)}{z}=\exp \int_{0}^{z} \frac{p(\xi)-1}{\xi} d \xi, \quad p(z) \in P_{k}(A, B)
$$

Therefore,

$$
\left|\frac{f(z)}{z}\right|=\exp \left[\operatorname{Re}\left\{\int_{0}^{z} \frac{p(\xi)-1}{\xi} d \xi\right\}\right]
$$

Substituting ξ by $z t$ in the integral we have

$$
\left|\frac{f(z)}{z}\right|=\exp \int_{0}^{1} \operatorname{Re}\left\{\frac{p(z t)-1}{t}\right\} d t
$$

It follows from (2.9) that, on $|z t|=r t$,

$$
\operatorname{Re}\left\{\frac{p(z t)-1}{t}\right\} \leqslant \frac{(A-B) r^{k} t^{k-1}}{1+B r^{k} t^{k}}
$$

Hence, for $B \neq 0$,

$$
\frac{f(z)}{z} \leqslant \exp \int_{0}^{1} \frac{(A-B) r^{k} t^{k-1}}{1+B r^{k} t^{k}} d t=\left(1+B r^{k}\right)(A-B) / k B .
$$

The lower bound may be obtained similarly. The case $B=0$ is trivial. To prove (ii), we note that

$$
\left|f^{\prime}(z)\right|=\left|\frac{f(z)}{z}\right||p(z)|, p(z) \in P_{k}(A, B) .
$$

Hence, applying the above results and (2.9), the assertions follow.
All the bounds are sharp for

$$
\begin{aligned}
& f(z)=z\left(1+B z^{k}\right)^{(A-B) / k B}, \quad \text { if } B \neq 0, \\
& f(z)=z \exp \left(\frac{A z^{k}}{k}\right), \quad \text { if } \quad B=0
\end{aligned}
$$

The corollary of Theorem 1 of Zawadzki [16] corresponds to the special case $A=1-2 \alpha, B=-1$.

Letting $r \rightarrow 1$ in the lower bound for $|f(z)|$ we obtain the following covering theorem for $S_{k}^{*}(A, B)$.

COROLLARY 3.4. The image of the unit disc under a function $f(z) \in S_{k}^{*}(A, B)$ contains the disc of centre 0 and radius $(1-B)^{(A-B) / k B}$ if $B \neq 0, \quad \exp (-A / k)$ if $B=0$.

4. Coefficient Bounds for $S_{k}^{\star}(A, B)$

It is known that if $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ belongs to P, then $\left|p_{n}\right| \leqslant 2$ for $n=1,2,3, \ldots$ For the next theorem of this section, we generalise this result to the class $P(A, B)$. The method of proof is essentially due to Clunie [2].

THEOREM 4.1. If $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ belongs to $P(A, B)$, then $\left|p_{n}\right| \leqslant A-B$ for $n=1,2,3, \ldots$. The estimates are sharp for each n.

Proof. From the definition of $P(A, B)$, we can write that

$$
p(z)-1=(A-B p(z)) w(z), w(z) \in B .
$$

That is,

$$
k^{\stackrel{\infty}{\underline{\Sigma}}} 1 p_{k} z^{k}=\left(A-B{ }_{k}{ }_{\underline{\Sigma}}^{=} 0 p_{k} z^{k}\right) \omega(z) .
$$

This equation can be put in an equivalent form as

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} z^{k}+\sum_{k=n+1}^{\infty} c_{k} z^{k}=\left(A-B-B \sum_{k=1}^{n-1} p_{k} z^{k}\right) w(z), \tag{4.1}
\end{equation*}
$$

where the second series on the left-hand side is also uniformly and absolutely convergent on compact subsets of Δ. Since (4.1) has the form $F(z)=G(z) w(z)$, where $|w(z)|<1$, it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} d \theta \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|G\left(r e^{i \theta}\right)\right|^{2} d \theta . \tag{4.2}
\end{equation*}
$$

In view of Parseval's identity (see Nehari [10, p.100]), (4.2) is equivalent to

$$
\begin{gathered}
\sum_{k=1}^{n}\left|p_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|c_{k}\right|^{2} r^{2 k} \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|A-B-B \sum_{k=1}^{n-1} p_{k} r^{k} e^{i k \theta}\right|^{2} d \theta \\
=(A-B)^{2}+B^{2} \sum_{k=1}^{n-1}\left|p_{k}\right|^{2} r^{2 k} .
\end{gathered}
$$

