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ON CANONICAL REALIZATIONS OF BOUNDED

SYMMETRIC DOMAINS AS MATRIX-SPACES^

MIKIO ISE

Introduction

It is the purpose of the present paper to give a natural method of realizing

bounded symmetric domains as matrix-spaces. Our method yields, as special

cases, the well-known bounded models of irreducible bounded symmetric

domains of classical type (I)-(IV), as were already described in the original

paper of E. Cartan [1] (see §3; we follow in this paper the classification

table in [14], not in [1]). A direct application of this method will be to

determine the canonical bounded models of the irreducible bounded symmet-

ric domains of exceptional type; it will be published in another paper (see

[6], [7] for the summary of the results).

I n the Appendix, we indicate briefly that our version on symmetric do-

mains can be generalized and applied to a more general class of symmetric

spaces, the so-called symmetric J?-spaces of non-compact type in the sense

of J . Tits; this was partly stated in Nagano [13] and Takeuchi [16].

We would like to express here our deep gratitude to M. Takeuchi

who read the manuscript and suggested many improvements.

NOTATION: 1) Mp,q denotes the complex vector space of all complex,

matrices of type (p9q); in particular, we write as MPtP = Mp for brevity.

Similarly Mp,q{R) is the real vector space of all real matrices of type (p,q)~

2) Cn is the complex cartesian space of n-dimensions, and in many cases,,

Cn is identified with MnΛ, or with MUn.

3) For hermitian matrices A, B ( ε l r ) , A < B means that all eigen-values,

of A — B are negative. Ir denotes the unit matrix of degree r.

4) For complex vector spaces V, W, we denote by S (V9 W) the complex

vector space of all complex linear mappings of V into W.

Received March 19, 1970.
1) Part of the present work was done in 1964, when the author was staying at the Institute

for Advanced Study, Princeton, under the sponsorship of the National Science Foundation.
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5) For a real vector space g, we denote the complexification of g by gc.

•6) © denotes the direct sum (not the tensor sum) of vector spaces.

7) As for terminology and notation concerning symmetric spaces we refer

the reader mainly to [3]; especially we denote Lie groups by large Roman

letters and Lie algebras by German letters.

§ 1. Harish-Chandra-Langlands realization.

1.1. Let X= G/K denote a hermitian symmetric space of non-compact

type, and Xu = GJK the hermitian symmetric space of compact type which

is dual to X; where G, Gu and K= Gf)Gu should be all real connected

•closed subgroups of a simply-connected complex semi-simple Lie group Gc,

and both of G and Gu are real forms of Gc (see, for detail, [3]). We know

that Xu is, as a complex manifold, of the form GJB for a connected,

complex closed subgroup B of Gc. Small German letters corresponding to

the respective large Roman letters will mean the Lie algebras. Then we

have the so-called symmetric pair (see [3]):

(1) g

(2) Sc = ϊcΘm c .

Moreover, taking a Cartan subalgebra ί) of ϊ c (and also of gc), we get the

Cartan decompositions: Qc== ^®^aCea9 fc = ϊj © Σ/Cfy In the above de-

compositions, we can further decompose mc as

(3) mc = u+ ® t r ιt+ = Σ?>o Cea9 xr = ΣK>oCe-β:

( Σ " designates the summation complementary to Σ ' in Σ )

(4) [ Ic t t^cn*, [ n + , t t - ] c l β , [ t t *n*]= {0}.

In what follows, we will call the decompositions (2) and (3), with (4), a

complex symmetric pair corresponding to the hermitian symmetric spaces X and

Xu. Then we can here regard as B = ϊ © xΓ and that gtt has WeyΓs canonical

base. Following to Harish-Chandra, we consider then the inclusion relations:

GBczN+B(zGc.

