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COUNTABLY COMPACT SPACES AND MARTIN'S AXIOM 

WILLIAM WEISS 

T h e relationship between compact and countably compact topological spaces 
has been studied by many topologists. In part icular an impor tan t question is: 
" W h a t conditions will make a countably compact space compact?" Conditions 
which are "covering axioms" have been extensively studied. The best results 
of this type appear in [19]. We wish to examine countably compact spaces 
which are separable or perfectly normal. Recall t ha t a space is perfect if and 
only if every closed subset is a GÔ, and tha t a space is perfectly normal if and 
only if it is both perfect and normal. We show tha t the following s ta tement 
follows from MA +~| CH and thus is consistent with the usual axioms of set 
theory: Every countably compact perfectly normal space is compact . This 
result is Theorem 3 and can be understood without reading much of wha t 
goes before. 

A preliminary version of this article, wri t ten in 1975, has seen wide circula
tion. A happy consequence of this is tha t the original versions of both Theorem 
2 and Theorem 3 have been improved. In particular, K. Kunen gave a bet ter 
proof of Theorem 2 which eliminates the need for complete regularity. Also, 
P . Zenor, G. Gruenhage and J. Rogers, and independently J. Chaber, signifi
cantly simplified the proof of Theorem 3, eliminating the need for complete 
regulari ty and the full use of MA. These improvements are incorporated in this 
article. 

We use the usual set-theoretic notat ion; cardinals are identified with initial 
ordinals. All spaces are assumed to be 7 \ . We employ the terminology of car
dinal functions as in [9]. The Lindelbf degree of X is L{X) = min {K : every 
open cover of X has a subcover of cardinali ty ^ K\ . The density of X is d(X) = 
min {K : X has a dense subset of cardinality K}. The cellularity of X 
is c(X) = sup {K : X has a discrete subspace of cardinality K}. 

T h e following definitions are found in [1]. For x £ Z — Z} t(x, Z) = min 
{X : there is a subset A of Z such tha t \A\ = X and x £ Â}. The tightness of X 
is t{X) = sup {t(x, Z) : Z Ç X and x Ç Z - Z). 

Mart in ' s Axiom is a set-theoretic proposition implied by 2N o = Ki. However, 
it is also known to be consistent with 2X o > Xi; see [13]. We are mainly 
interested in the following two consequences of MA. 

PROPOSITION 1. MA implies both statements (i) and (ii). 
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(i) If X is a regular space such thai c(X) = Xo and nis a regular cardinal less 
than 2N °, then K is a precaliber for X (i.e. if tf/ is a family of K open subsets of X, 
then there is a subfamily %' C.% of cardinality K such that °U has the finite 
intersection property}. 

(ii) If ^ is a family of less than 2No subsets of co such that the intersection of 
each finite subfamily of ^ is infinite, then there exists an infinite D C co such 
that for each F £ &~ we have D \ F finite. 

Part (i) of the above proposition is found in [9]. Part (ii) is sometimes called 
Booth's lemma [Bo]. Let us denote statement (ii) by S. One of the several 
interesting uses of S is the following proposition and its corollary, taken from 
[13] and [7]. 

PROPOSITION 2. Assume S. If X is a countably compact separable space and 
% is an open cover of X with \%\ < 2s°, then there exists a finite subcollection 
<%' Ç °ti such that { Û : U € °U'\ covers X. 

COROLLARY. Assume S. If X is a countably compact, separable, regular space 
with L(X) < 2Ko. Then X is compact. 

As shown in [5], a countably compact, separable, regular space may not be 
compact. In fact, the following lemma easily leads to many such examples. 

LEMMA 1. If X is a countable compact extremally disconnected regular space 
then every infinite subset of X has at least two limit points. 

Proof. Let X be as in the statement of the lemma and suppose A = 
{an : n < œ} is an infinite subset of X with only one limit point y. We may 
assume that for all m ^ n, y ^ an ^ am. Now for each m < co, 

{an : m < n < co} VJ {3/} 

is closed, hence we can define a sequence of open sets { Um : m < co} by induc
tion. Let U0 be an open neighbourhood of a0 such that U0 C\ ({an : 0 < n < co} 
^J {y)) = 0. Let Um be an open neighbourhood of am such that for all n < m, 
Unr\ Um = 0 and Vmr\ ({an : m < n < co} U {3/}) = 0. Let 

U = U {U2k: k < co}. 

U is open, and since X is extremally disconnected, so is Û. Thus y G Û is an 
open neighbourhood of y which is disjoint from {Û^+I : k < co}, contradicting 
X countably compact. 

