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K-rOLD SYMMETRIC STARLIKE UNIVALENT FUNCTIONS

V. V. ANH

This paper establishes the radius of convexity, distortion and

covering theorems for the class

S*(A,B) = {f(z) = z + %+/+1
 +

where

Pk(A,B) = ip(z) = l + p k z k
+ p2k z2K...;p(z) = \

-KB < A < 1, w(0) = 0, \w(z) | < 1 in the unit disc.

Coefficient bounds for functions in S£ (A,B) are also derived.

1. Introduction

Let B be the class of functions w(z) regular in the unit disc

A = {ŝ - | s | < 1} and satisfying the conditions w(0) = 0, \w(z) \ < 1

for a e A. We denote by P(A}B)3 -1 < B < A < 13 the class of

functions p(z) = 1 + Pj z + p Z2 + .. . defined by

The definition of P(A}B) is suggested by the classical result (see

Nehari [70,p. 169]) that any regular function p(z) = 1 + p^ + p zz+.
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420 V. V. Anh

such that Re{p(z)) > 0 in A can be written in the form

As i s well-known, a necessary and sufficient condition for a

function f(z) = z + a^z2 + . . . to be univalent starlike in A i s

This condition suggests that starlike functions may be defined in terms

of functions of positive real part in the unit disc. In fact, Janowski

[6] defined a general class of starlike functions as

S*(A,B) = {f(z) = z + a2z
2+ ...; Zf'(z

Z/ £ P(A,B)} , z e A.

The following special cases of S*(A3B) are of interest:

S*(l-2*,-l)={f(z)=z+a.lz
z+...; Re{zf'(z)/f(z)} > a, 0 < a < 1} ,

S*(l,l/M-l)={f(z)=z+a2z
z+...; \zf>(z)/f(z) -M\ < M, M > %},

S*(a,0/ = if(z) = z + a2z
2+...; \zf'(z)/f(z) - l\ < a , 0 < a < 1} ,

S*(a,-a)={f(z)=z+a2z
2+...j \zf (z)/f(z)-l\/\zf(z)/f(z)+l\<a,0<a < 1}.

Several results on these subclasses of starlike functions may be found

in Robertson [73], Janowski [5], McCarty [S] and Padmanabhan [72]

respectively. I t is seen that a study of S*(A,B) leads to unified

results of properties of various subclasses of starlike functions.

In this paper, we pay attention to the class S*(A,B) of functions

in S*(A;B) with fe-fold symmetric expansion:

z2k+1 +
{ ) = {f(z) = , +

where

It 9V

Pk(A,B) = {p(z) = 1 + VyZ +P2k z + . . . eP(A,B), k = 1,2,3,...).

The functions f e S*(A3B) are the k-th root transforms

f(z) =
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Sta r l ike Functions 4 2 1

of functions g e. S*(A}B). In particular, the square-root transformation

of S*(A,B) yields the class of odd functions in S*(A,B).

The study of fc-fold symmetric starlike functions was initiated in

the early 1930's with €he work of Golusin [4], Robertson [7 3] and Noshiro

[77], each of whom established coefficient bounds for these functions.

Noshiro [77] investigated in detail geometric properties, including

bounds for \f(z)\, \f'(z)\, of the c lass S*BS*(1,-1).

This paper will establish distortion and covering theorems and the

radius of convexity for SMAyB). Coefficient bounds for functions
K

in S£(AjB) are also derived. The results are sharp and extend the

previously known results for starlike functions, particularly those of

the classes listed above.

2. Extremal Problems over P. (A,B)

By definition the radius of convexity of S?(A,B) is the smallest

root in (O,lD of the equation fi(r) = 0, where

Q(r) = min{Re{i + ̂ TTT }i \z\ = r < 1, f e S*(A,B)}.
J \ZJ K

Broi the definition of SfiAjB), we derive that

€ Pk(A,B).

Thus, the radius of convexity of S£(A,B) is obtained if we can determine

the

(2.

value

1)

of

min

1*1 = r
over T?AA,B).

