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Abstract

This paper describes the Automated Complexity Analysis Prototype (ACAp) system for auto-

mated complexity analysis of functional programs synthesized with the Nuprl proof devel-

opment system. We define a simple abstract cost model for Nuprl’s term language based

on the current call-by-name evaluator. The framework uses abstract functions and abstract

lists to facilitate reasoning about primitive recursive programs with first-order functions, lazy

lists and a subclass of higher-order functions. The ACAp system automatically derives upper

bounds on the time complexity of Nuprl extracts relative to a given profiling semantics.

Analysis proceeds by abstract interpretation of the extract, where symbolic evaluation rules

extend standard evaluation to terms with free variables. Symbolic evaluation of recursive

programs generates systems of multi-variable difference equations, which are solved using the

Mathematica computer algebra system. The use of the system is exemplified by analyzing a

proof extract that computes the maximum segment sum of a list and a functional program

that determines the minimum of a list via sorting. For both results, we compare call-by-name

to call-by-value evaluation.

1 Introduction

Automated tools for program analysis (Owre et al., 1992; Gordon and Melham, 1993;

Paulson, 1994) and synthesis (Coquand and Huet, 1985; Constable et al., 1986; Smith,

1990) aid the development of provably correct programs. Over the past decade, many

of these systems have matured to a stage where they become increasingly attrac-

tive for commercial, large-scale software projects. However, despite these advances

in program correctness, little attention has been paid to the quality of the gener-

ated programs in terms of resource efficiency. Formal specification methods (Hoare,

1969; Bjørner and Jones, 1978; Spivey, 1992) lack the machinery to make explicit

statements about running time or space requirements during program execution. An

algorithm generated by an interactive program synthesizer like Nuprl is guaranteed

to conform to its specification, but controlling the resource consumption of the result-

ing code requires great skill and experience from the user performing the synthesis.

Complexity analysis of functional programs can be a hard and error-prone task.

Constable et al. (1998) formalized a large portion of finite automata theory and

synthesized a provably correct algorithm for state minimization. It was only later

discovered that due to an inefficient proof of the Pigeon Hole Principle, the running
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time of the minimization algorithm was hyperexponential in the number of states

(Nogin, 1997).

Machine-generated programs are particularly hard to penetrate without computer

assistance. Accordingly, automated complexity analysis is a perennial yet surprisingly

disregarded aspect of static program analysis. The seminal contribution to this area

was Wegbreit’s Metric system (Wegbreit, 1975), which even today still represents the

state-of-the-art in many aspects. Metric can analyze simple programs written in a

first-order subset of LISP and returns an upper bound on the worst-case complexity,

a lower bound on the best-case complexity, and the expected complexity together

with its variance. It assumes that all tests in the program are independent, and

requires the user to provide probability distributions for each conditional statement.

The Ace system (Métayer, 1988) for analyzing FP programs uses a library of more

than 1, 000 transformation rules to translate a given program P into a step-counting

version P ′ that for each argument x̄ returns the number of primitive reduction steps

required for computing P (x̄). The program P ′ is then further transformed into a

composition of known complexity functions.

Rosendahl (1986, 1989) implemented a system for automatic complexity analysis

of first-order LISP programs that takes a program P and generates a step-counting

version P ′. From this program P ′, a partial time bound function tP is derived through

abstract interpretation of P ′, so that tP returns an upper bound on the number of

reduction steps for any input of a given size. The system can theoretically analyze

programs written in other languages as long as the step-counting version can be

formulated in first-order LISP.

Theoretical advances for analyzing lazy functional languages were made by Wadler

(1989) and Bjerner and Holmström (1989). In essence, the authors use projections

and demand analysis , a specifically tailored strictness analysis, to model an informal

call-by-need reduction strategy for the untyped lambda calculus. Sands (1990, 1995)

introduces cost closures to reason about higher-order functions.

Other work includes the performance compiler of (Hickey and Cohen, 1988) for

imperative and FP programs, and the ambitious ΛΥΩ system (Flajolet et al., 1990)

for average-case complexity.

1.1 The Nuprl System

The Nuprl proof development system (Constable et al., 1986) is an automated

theorem prover based on an extension of Martin-Löf type theory (Martin-Löf,

1979), a predicative type theory encoding constructive logic via the propositions-

as-types principle: A proposition P is a type [[P ]] whose members are the proofs

of P . The proof-as-programs principle associates a proof pf of a theorem ` P

with a program p of type [[P ]]. Nuprl’s underlying term language is an implicitly

typed variant of the lambda calculus. Programs synthesized from proofs are closed

expressions called proof extracts that can be executed by Nuprl’s evaluator, which

uses a left-most outermost call-by-name reduction strategy to evaluate terms. The

successor system MetaPRL (Hickey, 2000) allows for different reduction strategies
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Fig. 1. The ACAp system.

and includes an improved evaluator that uses explicit substitution and sharing for

highly efficient call-by-need reduction.

Extracts are usually obfuscated by large portions of dead code generated by

arithmetical reasoning and existential quantification. An element of [[∃x:T . Px]] is a

pair 〈y, pf 〉 such that y is in [[T ]] and pf is a proof of y ∈ T . Since call-by-name

reduction prevents the proof part from being evaluated, dead code does not affect

program performance. Proposals for improving the readability of extracts include

dead code elimination (Hafızogulları and Kreitz, 1998) and the use of set types for

existential quantification (Caldwell, 1997). Similar ideas for the Coq system have

been made elsewhere (Paulin-Mohring, 1989; Paulin-Mohring and Werner, 1993).

1.2 The ACAp system

The Automated Complexity Analysis Prototype (ACAp) is an experimental system

designed and implemented by the author to automatically determine the time com-

plexity of Nuprl extracts. It is based on the call-by-name semantics of Nuprl

version 4.2 and uses static program analysis techniques to infer the number of

reduction steps required to reduce instantiations of a given open term to canonical

form. The current implementation is limited to first-order functions, lists, and a

subclass of higher-order functions, but we will outline in section 6.1 how we plan

to extend the capabilities of the system to deal with general higher-order functions.

The main system is written in Nuprl’s ML language and consists of about 3000

lines of code. Additional modules are implemented as Mathematica packages and

account for about 300 lines of code.

The system takes a Nuprl term as input and tries to determine its time complexity

in terms of user-specified parameters. First, the symbolic evaluator generates a raw

complexity expression through abstract interpretation of the input program. At

the same time, the recurrence generator translates recursive calls into recurrence

equations, which are stored separately for the recurrence solver . Once symbolic

evaluation is complete, the simplifier rewrites the raw expression in human-readable

form while making repeated calls to the recurrence solver to substitute occurring

recurrence variables by closed expressions (cf. figure 1). The recurrence solver

contains a collection of individual rsolver modules that apply to particular classes
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of recurrence equations. The rsolvers are repeatedly swept over the list of unsolved

recurrence equations until no further progress is made. If unsolved recurrences

remain, they are reported along with the partially unresolved complexity expression.

The answer given by the system is not ‘provably correct’ in the sense of automatic

theorem proving but is subject to the usual design and implementation errors. This

is not a principal limitation, though, as the data gathered during the analysis could

be used to construct a formal proof that asserts the running time behavior reported

by the ACAp system. The implementation details of this translation will be a topic

of future investigation.

Although our system is just a prototype, it is already quite useful in its limited

domain of lists and primitive recursion. By using meta level heuristics and approx-

imations when necessary, the system can analyze a large class of programs arising

in practical program synthesis, even though complexity analysis of general recursive

programs is non-computable. We should also note that the system is not targeted at

outperforming theoreticians analyzing a newly discovered algorithm, but at automat-

ing the standard ‘bulk’ complexity analyses that are common in program synthesis.

1.3 Outline

The remaining of this paper is organized as follows: section 2 formally describes our

definition of time complexity for Nuprl’s term languages. This definition is the basis

for our calculus of symbolic evaluation described in section 3. Section 4 outlines

the simplifier and the recurrence solver of the ACAp system. Section 5 illustrates

the combined use of Nuprl and the ACAp system for program development by

synthesizing and analyzing a solution to the maximum segment sum problem and

by analyzing a functional program to compute the minimum of a list by sorting.

2 Time complexity of functional programs

Common formal definitions of time complexity for imperative programs are based on

the Turing machine or the random access machine model. For first-order functions,

these models relate the size of the input to the number of transitions made by the

machine. Higher-order functionals require the use of oracle machines that encode

functions passed as input in an appropriate oracle. Even though this imperative

notion of time complexity is tightly bound to the particular machine model being

used, it is well-known that RAMs and generalized Turing machines such as k-tape

machines yield sufficiently similar results in that they can simulate each other within

a polynomial factor in time and a constant factor in space. In particular, the class

P of feasible programs running in polynomial time is independent of the machine

model being used, guaranteeing a certain robustness to reasonable modifications.