We take the quotients of these sets by B from the right, then, using

Gf]B = K, N+ΠB= {1}, it yields the new inclusions:

XdN+dXu.

https://doi.org/10.1017/S002776300001429X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001429X


REALIZATIONS OF BOUNDED SYMMETRIC DOMAINS 117

We denote these inclusion maps by j \ : X->N+ and by j 2 : N+ ->Xu and

then put j=j2°ji, while N+ is a complex vector group and so mapped

isomorphically onto n+ by the inverse of the exponential mapping, exp"1,

through which we will hereafter identify N+ with xx+. Thus we have an

injective holomorphic mapping exp"1 o j γ of X into n+, which we also denote

for brevity by j λ . Hence, the above inclusions now becomes

ή .7*2

(5) X >tt+ >XU.

This relation plays the fundamental role throughout the present paper; so we

want to call it the fundamental inclusion relation for X. We note here tha.tj = j2oj1

is equivariant under the action of G. Furthermore we often identify n+

with the complex cartesian space CN (N= dimctι+) through a suitable base

of n+. Then ji{X) = D is an open set of n+ = CN, and a distinguished

result of Harish-Chandra says that D is relatively compact, namely D is a

bounded symmetric domain in CN.

1.2. In the original proof of Harish-Chandra for the above result, the

explicit form of D is still ambiguous it is later clarified by several authors:

R.Hermann, R.Langlands and C.C.Moore (see [4], [10], [12]). Their results,

which are essential in our later arguments, will be reproduced below after

Langlands (see Lemma 2 in [10]).

Let τ denote the complex conjugation of c$c relative to the compact real

form qu; we can then define, as usual, the positive definite hermitian inner

product {u,υ) in QC by putting

(u,v) = — Φ{u,τυ), (ίί,yεgc)

where Φ denotes the Killing form of gc. Now, for every element z of gc,

Θ{z) will denote the adjoint operator ad(z) in gc and we put z* = — τ(z).

Then we have

LEMMA 1. 1) If se t t* , then z*&ιψ. 2) θ*{z) = θ(z*), where θ*(z) denotes

the adjoint operator of θ{z) with respect to the inner product introduced above. 3)

Two hermitian operators θ*(z)θ{z) and θ(z)θ*(z) have the same norms, and for 2 ε n + ,

we have

β*(z)θ(z) = .θ([z*> *\), ([»

on the space n~
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118 MIKIO ISE

Proof. 1) is obvious from the fact that gu has the canonical base.

2) is verified as follows: (θ*(z)u,v)=(u,θ{z)υ) = — Φ{u,τ[z,v]) = — Φ{u,[τz,τvj) =

Φ(lτz> u, ], τυ) = (θ(z*)u9v). 3) is followed from the fact that xι~ is an abelian

subalgebra of gc.

In the following, the hermitian operator θ*(z)θ(z), or θ([z*,z]) will be

considered as that on n",2) unless otherwise specified.

THEOREM (LANGLANDS). The bounded domain D is explicitly given by

D = {zen+ = CN; θ([z*, z\) < 2IN}.

(cf. Notation 2) in the Introduction)

§2. Realization as matrix-space.

2.1. We shall now consider the irreducible hermitian symmetric space

of type (lp,q); in this case, Xu is the complex Grassmannian manifold Vp,q=U

(V + q)IU(p) x U(q), n+ can be canonically identified with Mv%q (see Notation)

and X is holomorphically isomorphic to the bounded domain DPtq with the

ambient space Mp,q: Dp,q= {Z^Mp,q; *ZZ<Iq}. The fundamental inclusion

relation in this case is the following one:

(6) X >Mp,q—>Vp,q,

where jx{X) = Dp,q. All these statements shall be showed explicitly in §3.

The mapping j 2 in the above (6) is given by the following rule: For every

where the right-hand side is a ^-dimensional linear sub-space of Cn, and

Vp,q is here regarded as the totality of such sub-spaces of Cn.

