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LOCAL BIFURCATION 
OF CRITICAL PERIODS IN VECTOR FIELDS 
WITH HOMOGENEOUS NONLINEARITIES 

OF THE THIRD DEGREE 

C. ROUSSEAU AND B. TONI 

ABSTRACT. In this paper we study the local bifurcation of critical periods of pe
riodic orbits in the neighborhood of a nondegenerate centre of a vector field with a 
homogeneous nonlinearity of the third degree. We show that at most three local critical 
periods bifurcate from a weak linear centre of finite order or from the linear isochrone 
and at most two local critical periods from the nonlinear isochrone. Moreover, in both 
cases, there are perturbations with the maximum number of critical periods. 

1. Introduction. We consider the bifurcation of critical periods of periodic solu
tions in the neighborhood of a nondegenerate centre of a vector field in the form: 

x=-y+ £ VV 
(1.1) j+l=3 

y = x + £ Cjix
Jyl. 

j+l=3 

These systems have been studied in the literature; it is known [S] that at most five limit 
cycles can appear in a nondegenerate Hopf bifurcation at the origin or from a perturba
tion of a centre. Necessary and sufficient conditions for the centre have been given by 
Malkin [M] and isochronous systems have been determined by Pleshkan [P]. The study 
of critical points of the period of an autonomous system with a centre is an important 
one; it has been studied by several authors [C.S], [G], [C.J]. These three papers consider 
the one degree of freedom "kinetic + potential" Hamiltonian system with polynomial 
potentials. [C.J] also addresses the problem of the maximum number of critical periods 
bifurcating from the centre of a quadratic system and gives a complete answer to that 
problem: at most two critical periods bifurcate from a weak linear centre of finite order 
or from the linear isochrone and at most one critical period bifurcates from a nonlinear 
isochrone. 

Here we address the same question for centres of systems with homogeneous nonlin-
earities of the third degree, using a method similar to the one used for Hopf bifurcation 
and we give a complete answer: at most three critical periods bifurcate from a weak cen
tre of finite order or from the linear isochrone and at most two critical periods bifurcate 
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474 C. ROUSSEAU AND B. TOM 

from a nonlinear isochrone. As in the quadratic case, we identify the centres leading to 
the maximum number of critical periods. 

2. Preliminaries. Let X(;c,y, A) be a family of plane analytic vector fields para
metrized by À G W1 with a nondegenerate centre at the origin. We call P(r, À) the min
imum period of the periodic trajectory through a nonzero point (r, 0) of a sufficiently 
small open interval / = (—a, a) of the jc-axis. The following properties of P(r, A) have 
been proved in [C.J]. 

1. If we define P(0, A) = 2TT, for A G IR", then for A* G Rn there exists an open 
neighborhood W of A* and an open interval U containing r = 0 such that P(r, A) is 
analytic on U x W. Hence, we may write: 

oo 

(2.1) P(r,A) = 27r+5>*(A>*, 
k=2 

for \r\ and |A — A*| sufficiently small and/?* E U[\\,..., An], where U[\\,..., A„] is the 
noetherian ring of polynomials in the variables Ai, . . . , A„. 

2. For k > l,p2k+\ £ (P2,P4, • • • ,P2*X t n e ideal generated by p^u for / = 1, . . . , k over 
IR[Ai,..., An]. Moreover the first k > 1 such that/7^(A) ^ 0 is even. 

DEFINITION 2.1. Let us define F(r, A*) = F(r, A*) — 27r, for a parameter value A*. 
1. If F(0, A*) = F'(0, A*) = • • • = /*2*+1)(0, A*) = 0 and /*2/:+2)(0, A*) ^ 0, then the 

origin is a weak linear centre of finite order k. 
2. If F^k\0, A*) = 0 for each k > 0, then the origin is an isochronous centre, i.e., all 

periodic orbits surrounding the origin have the same period. 

DEFINITION 2.2. We say that k local critical periods bifurcate from the weak centre 
corresponding to the parameter A* if: 

1. for every a > 0, sufficiently small, there exists a neighborhood W of A* such that, 
for any A in W, P(r, A) has at most k critical points in U — (0, a). 