Defining an accurate cost model for a functional language is a considerably harder

business, as different reduction strategies yield dramatically different performances,

and cost measures for an abstract machine might not necessarily reflect the real world

(Lawall and Mairson, 1996). In fact, no satisfactory implementation-independent

characterization of evaluation cost has been found yet. A faithful cost model
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would need to relate the cost of one primitive reduction step of the abstract

machine to the actual cost of the implementation of this step (Greiner, 1997). As is

customary, we decided to ignore this aspect for our preliminary analysis and based

the cost model solely on the number of steps given by the abstract call-by-name

operational semantics of the current Nuprl evaluator (Constable et al., 1986). The

new MetaPRL system (Hickey, 2000) will feature a highly efficient evaluator using

sharing and explicit substitution whose semantics should be fine-grained enough to

faithfully classify the class of feasible programs even without translating from the

abstract machine to the actual implementation.

We define the time complexity of a term t with respect to semantics S as the

number of primitive reduction steps required by S to reduce t to canonical form.

Throughout this paper, we will use the profiling semantics shown in figure 2, where

t ↓ w (in n)

denotes that term t reduces to canonical form w in at most n reduction steps. As a

convention, we will call w the result and n the complexity of t. To avoid ambiguities

between object language and meta language, we will often refer to terms representing

complexities as expressions .

Given above definitions, the complexity of 1 + (1 + 1) is 2, whereas the complexity

of λx.x+1 is 0. Obviously, the latter result does not reflect that when given a function

f, we are really interested in the number of reduction steps required to compute f(t)

for any argument t. Thus, we rephrase our analysis by introducing meta variables

denoting arbitrary terms in our term language. For all practical matters, these meta

variables are simply free variables.

Returning to the example above, we see that the complexity of ((λx.x + 1) m)

is time(m) + 2, where time(m) is an expression denoting the time complexity of

the unknown argument m. As another example, let power == λk.ind(k; 1; i,z.z ∗ x).

Again, the complexity of power is 0, but the complexity of (power m) is 2 + 2m +

m time(x) + time(m).

2.1 Higher-order functions

Several problems arise when applying a reduction step count to higher-order func-

tions. Consider the simple functional

twice == λf. λx. f(fx)

of type (α → α) → α → α. What is the computational complexity we should assign

to this term? Is twice an operator, mapping a function of type α → α to another

function of the same type, or is it a function with two arguments of type α→ α and

α, respectively, mapping to α? Since currying justifies both views equally, one might

argue that the complexity expression for twice should convey information for either

case. For example, a pair (c1, c2) could denote that twice applied to some term t

reduces to some function g in c1 steps, and g applied to some term t′ reduces to some

value w in c2 steps. The problem with this approach is that we cannot express how c2

might potentially depend on t. In particular, in the case of twice, c2 is not just about
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(canon) w ↓ w (in 0) (w canonical term)

(ap)
f ↓ λx.b (in n1), b[u/x] ↓ w (in n2)

ap(f; u) ↓ w (in n1 + n2 + 1)

(spread)
p ↓ 〈u, v〉 (in n1), t[u/a, v/b] ↓ w (in n2)

spread(p; a, b.t) ↓ w (in n1 + n2 + 1)

(decide)
p ↓ inl(t) (in n1), u[t/a] ↓ w (in n2)

decide(p; a.u; b.v) ↓ w (in n1 + n2 + 1)
(ditto inr)

(arith)
u ↓ k1 (in n1), v ↓ k2 (in n2)

add(u; v) ↓ k1 + k2 (in n1 + n2 + 1)
(ditto sub, mul, div, rem)

(comp)
p ↓ k1 (in n1), q ↓ k2 (in n2), k1 < k2, u ↓ w (in n3)

less(p; q; u; v) ↓ w (in n1 + n2 + n3 + 1)
(ditto int eq)

(indbase)
p ↓ 0 (in n1), b ↓ w (in n2)

ind(p; b; i,z.f) ↓ w (in n1 + n2 + 1)

(indstep)
p ↓ k > 0 (in n1), u[k/i, ind(k−1; b; i,z.f)/z] ↓ w (in n2)

ind(p; b; i,z.f) ↓ w (in n1 + n2 + 1)

(listbase)
l ↓ [] (in n1), b ↓ w (in n2)

listind(l; b; h,t,z.f) ↓ w (in n1 + n2 + 1)

(liststep)
l ↓ u :: v (in n1), f[u/h, v/t, listind(v; b; h,t,z.f)/z] ↓ w (in n2)

listind(l; b; h,t,z.f) ↓ w (in n1 + n2 + 1)

(abs)
op(ū) == φ(ū), φ(ū) ↓ w (in n)

op(ū) ↓ w (in n+ 1)
(op user definition)

Fig. 2. Profiling semantics of the call-by-name evaluator.

twice the complexity of f: applying twice to f1 == λy.0 and f2 == λy.y∗y∗y shows

that (twice f1 m) and (f1 m) have about the same complexity, whereas (twice f2 m)

takes about three times as many reduction steps as (f2 m).

With our goal of user-directed complexity analysis in mind, we decided to follow

a more pragmatic approach by demanding complexity information for higher-order

input terms. Central to our calculus is a new term cpx(n; t) that reduces to t in n

steps (cf. figure 3). Using this new term, we can abstract from the value denoted

by a term while retaining its time complexity. In particular, this allows us to define

abstract functions f == λx.cpx(nx; tx) that represent the class of functions with the

same computational behavior as f. For example, the result of twice applied to a

linear function like λy.cpx(y; y) has complexity O(2m).

Our ability to define abstract functions puts us in a position to demand that

all free variables be of type integer in order to simplify our calculus. For technical

reasons we will outline in section 3, the current implementation of ACAp also

requires that all computationally relevant arguments of functional inductive terms

be of type integer. At first, this requirement might appear as being too strong a
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(cpx)
t ↓ w (in n1)

cpx(n; t) ↓ w (in n+ n1)

Fig. 3. Rule for complexity abstraction

restriction to permit the analysis of any interesting programs. Our experience has

shown, however, that many useful algorithms synthesized by Nuprl do adhere to

this assumption: Although internally generated functions are generally of higher

type than the resulting program, the computationally relevant arguments of these

internal functions are often enough of simple type. Additionally, higher types are

likely to be confined within the proof part of the program, which is irrelevant to the

analysis and ignored by the system.

Given the current state of the prototype, abstract functions provide a convenient

way to specify higher-order inputs, and the user can easily run several analyses

for different function classes. We would like to emphasize, though, that the integer

variable assumption is not a conceptual limitation of our calculus. Instead, we

believe that abstraction via cpx terms leads to a natural description of higher-order

functions in terms of their first-order components. Like inductive terms, free variables

of higher type may be replaced by their ‘computational skeleton’ to introduce first-

order quantities that we can reason about. Thus, as we will sketch in section 6.1,

the main problem of dealing with higher-order functions does not arise from the

calculus but from the recurrences being generated by higher-order inductive terms.

2.2 Lists

Lists are often the only built-in data structure of functional programming languages

and thus have a large influence on the performance of non-numerical algorithms.

Call-by-name evaluation of lists, though, has some peculiarities of its own: consider

the function

incr == λl.listind(l; []; h, t, z.(h+ 1) :: z)

of type Z list → Z list. Nuprl reduces (incr 1 :: 2 :: []) to 2 :: (incr 2 :: [])

rather than 2 :: 3 :: [], because ‘::’ is a canonical operator. The call-by-name

semantics prevent full evaluation to strong normal form, which defers part of the

cost normally associated with the construction of the list to its destruction.

Analogous to abstract functions, we introduce the notion of abstract lists to

specify generic lists. The canonical term lcpx(n; e; k) denotes the class of lists of

length k with spine complexity n and generic element e. The spine complexity is the

number of reduction steps required to reduce the tail of the list to the next ‘::’ term,

e.g. the spine complexity of ind(k; []; i,z. i ::cpx(a; z)) is a+ 1. Each element in the

list is assumed to have the same type and complexity as the generic element e, which

is usually a combination of cpx terms. Intuitively, one can think of lcpx(n; e; k) as

being semantically equivalent to e :: cpx(n; lcpx(n; e; k− 1)). The new list induction

rule for abstract lists is shown in figure 4.
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(lbase)
l ↓ lcpx(n; e; 0) (in n1), b ↓ w (in n2)

listind(l; b; h,t,z.f) ↓ w (in n1 + n2 + 1)

(lcpx)

l ↓ lcpx(n; e; k) (in n1),

f[e/h, cpx(n; lcpx(n; e; k−1))/t,

listind(lcpx(n; e; k−1); b; h,t,z.f)/z] ↓ w (in n2)

listind(l; b; h,t,z.f) ↓ w (in n1 + n2 + 1)

Fig. 4. List induction over abstract lists

We illustrate the use of abstract lists with a few examples. The function

fold == λL.λx.listind(L; x; h,t,z.h z)

successively applies a list of functions onto a single element. Given this definition,

(fold lcpx(a; λx.cpx(time(x) + b; Ax);m) e) reduces to canonical form in 3 + 2m +

am+ bm+ time(e) steps. As another example, if

sumprod == λL.listind(L; 0; h1,t1,z1.z1 + listind(t1; 1; h2,t2,z2.h2 ∗ z2)),

then (sumprod lcpx(a; e;m)) reduces to canonical form in 2+2m+m2 +(3+m)am/2+

(m− 1)m time(e)/2 steps. Finally, let

silly == λL.listind(listind(L; [];

h1,t1,z1.listind(z1; []; h2,t2,z2.h1 :: z2)); 0; h3,t3,z3.h3 + z3),

where the outermost list induction simply adds up all the elements of the list in

order to measure the full cost of computing with the lazy list returned by the inner

inductions. Analysis of (silly lcpx(a; e;m)) with the ACAp system yields 3+2m+am,

a result that is not so easily obtained by hand. Careful examination reveals that the

list returned by the inner inductions is always the empty list, which explains why

the complexity expression does not depend on the element representative e.