Thus,

$$
\sum_{k=1}^{n}\left|p_{k}\right|^{2} r^{2 k} \leqslant(A-B)^{2}+B^{2} \sum_{k=1}^{n-1}\left|p_{k}\right|^{2} r^{2 k}
$$

Letting $r \rightarrow 1$, we obtain

$$
\sum_{k=1}^{n}\left|p_{k}\right|^{2} \leqslant(A-B)^{2}+B^{2} \sum_{k=1}^{n-1}\left|p_{k}\right|^{2},
$$

or equivalently,

$$
\left|p_{n}\right|^{2} \leqslant(A-B)^{2}+\left(B^{2}-1\right) \sum_{k=1}^{n-1}\left|p_{k}\right|^{2}
$$

Since $B<1$, it follows that $\left|p_{n}\right| \leqslant A-B$. The function

$$
p(z)=\frac{1+A z^{n}}{1+B z^{n}}=1+(A-B) z^{n}+\ldots
$$

in $P(A, B)$ shows that the result is sharp.
We next apply the above theorem to derive coefficient estimates for k-fold symmetric starlike functions of order α, that is, for functions in the class $S_{k}^{*}(1-2 \alpha,-1)$.

THEOREM 4.2. If $f(z)=z+a_{k+1} z^{k+1}+a_{2 k+1} z^{2 k+1}+\ldots$ beZongs to $S_{k}^{*}(1-2 \alpha,-1)$,

$$
\left|a_{n k+1}\right| \leqslant \frac{1}{n!} \prod_{v=0}^{n-1}\left[\frac{2(1-\alpha)}{k}+v\right], n=1,2,3, \ldots
$$

The estimates are sharp for each n.
Proof. If we put $\xi=z^{k}$ and define a function

$$
g(\xi)=[f(z)]^{k}
$$

then $g(\xi)$ is regular in Δ and

$$
\frac{\xi g^{\prime}(\xi)}{g(\xi)}=\frac{z f^{\prime}(z)}{f(z)}
$$

Thus $g(\xi)$ is starlike of order α for $|\xi|<1$. Expanding in a power series, we find that

$$
\begin{gather*}
\frac{\xi g^{\prime}(\xi)}{g(\xi)}=1+k \xi \frac{a_{k+1}+2 a_{2 k+1} \xi+\ldots+n a_{n k+1} \xi^{n-1}+\ldots}{1+a_{k+1} \xi+a_{2 k+1} \xi^{2}+\ldots+a_{n k+1} \xi^{n}+\ldots} \tag{4.3}\\
=1+d_{1} \xi+d_{2} \xi^{2}+\ldots
\end{gather*}
$$

In view of Theorem 4.1 with $A=1-2 \alpha, B=-1$, we obtain

$$
\left|d_{n}\right| \leqslant 2(1-\alpha), n=1,2,3, \ldots
$$

It then follows that

$$
\begin{equation*}
\frac{\xi g^{\prime}(\xi)}{g(\xi)} \ll 1+\frac{2(1-\alpha) \xi}{1-\xi} \tag{4.4}
\end{equation*}
$$

Here, for simplicity, we write $\sum_{n=0}^{\infty} a_{n} z^{n} \ll \sum_{n=0}^{\infty} b_{n} z^{n}$ if $b_{n} \geqslant 0$ and $\left|a_{n}\right| \leqslant b_{n} \quad$ for every n.

From (4.3) and (4.4) we see that

$$
\frac{a_{k+1}+2 a_{2 k+1} \xi+\ldots}{1+a_{k+1} \xi+a_{2 k+1} \xi^{2}+\ldots}<\frac{2(1-\alpha)}{k} \frac{1}{1-\xi},
$$

that is
(4.5) $\log \left(1+a_{k+1} \xi+a_{2 k+1} \xi^{2}+\ldots\right) \ll-\frac{2(1-\alpha)}{k} \log (1-\xi)$,
taking a branch of \log such that $\log 1=0$. It follows from (4.5) that

$$
1+a_{k+1} \xi+a_{2 k+1} \xi^{2}+\ldots \ll \frac{1}{(1-\xi)^{2(1-\alpha) / k}}
$$

from which the result can be derived. To see that the estimates are sharp, we consider the function

$$
\begin{gathered}
f(z)=\frac{z}{\left(1-z^{k}\right)^{2(1-\alpha) / k}=z+\sum_{n=1}^{\infty} \frac{1}{n!} \frac{2(1-\alpha)}{k}\left(\frac{2(1-\alpha)}{k}+1\right) \ldots\left(\frac{2(1-\alpha)}{k}+n-1\right)} \\
\times z^{n k+1} .
\end{gathered}
$$

The method of proof used in the above theorem unfortunately does not work for the general class $S_{k}^{*}(A, B)$. However, the above coefficient bounds for $S_{k}^{*}(1-2 \alpha,-1)$ do suggest the form of coefficient bounds for functions in $S_{k}^{*}(A, B)$. In fact, we have the following theorem, the proof of which is under the influence of MacGregor [9].