2. Moreover, any neighborhood of A* contains a point Al such that P(r, A1 ) has exactly 
k critical points in U = (0, a). 

DEFINITION 2.3 [C.J]. For A* G V(p2,P4, • • • ,P2k) = {A | pu(\) = 0, i = 1, . . . , k] 
and /?2*+2(A*) ^ 0, the period coefficients P2,P4,.. • ,/?2£ °f ^ are said to be independent 
with respect top2k+2 at A* when the following conditions are satisfied: 

1. Every neighborhood of A* contains a point A such that P2kW ' P2k+2W < 0. 
2. The varieties V(p2,P4,•• • ,/*2/)> 7 = l,...,(fc — 1), are such that: if A G 

V(P2,P4, • • • »P2/)> and P2J+2W 7̂  0, then every neighborhood of A contains a point 
A2 G V(p2,P4, • • • ,P2/-2) such that/72j(A

2) • pij+iiX) < 0. 
The following theorems have been proved by Chicone and Jacobs [C.J]. 

FINITE ORDER BIFURCATION THEOREM. From weak centres of finite order k at the 
parameter value A* no more than k local critical periods bifurcate. Moreover, there are 
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perturbations with exactly j critical periods for any j < k, if the coefficients p2, PA,... ,p2k 
of F are independent with respect topik+i at \*. 

ISOCHRONE BIFURCATION THEOREM. If the vector field X has an isochronous centre 
at the origin for the parameter value A* and if for each integer n > 1 the period coeffi
cientp2n is in the ideal (pi,p\,... ,p2kiP2k+i)over ^{^1 > • -> ^n}\*> the ring of convergent 
power series at A*, then at most k local critical periods bifurcate from this isochronous 
centre at A*. 

Moreover, ifp2,p4,... ,p2k are independent with respect to p2k+2 at A*, then exactly] 
local critical periods bifurcate from the centre at \*forj < k. 

3. Vector fields with a homogeneous nonlinearity of the third degree. We con
sider a vector field in the Sibirskii's form (Sx): 

x = -y- (A30x
3 + A2\x

2y + Anxy2 + A03y
3) 

y = x + B30X3 + B2\x
2y + Bl2xy2 + B03y\ 

with 

^30 — a3 +
 a2 ~ a\\ An — a6 — 3^4; A\2 = 3^3 — 3#2 + 2«i — a7\ AQ3 = a4 — as, 

#30 — «4 +a$\ B2\ = 3«3 + 3«2 + 2tzi; B\2 — a§ — ?>a4\ BQ3 = a3 — «2 ~ a\. 

We denote by A = (^i, «2, «3, «4, «5,^6, «7) G R1 the bifurcation parameter. 
The centres are identified in the following theorem. 

THEOREM 3.1 (MALKIN [M]). (Sx)xm7 nas a centre at the origin if and only ifX is 
in the union of the following three sets: 

Sj = {A G R1 I a\ = a7 = 0}, 

SH = {A G R7 I a3 = a5 = a6 = a7 = 4(a2
4 + a\) - a\ = 0}, 

Sin = {A G R7 I a2 = a5 = a7 = 0}. 

Let us define S = 5/ U 5// U £///. 

DEFINITION 3.2. (5A)AGR7 n a s a céwfre of type I (respectively //, III) if the system is 
nonlinear and A G 5/ (respectively 5//, 5///). 

We now turn to the computation of the period function P for the parameter value A* in 
5. The computer algebra system "Mathematica" was used for most of our computations. 
First, eliminating t from system (Sx)xm7 an(* changing to polar coordinates x — rcos 9, 
y = r sin 0, we get: 

dr = rSvKfl.A) 
( " j dfl l+r2w2(0,A) 
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where 

wj(0, X) — (a\ — a2 — a^) cos4 0 + (4^4 + as — a^) cos3 0 sin0 + (6«2 + «7) cos2 0 sin2 0 

+ («6 — 4^4 + as) cos 0 sin3 9 + (a?, — a2 — a\) sin4 0, 

w2(0, A) = (a4 + a5) cos4 0 + (4fl3 + 4fl2 + « 1) cos3 0 sin 0 + (2a6 - 6^4) cos2 0 sin2 0 

+ (4^3 — 4«2 + «i — ai) cos 0 sin3 0 + (a* — as) sin4 0. 