Example. Let p G 8N — N such that the smallest local basis for p has 
cardinality 2Ko. The existence of such points was proven in [15]. /3N — {p} is a 
countably compact, separable, completely regular space with Lindelôf degree 
2Ko. (3N — {p} is countably compact since every infinite subset of f3N has at 
least two limit points, so that every infinite subset of f3N — {p} must have at 
least one. fiN — [p] must have Lindelôf degree ^ 2 X o , since /3N has a basis of 
cardinality 2Ko. If L(/3N — {p}) = K < 2Ko, then a straightforward argument 
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shows tha t there exists a collection of open subsets (3, such tha t |/3| = K and U 
(3 = {p}. Since fiN is compact, /3 would give rise to a local basis of cardinali ty 
K, contradict ing our choice of p. 

In [14] Ostaszewski constructs a space 6 with the aid of 0> a combinatorial 
principle consistent with the usual axioms of set theory [4]. The space 6 is 
regular, hereditarily separable, countably compact, and not compact . Fur ther
more, d is perfectly normal. However, we will show tha t with MA and 2X ° > Ki, 
we can prove t ha t every countably compact, perfectly normal space is com
pact. Let us begin by examining countably compact, perfectly normal spaces. 

PROPOSITION 3. / / X is a countably compact, perfect space, then s(X) = Ko-
Furthermore, if X is also regular, then t(X) = Ko. 

For the proof see [14] or [17]. The following proposition is in [9]. 

PROPOSITION 4. Suppose X is a topological space. 
(i) X is not hereditarily Lindelof if and only if there is a sub space A C X and 

a well-ordering A — {aa : a < coi}, such that for all j3 < ui{aa : a < /3j is 
open in A. The sub space A is called a right-separated subspace (of cardinality Ki) . 

(ii) X is not hereditarily separable if and only if there is a subspace B Ç X and 
a well-ordering B = {ba : a < wi}, such that for all /3 < cci{ba : a < ^} is closed 
in B. The subspace B is called a left-separated subspace (of cardinality Ki). 

T h e following proposition is very useful. T h e proof appears in [8]. 

PROPOSITION 5. / / A is a right-separated space with s (A) = Ko, then A is 
hereditarily separable. 

A similar proof shows tha t if B is a left-separated space with s(B) = Ko, 
then B is hereditarily Lindelôf. From Proposition 5 we can show the following. 

T H E O R E M 1. / / there exists a countably compact, perfectly normal space which 
is not compact, then there exists a separable one. 

Proof. Suppose X is a countably compact, perfectly normal space which is 
not Lindelôf. There exists an uncountable right-separated subspace A Ç X. 
By Proposition 5, A is separable. Hence A is a countably compact, perfectly 
normal, separable space. Since A is not Lindelof, À is perfectly normal, Â 
cannot be Lindelôf. 

However, if there exists a countably compact, perfectly normal, non-com
pact space, it need not be separable. For example, if we assume O we can 
construct both Ostaszewski's space 6, as in [12], and a compact Souslin line L, 
as in [4]. T h e disjoint union of 6 and L is a countably compact, perfectly 
normal space which is neither compact nor separable. However, as Proposition 
3 and the next theorem show, if we assume MA and 2K o > Ki, every countably 
compact , perfectly normal space is hereditarily separable. This generalizes a 
well-known theorem of I. Juhâsz [9]. 
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THEOREM 2. Assume MA and 2Ko > Ki. If X is a countably compact regular 
space with s(X) = Ko, then X is hereditarily separable. 

Proof. We suppose t ha t X is not hereditari ly separable and derive a contradic

tion. By restricting the a rgument for Theorem 1 in [1] to the countable case 

we can conclude tha t since X is countably compact and regular with s (X) = Ko, 

t(X) = Ko. 
Let {ya : a < coi] be a left-separated subspace of X and let 

Ya = cl {y7 : y < a}. 

Let Y = U { Y a • « < coi} ; F is closed since t(X) = Ko- W e now deal only 
with the subspace Y. 

For each a < coi, let Ua be an open neighbourhood of ya such t h a t 
VaC\ Ya = 0. Since s(X) = Ko, c(Y) = Ko and hence by Proposit ion 1 (i), 
F has Ki as a precaliber. So let S be an uncountable subset of coi such t h a t 
{ Ua ' oc G S] has the finite intersection proper ty . Since F is countably com
pact , for each fi £ S we can define a non-empty / ^ as follows: 

Fp = H {Ûa : a S 13 and a G ^ } . 

We can now inductively pick an increasing sequence of ordinals {/3M : id < coi} 
and a sequence of points {xM : M < coi} such t h a t {xv : v < ju} Ç F ^ bu t 
xM G Ffo. Then {xM : /x < o>i} is left-separated by { F ^ : /x < coi} and right-
separated by {Ffo : M < wij and is hence discrete. Th i s contradic ts t h a t 
s(X) = Ko. 

T h e next theorem shows t h a t it is consistent with the usual axioms of set 
theory t ha t every countably compact , perfectly normal space is compact . This 
answers the question asked in [4; 6; 2 ; and 7]. 

T H E O R E M 3. Assume S and 2N o > Ki. Every countably compact, perfect, regular 
space is compact. 