I n this section, we present the following commutative diagram:

iA^
(7) i> 1P

ζ-Άf > V
qv— -ir-* p, q τ r ί>»9 '

2) The hermitian operator θ*{z)θ(z) on 8C maps tt+ to {0}, both le and XT into themselves
respectively. Further we can show easily that the norm of θ*(z)θ(z) coincides with those of
θ*(z)θ(z) considered as the operators on ϊ c , or on Π~ respectively.
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REALIZATIONS OF BOUNDED SYMMETRIC DOMAINS 119

namely we will introduce the mappings p; the left-hand /) is a complex

linear mapping and the right-hand p a holomorphic one.

2.2. Tp begin with, we take up a non-trivial irreducible holomorphic

representation p of Gc into GL{n, C) (n > 1), and denote by pκ the restriction

of p to Ke. Then, pκ is completely reducible; we decompose (pκ,V) into

the direct sum of several number of representations (pi9Vi) (1 < i < s) after

Matsushima and Murakami [11] (cf. Part II, 5) :

(8)

The definition of {pί9Vi) is as follows: Put VΊ = ( ί i e F ; ρ(x)u — 0, for all

ίcett+} and Vi = ^(tt")^-! (z > 2) inductively; namely Vι is the linear span of

all p(x)u9 for XGXΓ and M E ^ - I . Then, these Vi constitute the direct sum

decomposition of V as in (8).

LEMMA 2 (MATSUSHIMA AND MURAKAMI).3) For the above decomposition (8),

it holds that

t (1 < t < s); ?(nTiC7w, flir^cV, (2 < i < 5),

ϋ) (/°i>VΊ) w irreducible, /̂zrf ίfe highest weight of px coincides with that of

p with respect to a common Cartan sub algebra ΐ) of έoίA tc and QC.

In the decomposition (8), we put dim Vi = n4 (1 < i < 5), and in par-

ticular n! = 33, n2 = r and n—jf) = q (=:Σli=2^i) Furthermore, we take and fix,

once for all, an orthonormal base of V with respect to a p{Gu)-invariant

hermitian inner product as the totality of those of respective Vit By use of

these fixed bases of Vi and V, we shall identify every linear transformation

or linear mapping with respect to V, Vi with the corresponding matrix

respectively; in particular, we identify thus GL{V) with GL{n,C). Then,

from Lemma 2 we see

3) A somewhat different version on this lemma is found in Murakami's lecture note at
Chicago University, "Cohomology groups of vector valued forms on symmetric spaces" (1966).
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(9)

n2

ί

n2
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s

Next we shall identify:

. , , = 8(72®

P
V

Furthermore, if we put
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REALIZATIONS OF BOUNDED SYMMETRIC DOMAINS 121

GL(n:nl9 ,Λ,, C)= {AΪΞGL(V);

GL(n:p,q, C) = {A(=GL(V); A(V2@

®VS
s)},

then, GL{n: nί9 ,ns, C)aGL{n: p,q, C), F p , q is identified with GL{n,C)l

GL(n: φ9q9 C) and β(B)c.GL(n: nί9 •••,**„ C), since b = ϊ c © it" and B = KCN~.

Hence, /δ» naturally induces the holomorphic mapping p:

p:Xu= GJB Vp,q = , C)/GL(w: p, ^, C).

We can then prove that p is injective, provided that Gc is simple, or more

generally the restriction of β to any simple component of Gc is not trivial

(see [5], p. 231). From this it follows that, for any irreducible X, p is al-

ways an injective holomorphic mapping. Next, the linear mapping p of \ι+

into Mp,q will be defined in the following way: For Zeit+ we may write

β(Z), as in (9),

(0 Zi

0

For this, we denote by p(Z) the matrix Z^Mp>r which is likewise the Mp,q-

component of β{Z). Then we see that p can be regarded as the differential

at the basic point of the former mapping ρ:Xu—>Vp,q, and from this

follows that the linear mapping p is injective and the diagram (7) is com-

mutative.