This solution r — r(0, A) of equation (3.1) with initial conditions r(0, A) = ro > 0 may 
be locally represented as a convergent power series in ro: 

00 

(3.2) r(0,A) = X>(0,A)r*. 

Because of the symmetry we have uy(9, A) = 0,j > 1. 
Substituting (3.2) into (3.1), we obtain the coefficients Uk(0, X),k> 1, by successive 

integration; the first four coefficients u\(9. A), «3(0, A), 1*5(0, A), «7(0, A) are calculated by 
integrating the following differential equations: 

u[=0, « i (0 ,A)=l , 

u3 =wi(0,A), w3(0,A) = 0, 

^ = -wi(0, A)[w2(0, A) - 3w3], "5(0, A) - 0, 

uf
7 = wi(0, A)[v^(0, A) - 5w2(0, A)w3 + 3(u2

3 + u5)l w7(0, A) = 0. 

Let us denote by lr the closed trajectory through (r, 0). 
The period function P(r, A) is given by: 

P(r, A) = /" A 

Jo l+r2w2(6,X) ' 

and may be represented by the following formula: 
00 

P(r,A) = 27r + 5>2ik(A>2*, 
k=\ 

for r sufficiently small and A in the neighborhood of the point A* corresponding to a 
centre, i.e., X in S. 

The first four coefficients p2,p4,P6,p%, have the following expressions: 

p2(A) = - |2 7 rw2(0,A)J0, 

r27-
/74(A) = / W2(W2 — 2^3) d9, 

p6(X) = J (~w2(ul + 2w5) + w\(Au3 - w2)) d0, 

Ps(X) = / (-2w2(w3«5 + w7) + 2w2(3w2 + 2u5) + w\(w2 ~ 61*3)) d0. 

We prove the following theorem: 
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THEOREM 3.3. I. A weak centre of type I has order at most one. Any such centre of 
order one has perturbations with exactly one critical period. 

2. A weak centre of type II has order at most one. No local critical period can bifurcate 
from it, except if it belongs to the intersection of Su and S m in which case one critical 
period bifurcates from it. 

3. A weak centre of type HI has order at most three. For any such centre of order k < 3 
and each] < k, there exist perturbations with exactly j critical periods. 

PROOF. 1. For a centre of type / we get: 

If a6 = 0> then we have 

P2(A) = ~2a^ 

p4(X) = —(a\ + Aa\ + aj+ a]). 

Hence/?4 = 0 if and only if at = 0, / = 2,3,4,5. Thus the corresponding weak centre has 
order at most one. By the Finite Order Bifurcation Theorem, at most one critical period 
can bifurcate from it. Moreover, a perturbation with one local critical period is given by 
a system in the form: 

x=-y- [(a3 + a2)x
3 + (e6 - 3a4)x

2y + (3a3 - 3a2)xy2 + (a4 - a5)y
3] 

y = x + (a4 + a^r* + (3a3 + 3a2)x2y + (e^ — 3a4)xy2 + (a3 — a2)y
3, v 

if £6 > 0 is sufficiently small. In this case we have/?2 - P4 < 0. 
2. For a centre of type //, we have 

P2(X) = 0, 

Then we may write 

P4(A)= -(aj+a2
4). 

P(r, A) = 2TT + ^{a\ + a\)rA + • 

As in [C.J], since/?4 is positive definite, positive zeros of P'(r, A) are zeros of 

11 i f A = 0 , 

which is continuous and nonzero on some compact neighborhood of the origin in R x IR7. 
Hence there is no critical period bifurcating except in Su D Sm. 

3. We now turn to the case of a centre of type /// and compute the period coefficients. 
Each coefficient, still denoted by p2n, is reduced modulo the ideal of the previous coef
ficients. 