Both cpx and lcpx terms may be used by the user to describe the input to the

algorithm under investigation. Additionally, the system itself introduces these terms

for representatives of inductive terms and as results of inductions of type α list

(cf. section 3.3).

2.3 Alternative semantics

Even though the current Nuprl system supports only call-by-name evaluation of

terms, the ACAp system can easily be adapted to handle other reduction strategies

as well. As an example, we implemented a call-by-value evaluation scheme, for which

figure 5 shows some of the rules.

3 Symbolic evaluation

A program synthesized by Nuprl is a closed term p of some implicit type τ = τ1 →
τ2 → · · · → τn. Since τn might be an arrow type, typing of p is inherently ambiguous
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(apv)
f ↓ λx.b (in n1), u ↓ v (in n2), b[v/x] ↓ w (in n3)

ap(f; u) ↓ w (in n1 + n2 + n3 + 1)

(spreadv)
p ↓ 〈p1, p2〉 (in n1), p1 ↓ v1 (in n2), p2 ↓ v2 (in n3), t[v1/a, v2/b] ↓ w (in n4)

spread(p; a,b.t) ↓ w (in n1 + n2 + n3 + n4 + 1)

(indstepv)
p ↓ k > 0 (in n1), ind(k−1; b; i,z.f) ↓ v (in n2), u[k/i, v/z] ↓ w (in n3)

ind(p; b; i,z.f) ↓ w (in n1 + n2 + n3 + 1)

Fig. 5. Profiling semantics for call-by-value evaluation.

(var) x ↓ x∗ (in time(x)) (x is variable of type Z)

(arith)
k1 ↓ k′1 (in n1), k2 ↓ k′2 (in n2)

add(k1; k2) ↓ add∗(k′1; k′2) (in n1 + n2 + 1)
(ditto sub, mul, div)

Fig. 6. Symbolic arithmetic rules.

and reflects the user’s view of the program (cf. section 2.1). The complexity of p is

defined relative to arguments ai of type τi (i = 1, . . . , n− 1) and will be expressed in

terms of the free variables contained in these arguments.

Analysis proceeds by evaluating the term (p a1 · · · an−1) using the symbolic

evaluation rules listed in the subsequent sections. These rules are a conservative

extension of the standard Nuprl semantics to open or symbolic terms involving free

variables. The symbolic reduction rule for a term op(pv̄; t̄) with principal argument pv̄
and free variables v̄ specifies some (possibly symbolic) result wv̄ and some complexity

expression nv̄ such that

op(pū; t̄) ↓ wū (in nū) (1)

holds for all type-correct instantiations ū of v̄. Intuitively, symbolic evaluation aims

at reducing non-canonical terms t even when the principal argument is unknown.

It is therefore unreasonable to demand that the result t′ of t should be ‘simpler’

than t, as t′ has to capture the evaluation paths for all admissible instantiations of t.

This gain in information at the expense of simple term structure is justified by our

indifference about the actual value of the computation.

The following sections group the standard semantics of figure 2 into rules relating

to arithmetic, case analysis, recursion, and list processing and address the adjustments

needed in each situation. Rules not covered below, such as function application, need

not be modified for symbolic evaluation because of the integer variable assumption.

3.1 Symbolic arithmetic

A free variable v, by assumption, represents an unknown integer which might be of

arbitrary complexity. We use two new canonical terms, v∗ and time(v), to denote

the value and the time complexity of an admissible instantiation of v, respectively.

Symbolic evaluation will generate many intermediate time expressions for many
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(comp)
k1 ↓ k′1 (in n1), k2 ↓ k′2 (in n2), indet(u; v) ↓ w (in n3)

less(k1; k2; u; v) ↓ w (in n1 + n2 + n3 + 1)
(ditto int eq)

(indet)
p ↓ indet(pl; pr) (in n1), op(pl; ū) ↓ wl (in nl), op(pr; ū) ↓ wr (in nr)

op(p; ū) ↓ indet(wl;wr) (in n1 + tmax(nl; nr))
(any op)

Fig. 7. Symbolic case split rules.

different program variables, but only those referring to free variables will persist in

the resulting complexity expression returned to the user. The term Ax is frequently

used in cpx expressions to denote an arbitrary integer in canonical form, but any

canonical term would serve the same purpose.

For each arithmetical operator op, we introduce a new canonical term op∗ that

represents an evaluated term (cf. figure 6). Note that it is irrelevant that (a+ 1) + 2

reduces to (a∗ +∗ 1) +∗ 2 whereas a+ (1 + 2) reduces to a∗ +∗ 3; all that matters is

that both reductions require time(a) + 2 steps and that both results denote the same

value when identifying +∗ with +.

3.2 Symbolic cases

The bottom-up style of the Nuprl semantics requires that the symbolic result of

a case split entail both possible computation branches. Let t be a comparison

less(k1; k2; tl; tr) with at least one symbolic principal argument and assume that

ki ↓ k′i (in ni), tl ↓ t′l (in nl) and tr ↓ t′r (in nr) hold. Without further information on k1

and k2, the best upper bound on the complexity of t is k1 + k2 + max(nl , nr) + 1. We

thus define the result of t to be a new indeterminate term indet(t′l; t′r), which serves

as a placeholder for instantiations of both t′l and t′r (cf. Figure 7). Note that even

if nl > nr were valid for all instantiations, it is not permissible to discard t′r , as the

simple example

(less(p; q; cpx(10; λx.x); λx.cpx(20; x)) 1)

shows.

The ambiguity introduced by symbolic case splits cannot be resolved but will

percolate to the root of the computation tree. Any operation on an indeterminate

term indet(u; v) is performed on both subterms u and v, and the complexity of

this operation will be the maximum of the complexities of the subterm operations.

Thus, indeterminate terms are neither canonical nor non-canonical but transparent ,

for evaluation is channeled into the subterms. Transparency affects all symbolic

reduction rules, but it is possible to subsume all required alterations into meta rule

(indet) shown in figure 7. This meta rule supersedes any symbolic reduction rule

whenever the principal argument p is indeterminate.

A new expression tmax, for total maximum , prevents that bounds obtained in

this fashion become unnaturally loose. Let ifless(k1; k2; u; v) be an abstraction for

decide(less(k1; k2; inl(Ax); inr(Ax)); u; v) and consider the term

(isless(p; q; cpx(10; λx.cpx(1; Ax)); cpx(1; λx.cpx(10; Ax))) 0),
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∑
j

tmaxij (pj; qj) =
∑

k∈{i1 ,i2 ,...}
max

∑
j | ij=k

pj ,
∑
j | ij=k

qj


Fig. 8. Semantics of tmax terms.

which reduces in time(p) + time(q) + tmax1(10; 1) + tmax1(1; 10) + 3 steps for all

admissible terms p and q. If we interpreted tmax as the conventional maximum

function, the bound would evaluate to time(p) + time(q) + 23 even though the

actual program reduces in time(p) + time(q) + 14 steps – an excess of nine steps in

our analysis! The semantics of tmaxi thus capture the notion that reduction steps

of different computation paths cannot be mixed: the total maximum of a group

of tmaxi expressions with identical labels i, where i is a number that is uniquely

assigned to each comparative term, is the maximum of the sum of their first and the

sum of their second arguments (cf. figure 8).

On occasions, this bound might still be somewhat conservative, for example if

the proposition tested is a tautology or depends on previous case splits. Graph

algorithms in particular often involve the following kind of argument:

“Each of the n loop iterations might perform up to n operations, suggesting an O(n2)

algorithm; in fact, there are only two different kinds of operation and n entities to perform

these operations on, so the total running time must be O(2n).”

An accurate analysis of nested case splits is generally undecidable, but future

heuristics might be able to model above reasoning in selected important domains.