THEOREM 4. 3. Let $f(z)=z+a_{k+1} z^{k+1}+a_{2 k+1} z^{2 k+1}+\ldots$ be in $S_{k}^{*}(A, B)$ and put $M=\left[\frac{A-B}{k(1+B)}\right]$, the Largest integer not greater than $(A-B) / k(1+B)$.
(a) If $A-B>k(1+B)$, then

$$
\begin{equation*}
\left|a_{n k+1}\right| \leqslant \frac{1}{n!} \prod_{v=0}^{n-1}\left(\frac{A-B}{k}-v B\right), n=1,2, \ldots, M+1 \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{n k+1}\right| \leqslant \frac{1}{n M!} \prod_{v=0}^{M}\left(\frac{A-B-}{k}-v B\right), n \geqslant M+2 . \tag{4.7}
\end{equation*}
$$

(b) If $A-B \leqslant k(1+B)$, then
(4.8)

$$
\left|a_{n k+1}\right| \leqslant \frac{A-B}{n k}, n=1,2,3, \ldots
$$

The estimates (4.6) and (4.8) are sharp.
Proof. Irom the definition of $S_{k}^{*}(A, B)$, we have that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+A w(z)}{1+B w(z)}, w(z) \in B_{k},
$$

that is,

$$
z f^{\prime}(z)-f(z)=w(z)\left(A f(z)-B z f^{\prime}(z)\right),
$$

or, in their series expansion,
(4.9) $\sum_{n=1}^{\infty} n k a_{n k+1} z^{n k+1}=\omega(z)\left((A-B) z+\sum_{n=1}^{\infty}(A-B(n k+1)) a_{n k+1} z^{n k+1}\right)$.

This equation can be put in an equivalent form as
$\sum_{n=1}^{N} n k a_{n k+1} z^{n k+1}+\sum_{n=N+1}^{\infty} a_{n k+1} z^{n k+1}=\omega(z)\left((A-B) z+\sum_{n=1}^{N-1}(A-B(n k+1)) a_{n k+1} z^{n k+1}\right)$, where $N=1,2,3, \ldots$ and the second series on the left-hand side is again uniformly and absolutely convergent on compact subsets of Δ.

With the same argument as in the proof of Theorem 4.1, using Parseval's identity and the fact that $|w(z)|<1$, we arrive at the inequality

$$
\sum_{n=1}^{N} n^{2} k^{2}\left|a_{n k+1}\right|^{2} \leqslant(A-B)^{2}+\sum_{n=1}^{N-1}(A-B(n k+1))^{2}\left|a_{n k+1}\right|^{2}
$$

or equivalently,
(4.10) $\quad N^{2} k^{2}\left|a_{N k+1}\right|^{2} \leqslant(A-B)^{2}+\sum_{n=1}^{N-1}\left[(A-B(n k+1))^{2}-n^{2} k^{2}\right]\left|a_{n k+1}\right|^{2}$.

Since $(A-B(n k+1))^{2}-n^{2} k^{2} \geqslant 0$ if and only if $n \leqslant(A-B) / k(1+B)$, the following four cases can arise:
(i)

$$
n \leqslant \frac{A-B}{k(1+B)} \quad \text { and } \quad A-B>k(1+B),
$$

(ii) $\quad n>\frac{A-B}{k(1+B)}$ and $A-B>k(1+B)$,
(iii) $\quad n \leqslant \frac{A-B}{k(1+B)}$ and $A-B \leqslant k(1+B)$,
(iv) $\quad n>\frac{A-B}{k(1+B)}$ and $A-B \leqslant k(1+B)$.