2.3. Remark. In the decomposition (8), it always holds that 5 > 2; in

case 5 = 2 , we note that Mp,q = MPtr. Indeed, if we take, as β, the irre-

ducible representation of the lowest degree for each irreducible type of X,

then it holds:

5 = 2, for the type (I), (II), (III).

5 = 3 , for the type (IV), (V).

5 = 4, for the type (VI).

These facts will be showed for the classical type (I)-(IV) in §3, and for

the exceptional type (V), (VI) in [6], [7].
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122 MIKIO ISE

2.4. From the arguments in §2.2, we have a somewhat sharpened

form of the diagram (7):

(70
x-l>*>

A,
V

In what follows, we call the above (7') the fundamental diagram for X and p;

thus we get the embedding of X into MPfT, the mapping p o j \ (we write

simply p o j x — p in the sequel). Through this embedding p we shall derive

a concrete form of Langlands' theorem: For this sake, we identify p{Λ)=Λ

(.Aegc) for brevity, and take Z^p{n+), X^ρ{n~). Then, Z*^p{xΓ) and we

can write

Z =

ί θ

Xs-i 0 J

0

z\

zu o J
where Xί9 ZfeJlfn<+lin4(2 < f < s), so that we have

€=£&), (see (9)).

Z s-χZs-\ i

From this we infer that the Xrcomponent of Θ{[Z*,Z])XGP{XΓ) is given by

{Z\Z,)X, + X,(Z,Zt\ if s = 2,
(10)

On the other hand, the linear mapping X—>XU of ρ{n~) into Mr,p is

injective, since the embedding p is injective; so we may regard 0([Z*, ZJ) as

the linear transformation on the space Mr,p{n~)= {X^Mr^; XG|5(U")}. AS

is shown later in § 3 and in [6], [7], when Xu is one of the irreducible type

(IV)— (VI) and p is the irreducible representation of Gc of the lowest degree

(hence 5 > 3), the following holds:

nx = p = 1, M r t ί, = C r and Arr.p(tt-) = Mr,p = Cr.

Therefore, in these cases, our transformation 0([Z*,Z]) takes of the form:
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REALIZATIONS OF BOUNDED SYMMETRIC DOMAINS 123

Θ([Z*, Z\): Xx — > (Z,Z? + Z\ZX - Z2Z%)XX

hence, to Θ([Z*,Z~\) corresponds the hermitian matrix

[ZλZ\ is a sealer matrix in Mr).

We write here as Zx — z e Cr = MUr; then we can state the following

result:

THEOREM 1. (i) For the irreducible bounded symmetric domains of type

(I)-(III) , the simplest bounded models in our sense are presented by

D= {Ze/>(n+); Z*ZX<I},

where p is the irreducible represntation of the lowest degree.

(ii) For the domains of type (IV) — ( V I ) , the simplest ones in the same sense as

above are presented by

D = {z(ΞCr Z1Zt + Z\Z, - Z2Z\ < 21 r}.

For the statement (i) in the theorem, we shall verify it case by case

in the next section 3.

DEFINITION. The simplest bounded model D obtained in Theorem 1

for each type of irreducible bounded symmetric domain X will be called

the canonical bounded model of X.

2.5. As for our realization D = ρ(X), for any p, of a bounded

symmetric domain in MPtr, we state here an important property as to

holomorphic automorphisms: For every g^G and r e l , we write as (with

respect to a base of V as chosen in § 2,2)

then we know that p(g-χ)= p{g)-p(x) (see §2,2).