3.3 Primitive recursion

Symbolic primitive recursion is particularly difficult to analyze because an infinite

number of possible computation paths are confined into one closed expression.

Given an inductive term t == ind(k; b; i,z.f), we can evaluate the base case b to

obtain the time complexity of t for k = 0. For the step case, however, the time

complexity of the free variable z is unknown, and it cannot be determined by

unrolling the recursion when the principal argument is symbolic.

Our main idea to tackle symbolic recursion is to identify a symbolic inductive term

t with its “computational skeleton” consisting of nested cpx terms. The purpose of

the skeleton is to abstract from the actual value being computed while retaining the

computational behavior of t in a non-recursive form. During symbolic evaluation,

the cpx terms introduce names for the unknown time complexities of t so that, in

separate steps, we can derive and solve difference equations for these quantities in

order to obtain closed expressions. For example, the skeleton of any term t of type

Z× Z may be represented by

cpx(ρ; 〈cpx(ρ1; Ax), cpx(ρ2; Ax)〉),
where ρ, ρ1, and ρ2 are certain complexity expressions that depend on the free

variables in t. In other words, the term t will reduce to some canonical form 〈t1, t2〉
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in ρ steps, where t1 and t2 need not be canonical but will reduce to canonical form in

ρ1 and ρ2 steps, respectively. Similarly, a term u of type Z→ Z may be abstracted to

cpx(ρ; λx.cpx(ρa(x); Ax)),

where ρa(x) is now a functional expression that depends not only on the free

variables in u but also on (the time complexity of) x.

In general, given a term t of type α, we define the representative of t to be the

term

repm(t) == cpx(ρ(m);R(α, ε)),

where ε is the empty sequence and R recursively builds the skeleton as defined by

R(α, d) :=


λx.cpx(ρd·a(ū; x);R(β, d·a)) if α = Z→ β

〈cpx(ρd·1(ū);R(β, d·1)),

cpx(ρd·2(ū);R(γ, d·2))〉 if α = β × γ
lcpx(ρd·t(ū);R(β, d·e); ρd·s(ū)) if α = β list

Ax if α = Z

.

So far, the ρd occuring in the representative are mere symbols, for which concrete

expressions will have to be obtained separately. We refer to character sequence d

as the descriptor , since it describes the position of the subterm that ρd character-

izes. There is no deeper meaning behind above naming convention over alphabet

{a, 1, 2, e, s, t} other than aiding the user in identifying the origin of variables oc-

curing in unsimplified complexity expressions.

If all ρd are known, the term t: α and its representative rep(α) are interchangeable

without affecting the time complexity of their context. Now in order to evaluate

an inductive term tk == ind(k; b; i,z.f) of type α, we compute its representative

r = repm(α) and evaluate r[k/m] in lieu of tk . This reduction will yield a complexity

expression containing all or some of the symbols ρd of r. To derive concrete

expressions for each ρd, we unfold the step case f once to infer a functional

dependency between ρd(m) and ρd(m − 1). By assumption, tm ↓ w (in ρ(m)) and

tm−1 ↓ w′ (in ρ(m− 1)) for canonical m and m− 1, where both ρ(m) and ρ(m− 1) are

unknown. But obviously

ρ(m) = time(tm)

= 1 + time(f[m/i, tm−1/z])

= 1 + time(f[m/i, cpx(ρ(m− 1), t′)/z])
= 1 + ϕ(ρ(m− 1))

for some function ϕ that is easily obtained by evaluating f[m/i, cpx(ρ(m− 1), t′)/z].
Together with ρ(0) = time(b), this yields a recurrence relation

ρd(m) =

{
ϕ(m, ρd(m− 1), ȳ) if m > 0

ψ(x̄) if m = 0
,

where m denotes the value of k and x̄, ȳ are the free variables of b and i,z.f,

respectively.

The careful reader may have observed that above derivation for ρ(m) involves an
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(ind)

k ↓ k′ (in n1), repk′ (α) ↓ w (in n2),

getrecr(ρε(m); b; f[m/i, repm−1(α)/z])

ind(k; b; i,z.f): α ↓ w (in n1 + n2)

Fig. 9. Symbolic induction rule.

(lam)
bd ↓ λx.bda (in n0), fd ↓ λx.fda (in nm)

ρd(0, p̄) := n0, ρd(m, p̄) := nm, getrecr(ρda(m, p̄, x); bda; fda)

(pair)
bd ↓ 〈bd1, bd2〉 (in n0), fd ↓ 〈fd1, fd2〉 (in nm)

ρd(0, p̄) := n0, ρd(m, p̄) := nm, getrecr(ρdi(m, p̄); bdi; fdi), i = 1, 2

(list)
bd ↓ eb0 :: b′d (in n0), fd ↓ ef0 :: f′d (in nm)

ρd(0, p̄) := n0, ρd(m, p̄) := nm,

eb, ef := getlist(ρd(m, p̄); eb0 ::b′d; ef0 ::f′d), getrecr(ρde(m, p̄); eb; ef)

(int)
bd ↓ b′:Z (in n0), fd ↓ f′:Z (in nm)

ρd(0, p̄) := n0, ρd(m, p̄) := nm

Fig. 10. Recurrence generation ‘getrecr’.

unknown term t′ denoting the result of reducing tm−1. If t is of type Z, then t′ is some

canonical integer which we will replace by Ax. Otherwise, the representative rep(α)

involves other unknown variables ρd that describe the complexity of the subterms

of t′, and for which concrete expressions must be inferred (cf. figure 10).

In particular, if t is of type β × γ, then t′ is of the form 〈t1:β; t2:γ〉 with (at least)

unknown variables ρd1 and ρd2. By re-iterating above procedure for t1 and t2, we

obtain recurrences for ρd1, ρd2 and new results t′1, t′2, which are again subject to

further analysis.

If t is of type β → γ, then t′ is of the form λx:β.u:γ involving (at least) unknown

variable ρda. Again, we re-iterate by evaluating u to derive a recurrence equation

for ρda and some result u′. Note that ρda depends on x; for each arrow type, i.e. for

each subscript a, the corresponding recurrence variable will involve an additional

parameter. Since variable x is free in u, the integer variable assumption applies

and limits the types of inductions supported. We outline in section 6.1 how this

restriction can be relaxed.

If t is of type β list, we replace t′ by another lcpx term. The function getlist (cf.

figure 11) will decompose the remaining parts of b and f into the elements and the

tails of the new list while keeping track of the spine complexity ρdt. All elements

that might become members of the list will be wrapped in an indet term that will

become the new element representative. Finally, a recurrence relation for the length

of the new list ρds is generated.

The representative abstracts from the actual value of the induction by replacing

all integer results by the constant Ax. This loss of information will not affect the

analysis unless the inductive term is the principal argument of another inductive

term. Our experience suggests, however, that this is a very rare instance; usually,
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b′ ↓ eb1 :: b′′ (in nb1), b′′ ↓ eb2 :: b′′′ (in nb2), . . . , b(k) ↓ [] or lcpx(nb; eb; k
′) (in nbk),

f′ ↓ ef1 :: f′′ (in nf1), f′′ ↓ ef2 :: f′′′ (in nf2), . . . , f(`) ↓ [] or lcpx(nf; ef; `
′) (in nf`)

ρds(0) := k + k′, ρds(m) := `+ `′,
ρdt(0) := tmax(nb1; . . . ; nbk; nb), ρdt(m) := tmax(nf1; . . . ; nf`; nf),

getlist(ρd; eb0 ::b′; ef0 ::f′)→ indet(eb0; . . . ; ebk−1; eb), indet(ef0; . . . ; ef −̀1; ef)

Fig. 11. List analysis ‘getlist’.

nested recursion corresponds to well-nested loops so that the inductive term is

included within the step case of another inductive term.

Some examples will illustrate the use of these rules. Let

power == ind(m; λx.1; i,z.λx.(z i) ∗ 2).

The complexity of power is ρ(m) ≡ time(m) + 1, for the actual computation of 2m is

deferred until a dummy argument is passed to the resulting function. This is a rather

unusual way to implement power , but Nuprl indeed synthesizes the function this

way. We can see that ρa depends on m whereas parameter x is ignored; the exact

relationship is ρa(m, x) = ρa(m− 1, 0) + 3, ρa(0, x) = 0, hence the representative of

power is cpx(time(m) + 1; λx.cpx(3 ∗ m; Ax)).

As another example, the function

table == λf.λk.ind(k; []; i, z.(f i) :: z).

creates a list of elements f(k) :: · · · :: f(1). For some function f that runs in constant

time, the complexity of (table λx.cpx(n; Ax)) m is 3 + time(m) – lazy evaluation will

defer most of the work.