Case (iii) holds only if $n=1$. In view of (4.9), we have $k a_{k+1}=(A-B) b_{k}$,
where $w(z)=b_{k} z^{k}+b_{2 k} z^{2 k}+\ldots$ since $|w(z)|<1$, it follows that

$$
\sum_{n=1}^{\infty}\left|b_{n k}\right|^{2} \leq 1
$$

Thus $\left|b_{k}\right|^{2} \leqslant 1$. And so,
(4.11)

$$
\left|a_{k+1}\right| \leqslant \frac{A-B}{k} .
$$

Let us now consider each of the remaining cases.
(i) In view of (4.10), we want to establish that

$$
\begin{equation*}
N^{2} k^{2}\left|a_{N k+1}\right|^{2} \leqslant\left[\frac{k}{(N-1)!} \prod_{n=0}^{N-1}\left(\frac{A-B}{k}-n B\right)\right]^{2} . \tag{4.12}
\end{equation*}
$$

This inequality holds for $N=1$ in view of (4.11). Suppose that it is true up to $N-1$. Then for $N \leqslant M+1$,

$$
\begin{gathered}
N^{2} k^{2}\left|a_{N k+1}\right|^{2} \leqslant(A-B)^{2}+\sum_{n=1}^{N-1}\left((A-B(n k+1))^{2}-n^{2} k^{2}\right)\left|a_{n k+1}\right|^{2} \\
(4.13) \leq(A-B)^{2}+\sum_{n=1}^{N-1}\left\{\left[\frac{1}{n!} \prod_{v=0}^{n-1}\left(\frac{A-B}{k}-v B\right)\right]^{2}\left[(A-B(n k+1))^{2}-n^{2} k^{2}\right]\right\} .
\end{gathered}
$$

Put the expression on the right-hand side of (4.13) equal $S(N-1)$. If we can establish that

$$
\begin{equation*}
S(N-1)=\left[\frac{k}{(N-1)!} \prod_{n=0}^{N-1}\left(\frac{A-B}{k}-n B\right)\right]^{2}, \tag{4.14}
\end{equation*}
$$

then (4.12) is true for all $N \leqslant M+1$. We again prove (4.14) by induction. For $N=2$, we have

$$
\begin{aligned}
S(1) & =(A-B)^{2}+\left(\frac{A-B}{k}\right)^{2}\left((A-B(k+1))^{2}-k^{2}\right) \\
& =\left(\frac{A-B}{k}\right)^{2}(A-B(k+1))^{2}
\end{aligned}
$$

which is the right-hand side of (4.14). Thus (4.14) holds for $N=2$. Suppose that it is true up to $N-1$. Then for N,

$$
\begin{aligned}
S(N) & =S(N-1)+\left(\frac{1}{N!} \prod_{v=0}^{N-1}\left(\frac{A-B}{k}-v B\right)\right)^{2}\left((A-B(N k+1))^{2}-N^{2} k^{2}\right) \\
& =\left(\frac{k}{(N-1)!} \prod_{n=0}^{N-1}\left(\frac{A-B}{k}-n B\right)\right)^{2}+\left(\frac{1}{N!}_{v=0}^{N-1}\left(\frac{A-B}{k}-v B\right)\right)^{2}\left((A-B(N k+1))^{2}-N^{2} k^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{(N-1)!} \prod_{n=0}^{N-1}\left(\frac{A-B}{k}-n B\right)\right)^{2}\left[k^{2}+\frac{1}{N^{2}}\left((A-B(N k+1))^{2}-N^{2} k^{2}\right)\right] \\
& =\left(\frac{k}{N!} \prod_{n=0}^{N}\left(\frac{A-B}{k}-n B\right)\right)^{2} .
\end{aligned}
$$

Thus (4.14) is true for all N. This establishes (4.12). Note that $(A-B) / k-n B \geqslant 0$ is equivalent to $n k \leqslant A-B) / B$ if $B>0$ [The inequality is obvious if $B \leqslant 0]$. In case (i), $n k \leqslant(A-B) /(1+B)<(A-B) / B$ as $A-B>0$. Thus, inequality (4.6) of the theorem follows from (4.12). (ii) Again, from (4.10), we have that

$$
\begin{aligned}
& N^{2} k^{2}\left|a_{N k+1}\right|^{2} \leqslant(A-B)^{2}+\sum_{n=1}^{M}\left((A-B(n k+1))^{2}-n^{2} k^{2}\right)\left|a_{n k+1}\right|^{2} \\
&+\sum_{n=M+1}^{N-1}\left((A-B(n k+1))^{2}-n^{2} k^{2}\right)\left|a_{n k+1}\right|^{2}, N \geqslant M+2 \\
& \leqslant(A-B)^{2}+\sum_{n=1}^{M}\left((A-B(n k+1))^{2}-n^{2} k^{2}\right)\left|a_{n k+1}\right|^{2} \\
& \leqslant(A-B)^{2}+\sum_{n=1}^{M}\left[\frac{1}{n!} \prod_{v=0}^{n-1}\left(\frac{A-B}{k}-v B\right)\right]\left((A-B(n k+1))^{2}-n^{2} k^{2}\right) \\
&=\left[\frac{k}{M!} \prod_{n=0}^{M}\left(\frac{A-B}{k}-n B\right)\right]^{2} \quad \text { in view of (4.6) }
\end{aligned}
$$