Various methods have been developed to deal with extremal problems

of the form (2.1), or more generally

min Re{F(p(z), zp'(z))}
\z\ = r < 1

over P E P(l}-1). Based upon a variational formula for functions in P,

Robertson [14] proved
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422 V. V. Anh

THEOREM 2.1. [74] Let F(u,v) be regular in the v - plane and in

the half - plane Be u > 0; then for every r , 0 < r < 1} the value of

mtn min Ke{F(p(z), zp'(z))}
p(z) e P \z\ = r

ocaurs only for a function of the form

1 - ze 1 - ze

where -1 <a < 13 0 < 9 < 2-n.

Thus, to solve an extremal problem such as (2.1) over P, we only

have to substitute into (2.1) the function p(z) defined by (2.2) and

to find the minimum of the resulting function of three variables.

However, this i s precisely where the remaining difficulties l ie (see

Robertson [75, Theorem 3] and Libera [7, Theorem 1]). Zmorovic 11 SI

developed a useful result to overcome these difficulties. This i s

described in the following theorem.

THEOREM 2.2. [7S] Let p(z) be as given by (2.2); then zp'(z)

can be written in the form

(2.3) zp'(z) = h(p(z)2 - 1) + %fp2 - pp eHi>,

ity. . _ . ity
where (l-^^/C^t^z) = a+pe K,k=l,2,<L =e% ,e2=e~t' }p(z)=a + pQe ° ,

. i(rp+\l>
0<p < p,a=(l+rz)/(l-r2),p =2r/(l-r2), e v = e

If we put F(UjV) = M(u) + N(u) .v, where M(u), N(u) are regular

i n the ha l f - plane Re u > 0, u =p(z), V = zp'(z) as given by (2 .2) ,

then i t follows from (2.3) that

(2.4) min Re {F(u,v)} = Re{M(u) + £fw2 - l)N(u)} - %\N(u)\(p2 - p2).

In view of Robertson's Theorem 2.1 and equation (2.4), problem (2.1 ) i s

reduced to finding the minimum of a function of u in the disc

\u — a\ < p. This is a significant simplification. Employing this

technique, Zmorovic [IS] found the radius of convexity for

S*(l - 2a., - 1).

R>r the general class P(A,B), it can be shown that q(z) is in

P(A,B) if and only if
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, , . . , , (1 + A)y(z) + 1 - A
( 2 - 5 ) « ( Z ) = ( 1 + B ) p ( z ) + 1 - B

for some p(z) e P. Robertson's result then implies that the functions

which minimise the functional Re{F(p(z)y zp'(z))} over P(A,B) must be

of the form (2.5) where p(z) i s now given by (2.2). Ising this result ,

Janowski [6] extended Zmorovic's technique and solved the problems

min Re{p(z) + zp'(z)/p(z)} and min Re {zp'(z)/p(z)} over P(A,B). The

analysis i s , however, lengthy and extremely complicated.

Jbr k-fold symmetric functions, Zawadzki [7 7] extended Robertson -

Zmorovic's techniques and derived the radius of convexity for the class

S*(ct,O). Again, the development is rather involved.

In this paper, we employ classical tools to solve the following

more general problem:

(2.6) min
p(z)e Pk(A,B)

The results by Zmorovic [7f(], Janowski [6], Zawadzki [7 7] are several

special cases of (2.6).

Let Bj, denote the class of functions w(z) in B with the

expansion

, . , k , 2k
w(z) = b, z + b2, z + ...

Then, for every p(z) e PAA,B)S we have that

(2.7) p(z) =H(w(z)) , z e A

for some w(z) £ B,3 where U(z) = (1 + Az)/(1 + Bz). Consequently, an

application of the Subordination Principle (see Duren [3, p. 190-191])

yields that the image of \z\ <r under every p(z) e P,(A,B) i s

contained in the disc

\?U, - akl < ̂  - i

I t follows immediately from (2.8) that i f p(z) e PAA,B), then on

\z\ = r < 1,

k k
(2.9) 2 ' **. <Re{p(z)} < \p(z)\ <2 + Ar

v .
1 - Br 1 - Br
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424 V. V. Ann

The inequalities are sharp for the function

, . 1 + Azk

(2.10) pJz) = r •
0 1 + Bzk

lor the so lu t ion of (2 .6) , we require the following lemma.