THEOREM 2. (^ |Γ) Z = {ΛZ + B) {CZ + D)"1 namely every holomorphic

automorphism p{g)^ of D acts as a linear fractional transformation of the vector space

4) It is to be noted that g belongs to the connected Lie group G.
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Proof. To begin with, we recall that Vp,q is identified with the set of

all ^-dimensional linear subspaces of Cn. This identification will be done

in the following way: Let 2 denote the set of all linear isomorphisms L of

Cq into Cn\ namely we put

S = |LeM W l 3 ; rank L = q},

then GL{q,C) acts on S from the right as linear transformations, and the

quotient 2/GL{q, C) can be considered as the set of all ^-dimensional subspaces

of Cn. Thus we put here V p%q = 2jGL(q, C) and denote by π the canonical

projection of 2 onto Vp,q. We define further a subset £' of 2 by

,q, det(t ) ^ θ ) ,

then £' is left invariant under the action of GL{q,C) and the quotient

2rjGL{q,C) is naturally identified with Mp%q\ namely, for L =κMeS', we put

π{L) = uv"1. On the other hand, the inclusion £ ' c £ induces the inclusion

mapping: Mp,q—>Vp,q, which is no other than j2 in (7), as is easily seen.

Hence we have the commutative diagram:

2' c S

l I"
h

MPtq > Vp,q

Now we let ρ(g) act on S from the left as a linear transformation; p(g)2' is

then not always contained in 2', but we infer that p{g)π'1{D)dπ~1(D) {DczMp,q)

and that π(p(g)L) = p{g)-π(L) for L = (^^π'\D). So, denoting π{L) = uυ-λ = Z

(~p{x) for some x^X), we have

= {Au + J5t;)(C« + Dv)'1 = (ΛZ

Our theorem is thus proved.

Remark. Theorem 2 is described in [14] in the case where X is one of

the classical type (I) — (III) and p is the natural representation of the clas-

sical groups. We refer also to H. Klingen [8], [9] as for these facts. The

proof presented above is just a rearrangement of H. Cartan [2] for the case

of type (III). We note here that T. Nagano communicated to me that

Theorem 2 had been obtained by T. Yokonuma independently.
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2.6. We know since A. Koranyi and J.A. Wolf (Ann. of Math., 81

(1965), 265-288) that every bounded symmetric domain X has the unbounded

model; namely it is realized as a Siegel domain of the second kind in n+,

which is a generalization of the so-called SiegeΓs generalized upper half-plane

{ZεMw; ZZ^Z, Im{Z)>0}. Such an unbounded domain Dc is obtained

from Harish-Chandra's domain D (see §1) through a transformation c^Gu

which is called the Cayley transform of D: Dc = jγcjz{D). Therefore the

conjugate group cGc'1 — Gc acts on Dc as the automorphism group. Then,

taking the maximal compact subgroup cKc'1 of Gc instead of K, we have

an analogous decomposition of V as in (8): V = V[ ® ® V't9 VI = p{c) Vt

(1 < i < s). Thus, writing p(cgc~1) = (J£ jyj(g^G) with reference to this de-

composition as in Theorem 2, we see immediately that the proof of Theorem

2 is valid also for this case, and that Picgc"1) acts on Dc as a linear fractional

transformation. This fact is well-known for SiegeΓs generalized upper half-

plane (see [14]).

§3. The canonical models of irreducible bounded symmetric

domains of calssical type.

In this section we shall determine the canonical models of the domains

of classical type. As we have clarified in the preceding section, the irre-

ducible domains of type (I) — (III) and that of type (IV) are somewhat

different to handle (see Theorem 1) so we shall devide the following argu-

ments into two cases:

(1°) The domains of type (I) — (III). The Lie algebra $c is of classical

type and we choose, as p, the identity representation that is of the lowest

degree; so we identify £(gc) with gc itself, etc. Then we see 5 = 2, V=

as for the notation in §2; in fact, we have:

3c = j (c ^ ) e M p + 5 ; A^MP, B(=MPtq9 C^Mq,p9 D<=Mq which satisfy

the condition (11) given below],

where n* are to be identified with the totality of B, or C, respectively.
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While the compact form $u is here presented by QU = £cnu(p + #), so the

complex conjugation τ with respect to gtt is given by

- (A B
zv

The condition in the definition of Q€ are given as follows:

For the type (Lp,q), Trace (A + D) = 0.