Finally, let

hyper == λk.ind(k; λx.x; i,z.λx.z((z x) + 1))

The representative r of this term is cpx(ρ(m); λx.cpx(ρa(m, time(x)); Ax)). Symbolic

evaluation of (hyper p q) yields

1 + (1 + 0 + time(p) + 1 + ρ(p)) + ρa(p, time(q))

where ρ(m) ≡ 0 and

ρa(m, x) =


2 + ρ(m− 1) + ρa

(
m− 1,

3 + ρ(m− 1) + ρa(m− 1, time(x))
)

if m > 0

time(x) if m = 0

.

This reduces to

ρa(m, x) =

{
ρa(m− 1, ρa(m− 1, time(x)) + 3) + 2 if m > 0

time(x) if m = 0

or

ρa(m, x) = 5(2m − 1) + time(x)

so that the complexity of (hyper p q) is 3 + time(p) + time(q) + 5(2p − 1).
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(listind)

l ↓ lcpx(n; e; k) (in n1), repk(α) ↓ w (in n2),

getrecr(ρε(m); b; f[e/h, cpx(n; lcpx(n; e; k−1))/t, cpx(n; repk−1(α))/z])

listind(l; b; h,t,z.f): α ↓ w (in n1 + n2)

Fig. 12. Symbolic list induction rule.

3.4 List recursion

List recursion is very similar to primitive recursion; in fact, it uses the same terms

for representative and recurrence variables and relies on the same procedure for

infering recurrence equations (cf. figure 12). As an example, the function

sumrest == λL.listind(L; 0; u, us, v.listind(us; 0; x, xs, y.x+ y))

sums up all but the first elements. The complexity of (sumrest lcpx(n; e;m)) is

1 + tmax(1; 2m+ mn+ (m− 1) time(e)).

Returning to our example from section 3.3, we now wrap a summation around

our lazy list to enforce computation of all list elements. The complexity of

listind(((table λx.cpx(n; Ax)) m); 0; h, t, z.h+ z)

becomes 5 + 5m+ mn+ time(m).

3.5 Soundness

To prove the soundness of the symbolic evaluation rules with respect to the profiling

semantics in figure 2 and time complexity definition (1), we have to show that

tv̄ ↓s wv̄ (in nv̄) implies ∀ū.type(ū) = type(v̄) ⊃ tū ↓ wū (in nū),

where ↓s denotes symbolic evaluation and ↓ denotes regular evaluation. Let’s assume

that tv̄ ↓s wv̄ (in nv̄) for some symbolic tv̄ with free variables v̄ and let ū be any type-

correct instantiation of v̄. We prove tū ↓ wū (in nū) by induction on the derivation of

tv̄ ↓s wv̄ (in nv̄):

(var) The base case tv̄ = v is trivial by our definition of v∗ and time(v).

(arith) Let ki ↓s k′i (in ni) and add(k1; k2) ↓s add∗(k′1; k′2) (in n1 + n2 + 1). Then by

inductive hypothesis, k̂i ↓ k̂′i (in n̂i) for any instantiations k̂i, n̂i of ki, ni. Given our

profiling semantics, we have add(k̂1; k̂2) ↓ k̂′1 + k̂′2 (in n̂1 + n̂2 + 1), where by definition

k̂′1 + k̂′2 instantiates add∗(k′1; k′2) and n̂1 + n̂2 + 1 instantiates n1 + n2 + 1.

(comp) Let ki ↓s k′i (in ni) for i = 1, 2 and indet(u; v) ↓s w (in n3). Then again

by inductive hypothesis, k̂i ↓ k̂′i (in n̂i) for any instantiation k̂i, n̂i of ki, ni. Now if

k̂1 < k̂2 and û ↓ ŵ (in n̂3), then less(k̂1; k̂2; û; v̂) ↓ ŵ (in n̂1 + n̂2 + n̂3 + 1) for some

instantiations û, v̂, ŵ. Since û is also an instantiation of indet(u; v), we have by

inductive hypothesis that ŵ and n̂3 are instantiations of w and n3, respectively, which

proves our claim. The case k̂1 > k̂2 is analogous.

(indet) Let p ↓s indet(p1; p2) (in n) and op(pi; ū) ↓s wi (in ni) for i = 1, 2. Then by

inductive hypothesis, p̂ ↓ p̂′ (in n̂) for any instantiations p̂, p̂′, n̂ of p, p1, n. Now let

û, ŵi, n̂i be instantiations of ū, wi, ni. By inductive hypothesis, op(p̂′; û) ↓ ŵ1 (in n̂1).
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Clearly, n̂1 6 max(n̂1, n̂2) and thus op(p̂; û) ↓ ŵ1 (in n̂+ tmax(n̂1; n̂2)), where ŵ1

instantiates indet(w1;w2). The case where p̂′ instantiates p2 is analogous.

(ind), (listind) By our construction, an inductive term t == ind(k; b; i,z.f): α and

its representative r == repm(α)[k∗/m] have the same computational behavior. In

other words, in any permissible context C (i.e. excluding those where the Ax terms

of the representative would enter the computation path), we have C[t] ↓s w (in n)

iff. C[r] ↓s w′ (in n). Thus, the soundness of (ind) is reduced to the soundness of

(indbase) and (indstep), which are covered below. The case for listind is analogous.

(other) All other symbolic rules are identical to their corresponding standard rule

so that their soundness proof is trivial.

3.6 Symbolic call-by-value reduction

In addition to implementing the profiling semantics of figure 5 for symbolic eval-

uation, we need to adopt the initial step of the recurrence generation in figure 10.

Instead of matching the representative r == repm−1(α) with f[m/i, r/z], we now use

the flat representative r′ == r[0/ρd] to match r with f[m/i, r′/z]. To account for the

cost of unfolding the inductive term, we add ρd(m− 1) to the result nm in each rule

of figure 10.

4 Recurrence solving

A central part of the ACAp system is devoted to symbolic manipulation of algebraic

expressions. Alas, Nuprl is not well-equipped for this task: its single rewriting

function arith simplify term performs certain undesirable transformations to our

new terms power, frac, and tmax. We thus implemented a new simplification routine

that also knows about some trivial identities like tmax(a; a) = a or 1a = 1.

In addition to term simplification, solving non-trivial recurrence relations re-

quires some means to support summation
∑q

i=p ϕi and function iteration fp(x) for

symbolic p and q. Two rudimentary arithmetical support functions arith sum and

arith iterate return closed expressions for sums over c, cqi, and cik(k 6 3) terms

and for iterations of linear functions f.

These simple routines handle the most frequent, trivial cases fast and efficiently,

but they are inadequate for any ‘smart’ reasoning. For more advanced tasks, we

thus harness the computational power of the Mathematica symbolic algebra system

(Wolfram, 1996) for both term rewriting and recurrence solving (cf. section 4.3).

4.1 The recurrence solver

The recurrence solver is designed as an extensible collection of individual rsolver

modules that are tailored to obtain solutions for particular recurrence classes iden-

tified by pattern matching. Each rsolver takes a recurrence equation (ρd(m, x̄);

ϕ(x̄); ψ(m, x̄)) and returns a (possibly empty) list of substitutions (ρd, χ) such that

ϕ(x̄) = χ(0, x̄) and ψ(m, x̄) = χ(m, x̄) hold. The main routine repeatedly sweeps the

rsolver modules across the list of unsolved recurrences; computationally inexpensive

rsolvers are tried first before more costly modules are applied as well. Since induc-

tive terms might generate large recurrence systems involving many variables, some
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reset force

try rsolver n

simplify

try rsolver 2

try rsolver 1

success

success

success

failure

increase force

approximate

Fig. 13. The recurrence solver.

modules need to examine multiple recurrences at a time. In practice, however, many

systems are of triangular shape and can easily be solved by Gaussian elimination

using single-equation rsolvers.

The current prototype features rsolvers for linear equations with constant coef-

ficients and various linear equations involving tmax terms. We distinguish between

internal modules written in ML and external modules implemented in Mathemat-

ica’s functional programming language. The internal rsolver modules solve most

of the standard cases, which in our experience account for 90% or more of all

recurrence equations generated.

4.1.1 Linear recurrences with constant coefficients

The built-in const linear module is the bread-and-butter solver of the system and

applies to very simple linear recurrence equations with constant coefficients:

ρ(m, x̄) =

{
c1ρ(m− 1, p(x̄)) + c0(x̄) if m > 0

ρ0(x̄) if m = 0

As indicated by our notation, c0 may not depend on m and c1 may not depend on m

or x̄. The main solver routine builds a dependency graph so that indirect references

of dependent variables can be identified. For example, const linear applies to ρ1 in

ρ1(m, y) = ρ2(z) ρ1(m− 1, y + 1)

ρ2(n) = ρ2(n− 1) + 1,

but not in

ρ1(m, y) = ρ2(z) ρ1(m− 1, y + 1)

ρ2(n) = ρ2(m− 1) + 1,

so that in the latter case ρ2 need to be determined first. The solution to the general

equation is

ρ(m, x̄) = cm1 · ρ0(pm(x̄)) +

m−1∑
j=0

c
j
1c0(pj(x̄)).