LEMMA 2 . 3 . If w(z) e B^ then for z e A ,

Proof. In view of the general Schwarz lemma, we have for

w(z) e B, tha t |wra; | < | s | . Therefore, we may write

k kw(z) = z ty(z ) , z e. b.,

where ty(z) i s regular and | i|if J3j |<J in A. An applicat ion of

Caratheodory's inequal i ty

\r(*)\< 2- ,
1 - \z\

now yields

\zw'(z) - kw(z) \<k\z\ —
- Ul

Equality in (2.11) occurs for functions of the form

z (z - o)/(l - cz ), \o\ < 1.

Going back to the expression ap(z) + $zp'(z)/p(z), we see from

the representa t ion (2.7) t h a t

nzp'(z) 1 + Aw(z) B CA - B)zw'(z)
6 T 7 i T = ° 1 + Bw(z) + 6

Applying (2.11) to the second term of the right-hand side, we find

- B)kw(z)
1 + Bw( z))

_ - B)(\z\'lk - \w(z)\2)

(1 - \z\ )|1 + Aw(z)|\l + Bw(z)|"

Hrom (2 .7 ) , we also have for w(z) e B, tha t
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w(z) = j p(z) e p
KA - Bp(z)

Hence, in terms of p(z), the above inequality becomes

(2.12) J{op(z)

(A -

\A - Bp(z)\2 - \p(z) - 1\2)

- r2k) \p(z)\

At this point, we see that the solution to (2.6) may be obtained by

minimising the right-hand side of (2.12) where p(z) takes i t s values in

the disc \p(z) - aA < d, as defined by (2.8). I t can be shown that

the minimum is reached on the diameter of this disc. In fact, using the

same argument as in Theorem 1 of Anh and Tuan [7] with r replaced by

v and B replaced by 6k, we can establish the following result.

THEOREM 2.4. If p(z) e P]<(A,B)i a > 0, B > 0, then on \z\ = r < 1,

- B) + 2aAlrk + aA2r2k „ ^ „

- Ark)(l - Brk)

* A - B (A - B) (1
— - T : UUL)2- Bfe (l-ABr M ] 3 R <R ,
-r2K) 2

where R x = (L/K) \ R 2 = (1 - Ar)/(1 - Br), L = &k(l - A)(l + A T ) ,

K = a(A - - r2k) Brzk) .

The resu l t i s sharp for the functions

. , 1 + Azk
 c c

pn
(s) =— '—v f o r }

and

1 + Aw Az)

1+BwJz) f o r

k k k
where W (z) = z (z - a)/(I - oz ) i s extremal for (2.11) with o now

defined by the condition Re{CJ + Aw^fz))/(I + Bw (z))} = i?x at z = - r .
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REMARK 2.5. It should be observed that a function q(z) is in

PAA,B) if q(z) = p(z ) for some p(z) e P(A,B). In this representat-

ion,

P

p(zk)

It therefore follows that the lower bound for Re{aq(z) + $zq' (z)/q(z)}

over P,(A,B) can be derived immediately from Theorem 1 of Anh and Tuan

[7] with r replaced by r and B replaced by 6?:. The argument

leading to Theorem 2.4 of this section is presented to highlight the

power and simplicity of the classical method compared to the variational

method as employed by Zawadzki [77].

3. Some Geometric Properties of S*(A,B)

As noted at the beginning of Section 2, the radius of convexity of

Sf(AyB) is given by the smallest root in (0,1} of the equation
K .

= 0, where .

Q(r) = min = r < 1, p(z) e

An appl ica t ion of Theorem 2.4 with a = 1, (3 = 1 gives Q(P) , and

solving Sl(r) = 0 we obtain

THEOREM 3.1. The radius of convexity of S*(A,B) is given by the

smallest root in (0,1] o /

(i) A2r2k - 1(2 + k)A - kBlrk +1=0, if R1 <RZ,

(ii) Lk(A - B)+ 4A(1 - A)lr*k+2lk (A - B)+ 2(1 - A)1-\rlk+k(A-B)-4(l-A)=0,

if R2<Ry ,

where R^, R2 are as given in Theorem 2. 4.