7T 
p2(\) = - - Û 6 , 

7T 
p4(X) = - T ( ( 0 I - 6a3)(fli +4a3) - 604), 

Pe(X) = —-a3a4{ax +24a3), 

Ps(X) = "j-jT^i _ 66fl3)(fli - 6fl3)(ai + 4a3)(ai + 24a3). 
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For further purposes we define 

4s(A) = (a\ — 6a3)(a\ +4a3)(a\ + 24*23). 

Let us note that, under the condition/72(A) = /?4(A) = /7Ô(A) = 0, 

/78(A) = 0 ^ </8(A) = 0. 

The analysis of the different ways to make p2 = P4 = P6 = 0 leads to the values of the 

finite order bifurcation points and the isochrone points using the results of Pleshkan [P]. 

Indeed: 

1. For A* £ Sin and satisfying: 

a^ — a^—ax— 6a4 = 0, 

we get 

p2=P4= P6 = 0 and/78 = — a% 

with «4 ^ 0. 

In this case the origin is a weak centre of order at most three and, from the finite 

order bifurcation theorem, at most three local critical periods bifurcate from the origin. 

Moreover, three critical periods bifurcate from the origin in a perturbation of the form: 

x — — y — [(£3 — â\)x3 + (&6 — ^a^^y + (3£3 + 2â\)xy2 + a^y3] 

y = x + a4x
3 + (3^3 + 2â\)xly + (£6 — 3a4)xy2 + (£3 — â\)y3, 

withai = a\ +£1 +£1(53) and l^l <C |£i| <C |£3| <C \a^\. We choose £3 and<5i(£3) such 

that/76 < 0 and/72 — p\ — 0; i.e., 6\ is the "small" root of the equation: 

62 + 2(a\ - £3)^1 - 2ai£3 - 2 4 ^ = 0. 

The sign of £3 is such that £304*21 < 0. Then £1 is chosen such that 774 > 0; this is 

achieved when s\a\ < 0. Finally we choose £6 > 0, which leads to p2 < 0. Such 

a perturbation À of A* yields that every neighborhood U — [0, a) of r — 0 contains 

some points 0 < rx < r2 < r4 such that F(0, A) = 0 and F(ruX) < 0, F(r2, A) > 0, 

F(r3, A) < 0, F(r4, A) > 0 by continuity of F(r, A). Then P'(r, A) = 0 has at least three 

different solutions in U. Thus, as claimed, three critical periods bifurcate from the origin. 

A similar perturbation with (3 — j) of the £/ being zero gives a system with j < 3 local 

critical periods. 

2. For A* G S m and 

«6 = «4 == CL\ — 6^3 = 0, 

we get/72 = p4 = Pe = Ps = 0. 
The corresponding system has the following form: 

x = — y + 5«3X3 — 15aixy2 

y — x + 15«3X2v — 5«3_y3, 
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and it satisfies Cauchy-Riemann conditions, i.e., it can also be written 

dz 
dt = 

iz + 5# 3Z3 

= dz{— + 0(z)), 

where z = x + iy. By the residue theorem the period is constant [P]. 
3. For A* G S m and 

«6 = #3 — a\ — 6al = 0 

we obtain again ̂ 2 = PA = P6 = Ps — 0. In polar coordinates (p, 0), we get 

0 = 1, 

and again the corresponding system is an isochrone [P]. 
4. For À* G 5/// and 

«6 = CL\ + 24<23 = «4 — 100^3 = 0, 

again p2 = PA = Pe = Ps = 0. 
Changing first to coordinates x\ = x — y\ y\ — x + y, and then to coordinates 

*i y i - 1 0 ^ 
- — * — • f o r â 4 = IO03, 

^(1 - 15^3y?)3' V(l-15fl3tf)3' 

for 04 = — IO/23, 
*1 + 10a3^ _ Ji 

^(1 + 15«3Jcf )
3 ' ^(1 + 15a3Jcf)3 

the corresponding system is reduced to the linear isochrone [P]. • 
Hence Theorem 3.3. is proved. Moreover, the isochronous centres have been identi

fied. The results obtained agree with those of Pleshkan. Let us recall them in the theorem 
below: 

THEOREM 3.4. (S\)AdR7 is an isochrone system if and only if X lies in one of the 
following two sets: 

h — {A G R7 I «2 = «5 = «7 = «6 = ^4 — (# 1 — 6a^){a\ + 4as) — 0} 

h = {A G R7 I a2 = a5 = a7 = a6 = ax + 24<23 = a\ - lOO^ = 0}. 