The current arithmetical support functions restrict the applicability of the module
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to linear functions p(x̄) = ā1 · x̄+ ā0, where ā1 is a vector of integers, ā0 is a vector

of terms not containing x̄, and ‘·’ denotes component-wise multiplication.

The unit linear polym module is very similar to const linear in that it applies

to linear recurrence equations, but it allows for an additional polynomial while

requiring a unit coefficient:

ρ(m, x̄) =

{
ρ(m− 1, p(x̄)) + b0(x̄) +

∑k
i=1 bim

i if m > 0

ρ0(x̄) if m = 0

The solution to this recurrence is

ρ(m, x̄) = ρ0(pm(x̄)) +

m−1∑
j=0

b0(pj(x̄)) +

k∑
i=1

m∑
j=0

bij
i.

The support functions further require that p be a linear function and coefficients

b1, . . . , bk be integer constants with k no larger than 3.

4.1.2 Linear recurrences involving tmax terms

The linear tmax resolver applies to linear recurrences in which the recurrence

variable is part of a tmax term:

ρ(m, x̄) =

{
tmax(ρ(m− 1, p(x)) + c0(x); a1m+ a0(x)) if m > 0

ρ0(x̄) if m = 0

A solution to this recurrence equation is

ρ(m, x̄) = max
(
ρ0(pm(x̄)) +

m−1∑
j=0

c0(pj(x̄)),

max
k=1,...,m

a1 k + a0(pm−k(x̄)) +

m−k−1∑
j=0

c0(pj(x̄))
)
.

Again, the arithmetical support functions cannot generate closed expressions in this

generality. For the special case a0(x̄) = a0, c0(x̄) = c0, however, the above solution

simplifies to

ρ(m, x̄) = max
(
ρ0(pm(x̄)) + mc0, max

k=1,...,m
k a1 + a0 + (m− k)c0

)
,

which may be abbreviated further to

ρ(m, x̄) 6 max(a1, c0) m+ max(ρ0(pm(x̄)), a0).

This last bound is implemented in the system.

4.2 Approximation heuristics

Because of indeterminism, tmax terms are ubiquitous in raw complexity expressions

returned by the symbolic evaluator. Many of these terms are trivial as they originate

from intermediate reduction steps that do not depend on some previous evaluation

of an indeterminate term. More complicated expressions, however, might contain

other tmax terms or recurrence variables as subterms.
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Force Approximation

0 none

1 tmax(
∑n

j=1 ajuj + a0;
∑n

j=1 bjuj + b0) 7→∑n
j tmax(aj; bj)uj + tmax(a0, b0)

where aj , bj > 0 for j = 1, . . . , n

2 tmax(
∑n

j=1 ajuj + a0;
∑n

j=1 bjuj + b0) 7→∑n
j tmax(aj; bj)uj + tmax(a0, b0)

3 tmax(u; v) 7→ u+ v

Fig. 14. tmax approximations.

Recurrences involving tmax terms are considerably harder to solve than regular

ones. To improve the performance of the recurrence solver, a collection of tmax

approximations heuristically replace tmax terms by less complex terms at the cost

of looser bounds. Since tmax terms are so common in complexity expression, these

heuristics have a profound influence on the quality of the bounds obtained.

Recurrence solving is an iterative process. First, the system applies all known

simplifications as described in section 4. After this step, the recurrence solver

sweeps the individual rsolver modules over the simplified equations, with additional

simplification after a solution is found and substituted. This process is repeated until

no further recurrences can be solved. At this point, the system applies some tmax

approximation before it resumes the rsolver cycle (cf. figure 13).

Approximations have to be controlled carefully, or they will spoil the analysis.

Obviously, more accurate approximations should be tried first before reverting to

more crude substitutions. The ACAp system classifies approximations into several

force levels of increasing inaccuracy. If gentle approximations of an expression do

not result in solving any new recurrences, the system has to apply more force while

incurring looser bounds. The force levels currently implemented in the system are

shown in figure 14. Note that levels 1 and 2 differ only in their restriction on the

coefficients of the polynomials involved. This discrimination was necessary because

the level 2 approximation might result in very crude bounds if one of the polynomial

terms uj involves recurrence variables.

4.3 Solving recurrences with Mathematica

As we mentioned earlier, the recurrence solver employs the Mathematica computer

algebra system (Wolfram, 1996) to solve more complicated difference equations gen-

erated by the symbolic evaluator. Mathematica’s built-in recurrence solver RSolve,

however, is not adequate for our needs: Like similar packages of other systems such

as Maple or Mupad, it relies on power series expansion and thus does not support

functions of several variables.

In our setting, a general linear recurrence equation with constant coefficients has

the form

r(m, x, . . . , z) =


∑

i ai r(m−1, x+bxi, . . . , z+bzi)

+q(m, x, . . . , z) for m > 0

p(x, . . . , z) for m = 0

, (2)
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where p and q are arbitrary polynomials. Following the ideas in (Levy and Lessman,

1961), we define operators Ξ and ∆ such that

Ξνϕ := ϕ[ν + 1/ν]

∆νϕ := ϕ[ν + 1/ν]− ϕ
for any variable ν. So for example, Ξmr(m, x) = r(m + 1, x) and ∆x(x

2 − y2) =

(x+ 1)2 − x2. We might think of ∆ν as being the discrete analog of the differential

operator ∂/∂ν.

Operators Ξ and ∆ are obviously distributive and commutative and satisfy the

index law ΞpΞq = Ξp+q , ∆p∆q = ∆p+q . Hence, we might subject Ξ and ∆ to common

algebraic manipulations with the usual identities like (∆ + 1)2 = ∆2 + 2∆ + 1 or

eΞ = 1 + Ξ + Ξ2/2! + Ξ3/3! + · · · (see (Levy and Lessman, 1961) for details). In

particular, we have the fundamental relationship

Ξν = ∆ν + 1,

where 1 is the identity operator.

To solve a particular instance of (2), we first rewrite the step case m > 0 by

substituting m+ 1 for m and using the Ξ operator:

Ξmr(m, x, . . . , z) =
∑
i

(
ai
∏
ν

Ξbνi
ν

)
r(m, x, . . . , z) + q(m+ 1, x, . . . , z). (3)

To find a particular solution rp(m, x, . . . , z) that satisfies (3) but not necessarily (2)

for m = 0, we substitute ∆ + 1 for Ξ and move all operators to the left-hand side of

the equation, yielding

Φ(∆̄)rp(m, x, . . . , z) = q(m+ 1, x, . . . , z) (4)

for some polynomial Φ(∆̄) = Φ(∆m,∆x, . . . ,∆z). Now we can formally solve for rp,

arriving at

rp(m, x, . . . , z) = Φ(∆̄)−1q(m+ 1, x, . . . , z)

or, by pulling the constant factor α out of Φ,

rp(m, x, . . . , z) = 1/α (1− (1− Φ(∆̄)/α))−1q(m+ 1, x, . . . , z)

=: 1/α (1− ϕ)−1q(m+ 1, x, . . . , z).

Expanding 1/(1− ϕ) to its formal power series 1 + ϕ+ ϕ2 + ϕ3 + · · ·, we continue

rp(m, x, . . . , z) = 1/α (1 + ϕ+ ϕ2 + · · ·) q(m+ 1, x, . . . , z)

= 1/α (1 + ϕ+ ϕ2 + · · ·+ ϕk) q(m+ 1, x, . . . , z)

for some finite k, since ϕ does not have a constant term and q is a finite polynomial

so that ϕjq = 0 for all sufficiently large j. Hence, we have a finite procedure to

compute a particular solution rp for (3).

As a simple example, let

r(m, x, y) =

{
a r(m−1, x+1, y) + r(m−1, x, y+2) + mx+ y for m > 0

xy for m = 0
.
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Since the argument y is increased by 2, we redefine Ξyϕ to be ϕ[ν+ 2/ν] to simplify

our presentation. The step case is then equivalent to Ξmr = (aΞx+Ξy)r+mx+x+y or

(∆m − a∆x − ∆y − a)r = mx+ x+ y,

so α = −a and ϕ = −∆m/a+ ∆x + ∆y/a. Expanding Φ up to ϕ2, simplification with

Mathematica yields

rp(m, x, y) =
1

−a2
(x+ a((m+ 1)(x− 1) + y)− 4)

as the particular solution for m > 0.

To find a solution that satisfies (2) for m = 0, we first determine a solution rh to

the homogeneous recurrence equation

Ξmr(m, x, . . . , z) =
∑
i

(
ai
∏
ν

Ξbνi
ν

)
r(m, x, . . . , z). (5)

As in the theory of differential equations, all solutions to (2) for m > 0 can be

expressed as a linear combination rp + α rh of the homogeneous and the particular

solution. The case m = 0 then becomes a boundary condition that has to be satisfied

by determining an appropriate value for α.