The r e s u l t previously obtained by Zmorovic [7£] corresponds to the

case k = 1, A = 1 - 2a, B = -1.
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We next derive sharp bounds for I/Cs^l., \f (z) | in the class

S*(A,B). Letting r •*• 1 in the lower bound for l/fs-H we obtain

the disc which is covered by the image of the unit disc under every f(z)

in S*(A,B).

THEOREM 3.2. Let f(z) e S*(A,B); then on \z\ = r < 1,

(i) r(l-Brk)(A-B)/kB < \f(z) | <r(l+Brk)(A-B)/kB , i f \ * O ,

k k
r exp(- ̂ |_J < \f(z) | < r exp(^-) , if B' = 0 ;

(U) (l-Avk)(l-Brk)U-(Ukm/B < \f'(z)\ <

if B £ 0 ,

k k
(1-Ark)exp(-^-) < \f'(z)\ < (1+Ark) exp (Aj-) , if B = 0 .

Proof. Write z f'(z)/f(z) = p(z), p(z) e ?,(A,B); then

Hence, on integrating both sides, we get

that is,

f(z)
A = exp

Therefore,

| |

Substituting £ by zt in the integral we have

= exp I ReV , } dt
]0 *

It follows from (2.9) that, on \zt\ = rt ,

Re{ii T—} <
t 1+Brktk

Hence, for B ? 0 ,
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dt = (l+Br
k)(A-B)/kB .

' 0 1+Br t

The lower bound may be obtained similarly. The case B = 0 is trivial.

To prove (ii), we note that

\f'(z)\ = \^^-\ \P(*)\ , p(z) e ?k(A,B) .

Hence, applying the above r e s u l t s and (2 .9) , the asser t ions follow.

All the bounds are sharp for

f(z) =z(l+Bzk)(A-B)/kB , i f BftO.

k
f(z) = 3 exp(^-) , i f B = 0 .

The corollary of Theorem 1 of Zawadzki [7 6] corresponds to the

special case A = 1 - 2a, B = -1 .

Letting r -*• 1 in the lower bound for \f(z) | we obtain the

following covering theorem for &£(&, B) .

COROLLARY 3.4. The image of the unit disc under a function

f(z) e 5*Mj B) contains the disc of centre 0 and radius

(l-B)(A~B)/kB if B ? 0, exp(-A/k) if B = 0.

4. Coefficient Bounds for S£(A,B)

I t is known that if p(z) = 1 + p z + p z2 + ... belongs to P,

then \p | < 2 for n = 1,2,3,... E>r the next theorem of this section,

we generalise this result to the class P(A,B). The method of proof is

essentially due to Clunie [2].

THEOREM 4.1 . If p(z) = 1 + p^z + p2z
z + ... belongs to P(A,B),

then \p | <A - B for n = 1,2,3,... The estimates are sharp for each n.

Proof. Hrom the definition of P(A,B), we can write that

p(z) - 1 = (A - Bp(z)) w(z), w(z) e B.

That i s .
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This equation can be put in an equivalent form as

(4.1) I p,zk + I c zk = (A - B - 3 nI2 p zk) w(z) ,
k=l K k=n+l k=l

where the second series on the left-hand side is also uniformly and

absolutely convergent on compact subsets of A. Since (4.1) has the form

F(z) = G(z)w(z) j where \w(z) \ < 1 , i t follows that

(4.2) -f

I n v iew of P a r s e v a l ' s i d e n t i t y ( s ee N e h a r i [70 , p . 1 0 0 ] ) , ( 4 . 2 ) i s

e q u i v a l e n t t o

j^ f
^ JO

- B - B
I k It I 1 IM I ' J H V I |

k=l

= (A - B)2 + B2 V \pv\
2r2k .

k=l K

Thus,

2 \ p j 2 r 2 k < ( A - B)2 + B 2 n f \ p h \ 2 r 2 k

k K K
k=l * k=l

Letting r -»• 1, we obtain

n n-1 y
Z \p \2 < (A - B)2 + B2 Z |p | ,

k=l K k=l

or equivalently,

\p | 2 < (A - B)2 + (B2 - 1) nl2\p | 2 .
n k=l K

Since B < 1, it follows that \p \ < A - B. The function

1 + Azn n
p(z) = + RZ = 1 + (A - B)zn + . . .