Proof. Suppose X is a countably compact , perfect, regular space which is 
not Lindelôf. X contains a r ight-separated subspace F of cardinal i ty Ki. Let 
F = { Ya : a < OJI}. For each /3 < coi, there is a set Up open in X such t h a t 
\ya:a^p} Q Up and Up C\ [ya > 0} = 0. 

Since X is regular, for each f3 < coi we can pick an open neighbourhood Vp 
of yp such tha t Vp £ Up. No countable subcollection of { Vp : /3 < coi} can 
cover an uncountable subset of Y. 

Since X is perfect and U { Vp : (3 < coij is open, there is a countable collection 
of closed sets {Fn : n < co} such t ha t U { Vp : /3 < coi} = U {̂ V : w < co}. So 
there is an m < co such t ha t F P\ ,FW is uncountable . 

Let E = Y C\ Fm. Since E is a closed subset of Fm, E is countably compact 
and regular. By Propositions 3 and 5, F is hereditari ly separable, so t h a t E is 
separable. T h u s a contradict ion to Proposition 2 is achieved, completing the 
proof of the theorem. 
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COROLLARY. Assume MA and 2K o > Xi. Every countably compact, perfectly 

normal space is compact. 

Recall t ha t Ostaszewski's space 6 is constructed using and is countably 
compact perfectly normal and not compact. I t should be noted that , using O, a 
space is contructed in [18] which is countably compact, locally compact, perfect, 
completely regular, hereditarily separable and not normal. I t is also of interest 
to note t ha t J. Chaber [3] has proven the following theorem: every countably 
compact space with a Gs — diagonal is compact. 

T h e proposition S is a ' ' combinator ia l" consequence of MA, in the sense of 
[11]. Thus , as is shown in [11], there is a model of set theory in which there is 
a Souslin line, bu t 5* holds, hence every countably compact, perfect, regular 
space is compact . Hence, although it is shown in [16] tha t the existence of a 
Souslin line implies the existence of a normal, hereditarily separable, non-
Lindelôf space; the existence of a Souslin line does not imply the existence of 
Ostaszewski's space B. F . Tall has noticed the following application of Theo
rem 3. 

T H E O R E M 4. Assume MA and 2K o > Xi. If X is a countably compact space 
such that X2 is hereditarily normal, then X is compact. 

Proof. We can assume X is infinite and thus contains a countably infinite 
subset A. Since X is countably compact, A cannot be discrete; hence A con
tains a countable subset which is not closed. By a theorem in [10], X is perfectly 
normal. Thus , by Theorem 3, X is compact. 

This leads to what may be the most elementari ly-stated mathemat ica l 
result, which is consistent with and independent of the usual axioms of set 
theory. 

T H E O R E M 5. It is consistent with and independent of the axioms of set theory 
that there exists a countably compact non-compact space X such that X X [0, 1] 
is hereditarily normal. 

Proof. T h e independence is shown in Theorem 4. To prove the consistency 
let 6 be Ostaszewski's space, as in [14], and consider the space 6 X [0, 1]. 
Since a perfectly normal space is hereditarily normal, the following lemma 
completes the proof. 

L E M M A 2. X is perfectly normal if and only if X X [0, 1] is perfectly normal. 

Proof. The necessity is evident. To show the sufficiency, note tha t X is 
countably paracompact and hence X X [0, 1] is normal, and thus it only 
remains to show tha t X X [0, 1] is perfect. 

Let \Bn : n < co} be a basis for [0, 1]. Let { Ua : a < K) be a basis for X. Le t 
V be an arbi t rary open subset of X X [0,1]. For each n < co, let 
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An = {a G K: UaXBnQ F}. Thus 

F = U {U { E / « X 5 n : a € 4n} : » <co} 

= U {U {£/«:« € i4w} X 5 n : » <co}. 
Since U {Î7a : a G .4J is open in X, 

U {Ua:a G 4,} = U {Fn": m < co} 

where each Fm
n is closed in X. Also, Bn = \J {Ek

n : k < co} where each Ek
n is 

closed in [0, 1]. Hence 

U{Ua:aeAn}XBn=U{Fn
nXEk

n:m<u,k<u>}. 

Thus 

V = U { U {/%/ X £*B : w < co, k < co} : n < co} 

= U [Fm
n X £*n : w < co; k < co, n < co), 

which is an Fa. Therefore X X [0, 1] is perfect and the lemma is proved. 

Using a theorem of P. Zenor in [20], we can prove results similar to Theorem 4 
and Theorem 5, replacing "hereditarily normal" with "hereditarily countably 
paracompact". Using Katetov's theorem in [10] as well, we have the following 
corollary to Lemma 2. 

COROLLARY. The following are equivalent: 
(i) X is perfectly normal. 

(ii) X X [0, 1] is perfectly normal. 
(iii) X X [0, 1] is hereditarily normal. 
(iv) X X [0, 1] is hereditarily countably paracompact. 
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