Let us note that each Ik is included in Sm, for k = 1,2; moreover no isochrone lies in 
Si or 5// except the linear system. Hence, a nonlinear isochrone can only be perturbed into 
centres of type ///. However, near the linear isochrone, we must consider perturbations 
into each one of the sets 57, 57/, Sm. This is done in the following two theorems. 
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THEOREM 3.5. A perturbation of the linear isochrone inside centres of type I (re

spectively of type II) has at most one (respectively has no) critical period. 

PROOF. A S in the proof of Theorem 3.3, P being the period function, we consider 

G(r, A) = V r J = 8/74(A) + 0(r\ 
r 

with 
37T 

/74(A) = —(a\ + Aa\ + a2
4+ a]), 

i.e., p\ is positive definite. Then we may define 

11 i f A = 0 . 

which does not vanish in a neighborhood of the origin in R x R1. Hence G(r, A) has no 

zero in that neighborhood, yielding at most one zero of P ' . 

The result in case of perturbation inside Su is an obvious consequence of part 2 in the 

proof of Theorem 3.3. • 

THEOREM 3.6. We consider (S\J with A* G Sui and A in the neighborhood of\t. 

1. Every coefficient p^ni)^) belongs to the ideal I = (p2,P4,P6*P%) over the noetherian 

ring R[a\9a3,a4,a^]. 

2. At most three critical periods bifurcate from the origin of the linear isochrone in 

the family Sm and at most two critical periods bifurcate from the nonlinear isochrone in 

Sin-

Moreover, in both cases, there exist perturbations with the maximum number of crit

ical periods. 

PROOF: PART 1. Throughout the proof, we may use the following expressions of the 

period coefficients as a basis of the ideal /, since reducing them modulo the previous 

ones and getting rid of the constant factors does not affect the ideal they generate over 

R[01, 03,04,06]. 

Pi = a6, 

P4 = (a\ — 603X01 + 403) — 604, 

/?6 = 0304(01 +2403), 

P% = («1 - 6603X01 + 2403X01 - 603X01 +40 3 ) . 

We must show that/?2n £ / = (P2*P4,P6>P&)- Here we present a direct proof. The ref
eree suggested us a computer aided proof using Macaulay, which can be found in the 
Appendix. 

For every n > \,pin is a polynomial element of IR[0i, 03,04, a^]; then we may write: 

Pin = a6T2(au 03,04,06) + R2(a\, 03,04), 
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where «6^2 is the sum of all terms from/?2« containing a^. 

Recalling that 

aj = - ( (01 - 603X01+40 3 ) - / ? 4 ) , 

we can write: 

#2(01,03,04) = p4S4(0i,03,04) + a^{a\,ai) + £8(01,03)-

Now, for n > 5, we have that/?2« is a polynomial of degree > 5. 

Moreover, from the expression of p% we have 

«Î = P 8 - 0 3 ^ 8 ( 0 1 , 0 3 ) . 

Hence 

a4S6(aua3) = a4psVs(a\,a3) + 0304^0(01,03). 

Therefore 

Pin = P2T2 + P4S4 + a3a4V6(au 03) + a4psVs(au 03)+ 58(01,03). 

We know that/?2« = 0 for À* E /1 , yielding that (01 — 603X01 + 403) divides £g, i.e., 

S&(a\903) = (01 - 603X01 +403)W8(0i,03). 

The same argument with À* G ^2, *•£•, 06 = 01 + 2403 = (04 — 1O03)(04 + IO03) = 0 

leads to 

l0a2
3V6(-24a3,a3) + 6OOW8(-2403,03) = 0 

- lO0^V 6 ( -240 3 ,0 3 ) + 6OOW8(-2403,03) = 0, 

from which we get simultaneously: 

V6(-2403 ,03) = O 

W8(-2403 ,03) = O, 

with 03 ^ 0. 