Thus, $\left|a_{N k+1}\right| \leqslant \frac{1}{N M!} \prod_{n=0}^{M}\left(\frac{A-B}{\bar{k}}-n B\right)$ for $N \geqslant M+2$.
This is inequality (4.7) of the theorem.
(iv) In this case, it follows easily from (4.10) that
$N^{2} k^{2}\left|a_{N k+1}\right|^{2} \leqslant(A-B)^{2}, N \geqslant 2$.
That is,

$$
\left|a_{N k+1}\right| \leqslant \frac{A-B}{N k}, N \geqslant 2
$$

This with (4.11) above yields inequality (4.8) of the theorem.

Inequality (4.6) is sharp for the function

$$
\begin{array}{ll}
f(z)=z\left(1+B z^{k}\right)(A-B) / k B, & \text { if } B \neq 0, \\
f(z)=z \exp \left(A z^{k} / k\right) & , \\
\text { if } B=0,
\end{array}
$$

while inequality (4.8) is sharp for the function

$$
f(z)=z \exp \left[\frac{A-B}{n k} z^{n k}\right)
$$

References

[1] V.V. Anh and P.D. Tuan, "On β-Convexity of certain starlike univalent functions", Rev. Roum. Math. Pures et App 2.24 (1979), 1413-1424.
[2] J. Clunie, "On meromorphic Schlicht functions", J. London Math. Soc. 34 (1959), 215-216.
[3] P.L. Duren, Univalent functions, Springer Verlag, New York, 1983.
[4] G.M. Golusin, "On some estimates for functions which map the circle conformally and univalently", Recueil Math. Moscow 36 (1929), 152-172.
[5] W. Janowski, "Extremal problems for a family of functions with positive real part and for some related families", Ann. Polon. Math. 23 (1970), 159-177.
[6] W. Janowski, "Some extremal problems for certain families of analytic functions I", Ann. Polon. Math. 28 (1973), 298-326.
[7] R.J. Libera, "Some radius of convexity problems", Duke Math. J. 31 (1964), 143-158.
[8] C.P. McCarty, "Starlike functions", Proc. Amer. Math. Soc. 43 (1974), 361-366.
[9] T.H. MacGregor, "Coefficient estimates for starlike mappings", Michigan Math. J., 10 (1963), 277-281.
[10] Z. Nehari, Conformal Mopping, (McGraw-Hill, New York, 1952.)
[11] K. Noshiro, "On the theory of Schlicht functions", J. Fac. Sci. Hokkaido Univ., Ser. I Math. 2 (1934), 129-155.
[12] K.S. Padmanabhan, "On certain classes of starlike functions in the unit disk", J. Indian Math. Soc. 32 (1968), 89-103.
[13] M.S. Robertson, "On the theory of univalent functions", Ann. of Math. 37 (1936), 374-408.
[14] M.S. Robertson, "Variational methods for functions with positive real part", Trans. Amer. Math. Soc. 101 (1962), 82-93.
[15] M.S. Robertson, "Extremal problems for analytic functions with positive real part and applications", Trans. Amer. Math. Soc. 106 (1963), 236-253.
[16] R. Zawadzki, "On some theorems on distortion and rotation in the class of k-symmetrical starlike functions of order α ", Ann. Polon. Math. 24 (1971), 169-185.
[17] R. Zawadzki, "On the radius of convexity of some class of analytic k-symmetrical functions", Ann. Univ. Mariae Curie SkZodowska, Sectio A, 26 (1972), 79-101.
[18] V.A. Zmorovic, "On bounds of convexity for starlike functions of order α in the circle $|z|<1$ and in the circular region $0<|z|<1$, Mat. Sb., 68 (1965), 518-526, English Transl., Amer. Math. Soc. Tronsl. (2), 80 (1969), 203-213.

```
Department of Mathematics,
Queensland Institute of Technology,
P.O. Box 2434,
Brisbane, Q. 4001,
Australia.
```


[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.