(11) For the type (ΠJ, p = <? = n, Z> = - % fB = - B, *C = -C.

For the type (IΠJ, p= q= n, D= —Ά, *J3 = 5, JC = C.

Now, for Z = (Q Q) GΪI+, the hermitian operator 0*(Z)θ(Z) is given by

Θ*(Z)Θ(Z): X—>(Z*Z)X + X(ZZ*)9

where X = (^χ ^ e r (see §2) and Z* = -τ(Z) = CZ.

Now, for the type (lp,q), the transformations X—>{Z*Z)X and X—>

X(ZZ*) commute with each other, and the eigen-values of the former one

are p-copies of those of the hermitian matrix Z*Z, and, in like manner, the

eigen-values of the latter are ^-copies of these of ZZ*. On the other hand,

both Z%Z and ZZ* have non-negative common eigen-values with their multi-

plicity. Hence we have the canonical model:

Dv.q=p(X)= [Z(=Mv,q; Z*Z<Iq (or, ZZ*</,)}.

For the type (IIJ, p(n+) = n+ is identified with {ZeMΛ; *Z= —Z] and for

the type (IIIJ, p(n+) with {Z^Mn;
 ιZ-Z\\ so in each case, the operator

d*(Z)θ{Z) is the natural prolongation of the hermitian operator ZZ* in Cn

to the respective matrix-space ( = the tensor space of type (1,1) consisting

of skew-symmetric ones with respect to the canonical non-degenerate inner-

product, for the type ( I I J ; that of symmetric ones, for the type (IIIn)).

From this we infer that, for the type (IIJ, the eigen-values of Θ*(Z)Θ(Z)

consists of λι + λj (1 < i < j < n), and for the type (IIIn), those consist of

λi + λj (1 < /, j < n), where λι (1 < i < ή) denote the eigen-values of Z*Z (or,

of ZZ*). While, in the former case (IIJ, we see the following fact:

LEMMA 3. For any skew-symmetric matrix Z of degree n>2, every positive

eigen-value of Z*Z has the multiplicity not less than two.
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Hence, for the both types (IIJ and (IΠJ, the canonical models of our

domains have to be written as

D= P(X)= {Ze^(tt+); Z*Z<In (or, ZZ*<In)}9

under the identification of p{n+) indicated above.

(2°) The domain of type (IV). The Lie algebra gc is isomorphic to

o(n + 2, C), and ϊc to o(n,C)®o(2,C). We shall be confined here to the case

n = 2m (m>l) for brevity (the case n = 2m + 1 will be treated in parallel)

namely

((^ £ ) + 1 , Ύ=-Y, tZ=-z}.

Now we take the representation p of gc as

P(A) = T^AT; T =

Then, we can put

Ua \

P(n+) =

:

Vm

, y" = •

Vn

<=cm

z', z", 0 •

0 .

r

l\δ,-V',-V,o

where the compact form jδ(fin) is of the form /o(gc)nu(M + 2). Hence, for the

corresponding complex conjugation r, we see that, for

10, z', z", 0 \
I —z"\

\ o /
/o \

\0, -f", - z ' , 0

Namely, using the notation in §2, we get

Z, = (*',*") = *, Z ί = β ' , ) = ί i
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2 = ( t F j = = — j z, Z j = v — z j — z ) — — z j i o r

It follows then that

Z2Zf = /*»/ = Kz^

Thus, the hermitian matrix to be considered is of the form:

7 7 * i 7*7 7 7* — llril2 . T 4- H
Δ\Δ i -r Z iZi Z2Z 2 — ||Z|| J-n τ~ i i z ,

where Hz= Zr — JZ'J, Z! = Z?Zi. We note that Zr = (Mj) may have only

one non-zero eigen-value a = ||z||2 (>0); hence we infer that

rank Hz < rank 2" + rank JZ'J < 2.