1 + Bz

in P(AjB) shows that the result is sharp.

We next apply the above theorem to derive coefficient estimates for

fe-fold symmetric starlike functions of order a, that is , for functions

in the class S*(l - 2a, - 1).
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430 V. V. Ann

THEOREM 4 . 2 . If f(z) = z + ak+1z
k+1 + a2k+1z

2k+1 + ...

belongs to S*( 1 - 2a, - 1) ,

v ] , n = 1,2,3,...
v=0n! .._/, k

The estimates are sharp for each n.

Proof. If we put E. = z and define a function

g(V = lf(z)lk ,

then g(U is regular in A and

g g'(V _ zf'(z)
g(U f(s)

Thus g(E,) is starlike of order a for |?| < 1. Expanding in a power

series, we find that

+ • ••+ n a n-:Z

In view of Theorem 4.1 with A = 1 - 2a, B = -1, we obtain

\d | < 2(1 - a), n = 1,2,3,...

It then follows that

(4.4) « j ^
(V 1 - 5

H e r e , f o r s i m p l i c i t y , w e w r i t e E a 2 << r b a i f b > C a n d

\a | < i> f o r e v e r y n .

I r o m ( 4 . 3 ) a n d ( 4 . 4 ) w e s e e t h a t

that is

( 4 . 5 ) l o g f J + ak+1 C + a 2 f e + ; z KZ +.-.) « - 2 n
f e " a/> l o g (1 - V
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taking a branch of log such that log 1=0. I t follows from (4.5) that

o 1

1 +
(1 _ ^(

from which the result can be derived. To see that the estimates are

sharp, we consider the function

2 , ~ 1 2(1 - a) .2(l-a) tl. .2(1-0.) 1,

k

nk+l
X 3

The method of proof used in the above theorem unfortunately does

not work for the general class S*(A,B). However, the above coefficient

bounds for S}(1 - 2a, - 1) do suggest the form of coefficient bounds

for functions in S^(A}B). In fact, we have the.following theorem, the

proof of which is under the influence of MacGregor [9].

THEOREM 4. 3. Let f(z) = z + \ + 1
z k + 1 + a - l k + 1

z l k + 1 + ••• be in

A — B
Sf(A,B) and put M = [, ., g. ] ^ tTze largest integer not greater than

(A - B)/k(l + B).
(a) If A - B > k(l + B), then

<bTT l^ir-- VB], n = i,2,..., M+ i ,
n- v=0 ^ K >

<4-7) Kk+i\<ikk[Lf]L'-vB)>n>M+2-
(b) If A - B < k(l + B), then

The estimates (4.6) and (4.8) are sharp.

Proof. Irom the definition of S?(A,B), we have that

that i s .
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zf'Cz) - f(z) = w(z)(Af(z) - Bzf'(z)) 3

or, in their series expansion,

(4.9) Z nka , z =w(z)((A - B)z + Z (A-B(nk + l))a , JZ ) .
n=l nK+l n=l nK+1

This equation can be put in an equivalent form as

Z nk ank+1 znk+1+ Z dnk+1z
nk+1= w(z)((A-B)z+ Z (A-B(nk+l))an=l n=N+l n=l

where N = 1,2,3, . . . and the second series on the left-hand side is again

uniformly and absolutely convergent on compact subsets of A.