Hence 01 + 2403 must divide the polynomials Ve(a\,a3) and W&(a\, 03), i.e., 

V6(aua3) = (01 + 24a3)H6(aua3) 

W8(0i,03) = (01 +2403) / /8(0i ,03) . 

Finally we may rewrite: 

Pin = PiTi +P4S4 +0304(01 +240 3 )# 6 (0i , 03) + a4p$Vs 

+ (01 -603X01 +403)(0i + 24a3)H$(aua3) 

= P2T2 +P4S4 +PeH6 + a4pgV$ + qsHs(aua3). 
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Let us note that q% and H% are homogeneous polynomials in a\, a3 of degree 3 and 
n — 3 respectively; that allows us to write 

Hs(aua3) = Ca""3 +a3Hs(aua3). 

From the expressions of /?4, p6 and #8 we have 

a3{ax + 24a3)/?4 + 6a4/?6 = «3^8-

Therefore «3^g belongs to the ideal /; moreover, p% = (a\ — 66a3)q% implies that a\q% 
is also an element of /; thus q%H%(a\,a3) belongs to / over R[a\,a3,a4,ae] and can be 
written in the form: 

qsHs(aua3) = p4S4 + P6$6 + PsS&, 

which, substituted in the above expression of pin, leads to 

Pin = P2$2 +P4$4 + P6$6 +/?8^8, 

where 5*, k — 2,4,6,8, belong to R[a\,a3,a4,ae]. 
Hence the period coefficients p2n for n > 1 are in the ideal / over R[a\ ,#3,^4, a^\. 

PROOF: PART 2. Combining Part 1 with the Isochrone Bifurcation Theorem we may 
conclude that at most three local critical periods bifurcate from the linear isochrone into 
the family 57//. 

A perturbation with three critical periods is obtained in the following way: for s > 0, 
the system 

x = — y + Vôsx3 H- 3ex1 y — 2\/6exy2 — ey3 

y — x + EX3 + 2v/6ex2y — 3exy2 — \f~6ey3, 

has a weak center of order 3. A small perturbation constructed as in part 1 of Theorem 3.3. 
has three critical periods. 

Next we are concerned with perturbations of a nonlinear isochrone (a nonlinear 
isochrone never belongs to the intersection of two strata): we must consider perturba
tions A = A* +8 into 5///, where A* is a nonlinear isochrone point, say, A* is nonzero and 
belongs to Ik, for k = 1,2,. 

First, let us assume that A* satisfies the condition: a^ = «4 — a\ — 6a3 — 0, with 
a3 nonzero (the other case a^ = a4 — a\ + Aa3 — 0 is similar). The components of 
A are of the forms: â\ — a\ + b\\ â3 = a3 + £3; â$ = 64; â(, = 8$. The result will 
follow from the Isochrone Bifurcation Theorem if we show that p%{\) belongs to the 
ideal J = (/?2(A),/?4(AX/?6(A)) over R{â\,â3,04, «ÔIÀ* the noetherian ring of convergent 
power series at A* and P2k(^)> k = 1,2,3,4, are the corresponding perturbed period 
coefficients. Computing the coefficients reduced modulo the previous ones, with £3 < 
\a3\, it follows that: 

PsW — (à\ — 66â3)(â\ + 24â3)p4 — 6â\(â\ — 66«3)(«i + 24^3) 

_ 6a4(fli - 66â3)p6 

â3 
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Then we get: 

6â4p6(X)(âi - 66a3) 
pz(\) = (ai - 66<33)(fli + 24<33)^4(A) + 

«3 

M(a3,ôi,^3)/74(A) + jr/>6(A) 
tf3 1 + ^-

«3 

= Af(fl3,«l,«3)^4(A)+^(fl3,«l,«3,«4) E C " 1 ) " - N A > 

where 

and 

M(a3,SuS3) = (-60a3+Sl - 66S3)(30a3 + <$i + 24£3), 

™ x x ^ 6(54(-60a3+(5i-66(53) 
N(a3,SuS3,S4) = 

a3 

Therefore p&(\) is in the ideal / over R{â\, â3, â4, âe}\^ leading to the claim. 