Let i be a non-zero eigen-value of Hz, then Hzu = λu for some vector

u ψ 0). So, using fl^w = λΰ and Hz— — JHJ, we get

This shows that — ̂  is also an eigen-value of Hz and that the eigen-values

of Hz consist of {λ (> 0), — λ and 0, ,0}. Now we can compute the (pos-

sible) non-zero eigen-value λ of Hz. The eigen-values of HI consist of

{λ\λ\O- ,0}, so we have λ2 = ~ - Trace//,2. On the other hand, from

HI = Z/2 + JZV - Z'JZ'J-JZΊZ' follows that Trace H\ = 2{Trace Z / 2-Trace

{Z'JZ'J)} = W. Thus we have to compute Λ2 = Trace Z/2 - Trace (Z7)(Z7);

in fact, we have

Trace Z/8 = Σ?.,-i |M;I 2 , Trace (Z'J)(Z'J) = *Ί$.j-i (ZiZjzi+mzj+m). Namely,

the canonical model of our domain is the set of all z^Cn satisfying the

inequality a + λ < 2. However, we transform the coordinates (zlf , zm,

• , zn) of z by

(9 . . . 9 \ — { ? ' . . . 9 f \ ( I ™ I™ ^
V — 1 -Λiw — V — 1 l m/

As for the new coordinates {z[, ,2ί)( = z'\ we see
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Hence we get λ2 = 4 Σ*.*-i ί K ZjΊ2 — (zUj)2} = — 4 Σί<* {«?'«;' + zV*Y ~~ 2

z'iZiZjZj} = — 4Σi<i(^ί^ί ~ zί^})2 = 16Σί<j{Im(^i^j )}2; namely λ = 4[Σi<y { I m

1

(^i^ί)}2]2 Thus the inequality in Theorem 1, ii) is

j_

a + λ = 2||zΊI2 + 4 [Σί<i{Im (iδ^ί)}2] 2 < 2.

Thus the canonical model of our domain is the set of all z e Cn satisfying

this inequality; therefore it is equivalent to

1

This realization of the domain of type (IVJ coincides with the usual one

which has been known since E. Cartan [1], because of the following easily-

checked lemma:

LEMMA 4. For z^MnΛ = Cn, the condition

zz γ l + I zz\

is equivalent to the following single inequality:

Proof. This lemma is immediately derived from the relation

hence we leave it to the reader.

Appendix

1. In this Appendix, we shall sketch a generalization of our arguments

in §§ 1-3 to a class of real symmetric spaces the so-called symmetric R-spaces

(see [16]). Materials are mostly provided in [16], so we will recall here some

notions stated in [16]; Chap. Ill, §1 (see also [13]). We denote by 1 = G\K

and by Xu = GJK, respectively, the non-compact form and the compact

form of such a space. Typical examples are the irreducible symmetric

spaces of type {BDI)Ptq in the classification table of E. Cartan (see [3])

namely X= SO0{p,q,R)ISO{q,R)xSO{p,R) and Xu = O{p+q, R)IO{p, R) xθ{q, R).

T. Nagano, H. Matsumoto and M. Takeuchi have proved, analogously to

the case of hermitian symmetric spaces, that there exist likewise the canoni-
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cal embedding relations for any symmetric i?-spaces X and Xu;

(12) X-^xx+-^->Xu.