The operators on the right-hand side of (5) do not interfere with m, so we may

unfold above relation to get

rh(m, x, . . . , z) = Γ rh(m− 1, x, . . . , z)

= Γ2 rh(m− 2, x, . . . , z)

= · · ·
= Γm rh(0, x, . . . , z)

= Γm A(x, . . . , z)

where Γ =
∑

(ai
∏

Ξbνi
ν ). The function A is arbitrary, so by picking A(x, . . . , z) =

p(x, . . . , z) − rp(0, x, . . . , z), we ensure that the boundary condition is satisfied for

α = 1. To eliminate the operators, we repeatedly use binomial expansion of Γ =

γ1 + γ2 + · · ·+ γk and apply any operators in γi = ∆ν1
∆ν2
· · ·∆νm:

rh(m, x, . . . , z) = (γ1 + Γ1)mA0(x, . . . , z)

=

m∑
i=0

(
m

i

)
γi1(Γm−i

1 A0(x, . . . , z))

= . . .

=

m∑
i=0

(
m

i

)
γi1Am−1(x, . . . , z)

=

m∑
i=0

(
m

i

)
Am(x, . . . , z)

Since A0 = A is a given polynomial, the remaining polynomials Aj = γkm−jAj−1 can

be computed explicitly. The only difficulty now is to eliminate the sum from the last

line, since Am may involve the variable m. Mathematica seems quite powerful in
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obtaining a closed expression, but we know of several cases involving four or five

symbolic constants where the system exhausted the available main memory of 2 GB

when attempting to find a solution.

To complete the example from above, we have

rh(m, x, y) =

m∑
i=0

(
m

i

)
(aΞx)

i(Ξy)
m−i(xy − rp(m, x, y))

=

m∑
i=0

(
m

i

)
(aΞx)

i(x(y + 2m− 2i)− rp(m, x, y + 2m− 2i))

=

m∑
i=0

(
m

i

)
ai(x+ i)(y + 2m− 2i)− airp(m, x+ i, y + 2m− 2i),

which Mathematica simplifies to

r(m, x, y) = rp(m, x, y) + rh(m, x, y)

=
1

a2

(
(a+ 1)m−2

(
(x− 4) + a(3m+ 3x+ y − 9)

+a2(2m(2 + x) + 3x+ 2y + xy − 6)

+a3(2m2 + m(2x+ y − 1) + x+ y + 2xy − 1)

+a4(m+ x)y
)− a(m(x− 1) + x+ y − 1)− x+ 4

)
.

5 Examples

This section illustrates the combined use of Nuprl and the ACAp system for

program extraction and complexity analysis. In the first example, we synthesize

an efficient algorithm for the Maximum Segment Sum problem and determine an

upper bound on its worst-case time complexity. Due to space limitations, the formal

proof of the problem specification had to be omitted; the interested reader can

find it in earlier work (Benzinger, 1999). The second analysis shows how call-by-

name evaluation allows efficient computation of the minimum of an integer list by

sorting it. We conclude the section by contrasting the different run-time behavior of

call-by-name and call-by-value reduction.

5.1 Maximum segment sum

Let a be an integer list a1 :: a2 :: · · · :: an of length n. A segment of a is any

consecutive subsequence ai :: ai+1 :: · · · :: aj , 1 6 i, j 6 n, where the segment is

empty if i > j. A prefix is a segment where i = 1.

We use Nuprl to synthesize an efficient solution to the well-known Maximum

Segment Sum problem originally presented by Jon Bently and David Gries (1982):

Given an integer list a, find the largest element sum M of all segments of a, i.e.

M = max
16i,j6n

j∑
k=i

ak.

The maximum segment sum is a popular textbook example for a problem that has
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m := 0

for i := 1 to n do

s := 0

for j := i to n do

s := s + a[j]

m := max(m, s)

Fig. 15. The näıve maxsegsum algorithm.

l, m := 0

for i := 1 to n do

l := max(l + a[i], 0)

m := max(m, l)

Fig. 16. Gries’ linear algorithm.

a relatively simple specification, but whose most obvious solutions are computa-

tionally inefficient. The straightforward imperative approach shown in figure 15 has

running time O(n2), which is worse than the linear algorithm by Gries given in

figure 16. Subsequently, Bates and Constable formally derived an efficient solution

in a functional programming language with the Prl system (Bates and Constable,

1985). Although their proof yields the functional equivalent of the linear imperative

solution, they did not have the means to formally assess the actual complexity of

their program.

In our new proof, two abstractions pfxsum(L; k) and segsum(L; j; k) define the

sum of prefix L1 :: · · · :: Lk and segment Lk :: · · · :: Lj+k−1, respectively. The

abstractions are supplemented by definitions for display forms and well-formedness

proofs as well as some simple rewrite tactics to automate recurrent manipulations

of these terms.

The proof mainly follows the lines of Bates and Constable (1985), but the reader

should note that we consider the empty segment a valid solution. To enforce the

desired computational behavior, the basic maxsegsum specification is strengthened

by asserting that for every list L, there exists a maximum prefix sum pfxL and a

maximum segment sum maxL:

∀L:Z list.
(
(∃pfxL:N. (∀l:N. l 6 ‖L‖ ⊃ pfxsum(L; l) 6 pfxL)) &

(∃maxL:N. (∀j, k:N. j 6 ‖L‖ ⊃ j + k 6 ‖L‖ ⊃ segsum(L; j; k) 6 maxL))
)

The proof proceeds by list induction on L. The base case L = [] is trivial, since

the maximum segment sum of the empty list is 0. For the step case L = u :: v, we

first show the existence of the maximum prefix sum of L. By induction hypothesis,

pfxL is the maximum prefix sum of v. Hence, u+ pfxL is the maximum prefix sum

of u :: v if u + pfxL > 0; otherwise, [] is the maximal prefix of u :: v. Using pfxL,

we can now prove the existence of the maximum segment sum of L. By induction

hypothesis, maxL is the maximum segment sum of v. Any maximal segment of L

that is not also maximal segment of v must clearly begin with u. Since pfxL is the
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λL.let <pfxL,%1> = rec-case(L)

of [] =>

<0, λl,%,.Ax, 0, λj,k,%,%1,.Ax>

| u::v =>

%.let <pfxL,%1> = % in

let <%2,%3> = %1 in

let <maxL,%4> = %3 in

case if 0<(u + pfxL) then inr (λ,.Ax) else (inl (λ.Ax) )

of inl(%) =>

<0,

λl,%5.case l 6z 0 of inl(x) => λ.Ax | inr(y) => λ.Ax,

maxL,

λj,k,%5,%6.case j 6z 0

of inl(x) => case k 6z 0

of inl(x) => λ.Ax | inr(y) => λ.Ax

| inr(y) => λ.Ax>

| inr(%6) =>

<u + pfxL,

λl,%.case l 6z 0 of inl(x) => λ.Ax | inr(y) => λ.Ax,

case if maxL<(u + pfxL)

then inr (λ,.Ax) else (inl (λ.Ax) )

of inl(%) =>

<maxL,

λj,k,%7,%8.case j 6z 0

of inl(x) =>

case k 6z 0

of inl(x) => λ.Ax | inr(y) => λ.Ax

| inr(y) => λ.Ax>

| inr(%8) =>

<u + pfxL,

λj,k,%,%9.case j 6z 0

of inl(x) =>

case k 6z 0

of inl(x) => λ.Ax | inr(y) => λ.Ax

| inr(y) => λ.Ax>

>

in

let <%2,%3> = %1 in %3

Fig. 17. Maximum segment sum extract.

maximal sum of all these segments, max(pfxL,maxL) is the maximum segment sum

of u :: v, q.e.d.

The resulting extract is given in figure 17. As usual, dead code, introduced as

proof fragments by existential quantification and arithmetical reasoning, obfuscates

the actual algorithm. Analysis with the ACAp system yields

M> let mss = f_of_thm ‘maxsegsum‘ ;;

M> fcc mss plcpx(0;0;m)q ;;

5 + 17 * m * 1/2 + 3 * m * m * 1/2 : term
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ρ(l) = 7 + ρ(l − 1) + ρ1(l − 1) + ρ22(l − 1)

ρ1(l) = 1 + ρ1(l − 1)

ρ21aa(l, l′, x) = 9 + time(l′)
ρ22(l) = 3 + ρ1(l − 1) + ρ221(l − 1)

ρ221(l) = tmax2(tmax5(1 + ρ1(l − 1); ρ221(l − 1)); ρ221(l − 1))

ρ222aaaa(l, j, k, x, y) = 8 + time(j) + tmax6(1; 10 + time(k))

Fig. 18. Non-trivial recurrence equations for maxsegsum.

as an upper bound on the time complexity of the algorithm. The suggested quadratic

running time is surprising at first but becomes understandable upon closer examina-

tion of the algorithm: in each iteration, the term u+pfxL might be reduced multiple

times. Counting the number of reduction steps for some concrete worst-case lists of

length m indeed yields

m: 0 1 2 3 4 5 6 7 8 9 . . .