With the same argument as in the proof of Theorem 4.1, using

Parseval's identity and the fact that \w(z) \ < 1, we arrive at the

inequality

Z n2k2\a j J 2 < (A - B ) 2 + Z (A - B(nk + l))2\a . , | 2 ,
n=l nK+l n=l nk+1

or equivalently,

N-l
(4.10) N2k2\a.r1 , J 2 < [A - B)2+ Z I (A-B(nk + 1))- nzk2l\a , , J 2 .

n=l

Since (A - B(nk + I))2 - n2k2>0 if and only if n < (A - B)/k(l + B),

the following four cases can arise:

(i) n < ^ B
+ B) and A - B > k(l + B) ,

(ii) n > V
A.7~

 g
R I and A - B > k(l + B) ,

(iii) n < A ~ ^ , and A - B < k(l + B) y

(iv) n > " . " , and A - B <k(l + B) .

Case (iii) holds only if n = 1. In view of (4.9), we have

k CL = (A - B)\,

where w(z) = b,z + b ,z + ... Since |wf.3,'| < 1, it follows that
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n=l nV

Thus |b,|2 < 1. And so,

(4.11)

Let us now consider each of the remaining cases,

(i) In view of (4.10), we want to establish that

(4.12) Nzk2\a
Nk+1 *

This inequal i ty holds for N = 1 in view of (4.11). Suppose tha t i t i s

true up to N - 1. Then for N < M + 1,

N-l
N2k2\aNk+1\

2 < (A - B)2+ E ((A- B(nk + I))2 - n2k2)\a

ff (A - B(nk +1))2- w2fc2|l .

Put the expression on the right-hand side of (4.13) equal S(N - 1). If

we can establ ish that

(4.14) « • - » •

then (4.12) i s true for a l l N <M + 1. We again prove (4.14) by

induction. Rsr N = 2, we have

"2 2 -
S(l) = (A -

A-B

A - B ((A - B(k + D) - k")

I k
(A - B(k + D)

which i s the r i g h t - h a n d s i d e of ( 4 . 1 4 ) . Thus (4.14) h o l d s f o r N = 2.

Suppose t h a t i t i s t r u e up t o N - l . Then fo r #,

\l N~2 ( A B i l 2 2 2 2
S(N) = S(N - 1)+ ^ - JJ" I - vSJ ((A - B(Nk+l))- Nlk2)

(N - 1 ) 1 "I
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(N-l).'

Thus (4 .14) i s t r u e f o r a l l N. This e s t a b l i s h e s ( 4 . 1 2 ) . Note t h a t

(A - B)/k - riB > 0 i s equivalent to nk<(A - B)/B if B > 0 [The

i n e q u a l i t y i s obv ious i f B < <?]. In case ( i ) , rik<(A - B)/(1+B)<(A-B)/B

a s A - B > 0. Thus, i n e q u a l i t y (4.6) of t h e theorem fo l lows from ( 4 . 1 2 ) .

( i i ) Again, from ( 4 . 1 0 ) , we have t h a t

N2k2\a
•Nk+1'

2 M

< (A - B) + Z
n=l

A - B(nk + 1) I" - nZk2

nk+1'

N-l
+ Z

n=M+l
(A - B(nk + I))2- n2k2\ \a . , 1 ' , N > M + 2

YlK~rl

M
< (A - B)2 + Z \(A - B(nk + I))2 - n2k2 \ \a

n=l

M r, n-l
(A - B)2+ Z P-7 ]T \^r -

nk+1'

2 ,
(A-B(nk+D) - n )

in view of (4.6)

from (4.14)

Thus, aNk+V
7 M

• 1 - j ~ T1NM! LA
A - B - nB\ fo r N >M + 2.

This i s inequality (4.7) of the theorem.

(iv) In this case, i t follows easily from (4.10) that

2 <(A - B)2, N > 2.

That i s .

A - B
j N > 2.

This with (4.11) above yields inequality (4.8) of the theorem.
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Inequality (4.6) is sharp for the function

f(z) = z(l + Bzk)(A ~ B)/kB
3 i f B*03

f(z) = 3 exp (Azk/k) , i f 5 = 0 ,

while inequality (4.8) i s sharp for the function

~, , \A - B nk
f(z) = 2 exp w^ z
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