To be more pricise, Xu can be written as Xu — G'\Ur for a real semi-

simple (or, reductive) Lie group Gr and its parabolic subgroup Uf, and

furthermore if we take a maximal compact subgroup Gu of G', then Gr=GJJr

and Xu = GJK, K= GuΓiUf. While, we have a subgroup G of G' which is

isomorphic to a real form of the complexification of Gu and contains K as

a maximal compact subgroup, for which we get the non-compact symmetric

space X— G\K that is dual to Xu = GJK. Under these situations, we can

show the following relations: First, the Lie algebra a' is decomposed into

the eigen-spaces of a d Z (where Z denotes some element in a Cartan sub-

algebra; see [16]); namely

8' = n+ ® ϊ' ® tt",

where tt* denote the sum of eigen-spaces corresponding to positive (resp.

negative) eigen-values, and V that corresponding to zero eigen-value. Then

f 0 jt~ = u/ may be considered as the Lie algebra of U\ while n* generate

vector groups iV± and V the reductive subgroup K'Q of G\ Further, there

exist (not nee. connected) subgroup K' of Gr such that Ur = K'N~ (semi-

direct product) and its connected component of the identify is K'Q. For these

Lie subgroups of G', the following relations hold:

u = K, GaN+U' (J\Γ+ntf'= {1}).

From the last inclusion relation we have GUfczN+UfczGr; thus it yields the

following:

GIKaN+aG'IU',

where we can identify iV+ with n+ through the exponential map; thus get-

ting the relation (12) analogously to (5).

2. We will now illustrate the subgroups and subalgebras introduced

above in the case of the spaces of type (BDI)PιQ: In this case we put

>q>l, p + q>4), then

G' = GL(n, R), Gu = O(n, R),

G =
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U'={c β)MeGL(i),Λ), C<ΞMq,p(R), D<EGL(p,R)},

Kf = [ g 1
 D)^U'\ = GL(p,R) X GL(q,R),

>,R), D<=O(q,R)}=O(p,R)xO(q,R),

N+ = ((θ* f); S e *W*))> #' = ((c

Therefore, as for the corresponding Lie algebras we have, for instance, as

below:

( u" = {(°c J);

Further, put m = ί(?g o ) G ^ | — M9t<ι{R)9 then (!,m) provides the symmetric

pair correspondiig to the symmetric space X— G/K.

From these materials, the inclusion relation (12) now yields the following

special one:

(13) X-^MP.q(R)-^Xu = VP,q(R),

where we have identified n+ with MP,q(R) as in § 2 and denoted by VP,q{R)

the real Grassmann manifold. Then we can show, as in § 3, that ji(X) = D

is realizable as a real bounded domain:

DP,q= {Z^MP,q(R); tZZ<Iq\\

in case # = 1, X = DPtl is the real hyperbolic space and Xu = VP,i(R) the

real projective space, of p-dimensions, respectively.

3. Now let p be an irreducible representation of Gr into GL{n,R)

(n = p + q) such that p sends U' into GL(n\ p,q,R). It then induces a real

analytic mapping p of Xu = G'lU' into VP,q(R) = GL{n,R)IGL{n: p,q,R), which

gives rise to the following commutative diagram in the quite same manner

as in (7):
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X

(R) > Vφ,q(R).

All these procedure are carried out by using the complexification of (14),

which is no other than a diagram of type (7), as is readily seen from [16],

p. 181 (we leave the detail to the reader). In particular, by taking the

complexified representation of p, we can show that our mapping p's are

injective; X is therefore mapped injectively into M9tq(R). Here we note that

the real analogue of Lemma 2 in §2 will be also valid (cf. Foot note 3)), and

so we infer that the image p(X) = D is a real bounded domain in MP,r{R)

as is known from [16], Theorem 5, p. 182, or by using the complexification

and the arguments in §2. In the bounded model D of X thus obtained,

every element of p{G)aGL{p + q,R) also acts on D as a linear fractional

transformation:

The proof of this fact is done in the same way as that of Theorem 2, or

by using the complexification of (14) and Theorem 2. A simple example

of this result is exhibited in Takahashi [15], p. 372, where X is of type

{BDI)v,q with p = 4, q = I, by taking as the ambient space M4tl{R) the real

quoternion algebra Q; indeed D is there given by D={u&Q; ||#||<1}, \\u\\

denoting the norm in the sense of quoternions.
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