For A* in h, i.e., satisfying the condi t ion^ = a\ +24a3 — a4 ± 10a3 = 0 with a3 and 

a4 nonzero, the perturbation À has components: â\ = a\ + <$i, a3 — a3 + <53, â4 = a4 + S4, 

«6 = Se', computing the corresponding period coefficients as in the preceding case and 

assuming <53 < \a3\ and £4 < |«4| we obtain: 

a3 J V «4 > 

ps(\) = (-90a3 + SX- 66S3)(-30a3 + SX- 6S3)(-20a3 + Si + 4S3)(Sl + 24S3) 

p6(X) = a3aJl + - ) f l + -)(Si + 24<53), 

= G(<23,a4,<5i,^3) — r - — r p 6 ( X ) , 
a3a4 1 + 2i 1 + 5i 

and then 

^ 4 
p8(A) = G(fl3,fl4,*l,*3)-

a3a4 
L 0 Va3y M 0 \a4) J 

where G(a3,a4,<Si,<53) = (-9(k3+(Si -66<53)(-3(k3+<5i -6(53)(-20a3+<5i +4£3). Again 

ps(\) is in the ideal J over the ring R{<2i,<23,a4,a6}A*-

Hence in both cases at most two local critical periods bifurcate from the nonlinear 

isochrones; as shown in the preceding cases we may construct a perturbation with the 

maximum number of critical periods. • 

APPENDIX. An alternative proof of the first part of Theorem 3.6 using Macaulay was 

suggested to us by the referee. There we must prove that every homogeneous polynomial 

p of degree n > 5 which vanishes on the variety of the ideal / — (p2,P4,P6,Ps) is in /. 

The polynomial p belongs to the radical J of the ideal /. This radical is computed using 

Macaulay: rad / = J = (p2,p4,a4(a\ +24a3)) . The reduction of J modulo / is generated 

by the single polynomial q = a4(a\ + 24a3). Since p is in / , p can be represented as 

p — i + hq, where / is in / and h is homogeneous of degree at least (n — 2). But, this 
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means that each monomial in h is homogeneous of degree at least 3. Since it is clear that 
any monomial containing either a^ or a^> when multiplied by g is in /, one only needs to 
check that all the products of the form dx a\q, withy + k = 3, belong to / conclude that hq 
is in /. This can be checked by a finite number of ideal membership tests in Macaulay. 

CONCLUSION. The preceding results allow the following observations: 
1. Exactly as in the quadratic case, the maximum number of local critical periods 

corresponds to centres of systems with symmetry axis. 
2. The maximum number of local critical periods from centres of finite order is strictly 

larger than from nonlinear isochronous centres. This is not the case for limit cycles in a 
Hopf bifurcation. 

3. The maximum number of local critical periods bifurcating from a weak centre or 
from an isochrone is less than the maximum number of limit cycles bifurcating from a 
weak focus or a centre. 

4. There are systems for which the independence condition is not satisfied. 

ACKNOWLEDGEMENTS. We thank the referee for suggesting us an alternative proof 
to Theorem 3.6 and introducing us to Macaulay. 

REFERENCES 

[C.J] C. Chicone and M. Jacobs, Bifurcation of critical periods, Trans. Amer. Math. Soc. 312(1989), 433-486. 
[C.S] S. N. Chow and J. A. Sanders, On the number of critical points of the period, J. Differential Equations 

64(1986), 51-66. 
[G] L. Gavrilov, Remark on the number of critical points of the period, (1990), preprint. 
[M] K. E. Malkin, Criteria for center for a differential equation, Volzhskii. Matem. Sbornik 2(1964), 87-91. 
[P] I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, 

Differential Equations 5(1969), 796-802. 
[S] K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations 

1(1965), 36-47. 

Département de mathématiques et statistique 
Université de Montréal 
C.P. 6128, succursale A 

Montréal, Québec 
H3C3J7 

https://doi.org/10.4153/CMB-1993-063-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-063-7