ρ(m): 4 14 27 43 62 84 109 137 168 202 . . .

or ρ(m) = 4 + 17m/2 + 3m2/2.

Unwinding the program with its nested pairs of intermediate values that result

from different iterations is fairly involved. If we look at the worst case of recomputing

maxL in each iteration, we arrive at

T (n) = 2 T (n− 1) + c

as a crude estimate of our real time complexity. This recurrence has an exponential

solution, which is a far worse than our computer-generated bound. In fact, when

we wrote an uncluttered version of the algorithm by hand, the resulting program

exhibited exponential running time both in experiments and when analyzed by

ACAp. The maximum segment sum example thus rather convincingly shows the

usefulness of the ACAp system: as programs grow larger, manual complexity analysis

quickly becomes infeasible.

To determine the bounds for the maximum segment sum function, the system

generates 15 recurrence equations, of which all but 6 are trivial and eliminated

during the first round of recurrence solving. The remaining simplified equations,

shown in figure 18, are solved by consecutive sweeps of the internal rsolvers at

different force levels.

5.2 Insertion sort and minimum

A popular example to contrast call-by-name and call-by-value evaluation is comput-

ing the minimum of an integer list by sorting the list and returning the head of the

sorted list. If we use insertion sort, sorting a list of length m will take O(m2) opera-

tions. Extracting the head of a list takes constant time, so the composition of these

two operations using call-by-value takes O(m2) steps. With call-by-name evaluation,

however, only the head of the sorted list has to be computed, and this is done in O(m)

steps. Hence, using call-by-name, the minimum can be determined in linear time.
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To make the algorithms more readable, we encoded them by hand rather than

synthesizing extracts with Nuprl. Given the abstractions

ielem(x;L) == listind(L; x :: []; h,t,z.ifless(x; z; x :: h :: t; h :: z))

isort(L) == listind(L; []; h,t,z.ielem(h; z)),

sorting a list of length m takes O(m2) time if we browse through the whole list:

M> cc plistind(isort(lcpx(k;0;m)); 0; h,t,z.h+z)q ;;

3 + 10 * m + k * m + 6 * m * m : term

Using lazy evaluation, however, we can take the head of the sorted list to compute

the minimum in O(m) time:

M> cc phd(isort(lcpx(k;0;m)))q ;;

4 + 8 * m + k * m : term

5.3 Call-by-name versus call-by-value

As we have seen in the previous examples, call-by-name evaluation can be a boon

but also a curse. For Nuprl extracts, call-by-name reduction conveniently ignores

dead code in the form of proof fragments. From a practitioner’s point of view,

however, call-by-value if often the more natural reduction strategy. If we repeat

above analyses using the call-by-value semantics from section 2.3, the Maximum

Segment Sum becomes linear, as expected:

M> fccv mss plcpx(0;0;m)q ;;

4 + 11 * m : term

On the other hand, computing the minimum of an integer list via insertion sort is

now no longer efficient, as the complete sorted list will be computed, even though

we need only the first element:

M> ccv phd(isort(lcpx(k;0;m)))q ;;

4 + k * m + m * 1/2 + 7 * m * m * 1/2 : term

As more and better evaluation strategies for Nuprl become available, the ACAp

system should be flexible enough to accommodate them.

6 Conclusion

We developed a cost model of an abstract call-by-name interpreter for Nuprl’s

standard term language and showed how alternative reduction strategies such as

call-by-value are realized. The central part of the calculus are the cpx and lcpx

terms, which allow the definition of abstract functions λx.cpx(nx; tx) and abstract

lists lcpx(n; e; k). The framework supports primitive recursive programs with first-

order functions and lazy lists as well as higher-order functions whose inputs can

be defined by abstract functions. Symbolic evaluation is introduced as a sound

extension of standard evaluation to open terms. For automatic analysis, symbolic
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inductive terms are replaced by their representative, a non-recursive decomposition

into first-order terms. The individual time complexities of these terms are translated

into a system of multi-variable difference equations, which are solved by common

techniques.

We designed and implemented a working prototype system (ACAp) to explore the

potential and the pitfalls of our theoretical framework. The system automatically

derives an upper bound on the time complexity of a given Nuprl extract or program

with respect to either call-by-name or call-by-value semantics. Difference equations

are solved by various modules written in Nuprl ML or Mathematica’s functional

programming language.

6.1 Future work

Some of our near term goals include improving the recurrence solver by writing

additional Mathematica packages for linear equations with non-constant coefficients

and classes of non-linear equations, and by fine-tuning the tmax heuristics to improve

the bounds for nested conditionals. Another plan to increase the usability of the

system is to enhance the user dialog with the system to permit the interactive analysis

of particularly involved programs.

Although the integer variable assumption works fairly well in practice, further

work remains to be done. Some tactics, like complete induction, often require that

functions be passed as an argument to the inductive term. Another example in which

the integer variable assumption is violated involves induction on pairs consisting of

the result and some computationally irrelevant proof fragment.

If we use the representative not only for inductive terms but also for free variables,

we can discard the integer variable assumption completely. The only problem with

this approach is that inductive terms of higher type, e.g.

ind(k; λf.f0; i,z.λf.z(λx.x+ 1))

will generate ‘higher order’ difference equations, which we may write as

ρa(m, f, fa) = ρa(m− 1, f(m− 1), 1 + fa(m− 1, x))

+ρa(m− 1, 0, 1 + f(m− 1) + fa(m− 1, x+ 1)) + c

Current work focuses on extending the present operator approach to these higher

order equations.

Finally, we plan to abolish the current restriction to primitive recursive functions.

Future versions of the ACAp system will be able to derive recurrence equations

from general recursive abstractions

op(x) == φ(op(ψ(x)))

involving the Y combinator, allowing more natural extracts in the style of conven-

tional ML programs.

https://doi.org/10.1017/S0956796800003865 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003865


30 R. Benzinger

Acknowledgements

The author would like to thank Jason J. Hickey for his suggestions on clarify-

ing several aspects of this paper and his inexhaustible patience in explaining the

nooks and crannies of the Nuprl system. I am also much indebted to my adviser

Robert L. Constable for his help in identifying the area and his gentle guidance

during my work on this document. Finally, I would like to thank the referees for

their feedback and suggested improvements.

References

Bates, J. L. and Constable, R. L. (1985) Proofs as programs. ACM Trans. Programming

Languages & Syst., 7(1).

Benzinger, R. (1999) Automated complexity analysis of Nuprl extracts. MPhil thesis, Cornell

University.

Bjerner, B. and Holmström, S. (1989) A compositional approach to time analysis of first

order lazy functional programs. 4th International Conference on Functional Programming

Languages and Computer Architecture.

Bjørner, D. and Jones, C. B. (1978) The Vienna Development Method: Lecture Notes in Com-

puter Science 61. Springer-Verlag.

Caldwell, J. L. (1997) Moving Proofs-as-Programs into practice. IEEE International Conference

on Automated Software Engineering.

Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper, R. W.,

Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T. and Smith, S. F.

(1986) Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall.

Constable, R. L., Jackson, P. B., Naumov, P. and Uribe, J. (1998) Constructively formalizing

automata. Proof, Language and Interaction: Essays in honour of Robin Milner. MIT Press.

Coquand, T. and Huet, G. (1985) Constructions: A higher order proof system for mechanizing

mathematics. Eurocal ’85: Lecture Notes in Computer Science 203. Springer.

Flajolet, P., Salvy, B. and Zimmermann, P. (1990) Automatic average-case analysis of algorithms.

Technical report 1233, INRIA, France.

Gordon, M. J. C. and Melham, Thomas F. (1993) Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press.

Greiner, J. (1997) Semantics-based parallel cost models and their use in provably efficient im-

plementations. PhD thesis, Carnegie-Mellon University.

Gries, D. (1982) A note on the standard strategy for developing loop invariants and loops.

Technical report, TR 82-531, Cornell University.

Hafızogulları, O. and Kreitz, C. (1998) Dead code elimination through type inference. Technical

report, Cornell University.

Hickey, J. J. (2000) MetaPRL. PhD thesis, Cornell University.

Hickey, T. and Cohen, J. (1988) Automating program analysis. J. ACM, 35(1), 185–220.

Hoare, C. A. R. (1969) An axiomatic basis for computer programming. Commun. ACM,

12(10), 576–580.

Lawall, J. L. and Mairson, Harry G. (1996) Optimality and efficiency: What isn’t a cost

model of the lambda calculus? ACM International Conference on Functional Programming,

pp. 92–101.

Levy, H. and Lessman, F. (1961) Finite Difference Equations. Macmillan.
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