GENERALIZATIONS OF THE SIMPLE TORSION CLASS AND THE SPLITTING PROPERTIES

MARK L. TEPLY

In this paper all rings R are associative rings with identity and all modules are members of R-mod, the category of unital left R-modules, unless the contrary is specifically stated.

A subclass \mathscr{T} of R-mod is called a hereditary torsion class if \mathscr{T} is closed under submodules, homomorphic images, direct sums, and extensions $[\mathbf{1 4 ; 1 5]}$. With each hereditary torsion class \mathscr{T}, there corresponds a unique class \mathscr{F} such that $(\mathscr{T}, \mathscr{F})$ is a hereditary torsion theory $[\mathbf{2} ; \mathbf{1 2} ; \mathbf{1 4} ; \mathbf{1 5}]$. Such a class \mathscr{F} is called a torsion-free class and is closed under submodules, direct products, extensions, and injective hulls. $(\mathscr{T}, \mathscr{F})$ is called stable if \mathscr{T} is closed under injective hulls $[\mathbf{1 4} ; \mathbf{1 5} ; \mathbf{1 7}]$.

Since simple modules play an important role in ring theory, one hereditary torsion class which is natural to study $[\mathbf{2} ; \mathbf{3} ; \mathbf{5} ; \mathbf{1 5} ; \mathbf{1 6} ; \mathbf{1 7}]$ is

$$
\begin{array}{r}
\mathscr{S}=\{M \in R \text {-mod } \mid \text { every non-zero homomorphic image of } M \text { has } \\
\text { non-zero socle }\} .
\end{array}
$$

\mathscr{S} is called the simple torsion class. (Elsewhere in the literature (e.g. [4;13]), modules in \mathscr{S} have also been studied under the name of Loewy modules.)

A hereditary torsion class \mathscr{T} is called a generalization of the simple torsion class \mathscr{S} if $\mathscr{T} \supseteq \mathscr{S}$. (This terminology comes from [7].)

The hereditary torsion classes, which arise from Krull dimensions, are important generalizations of \mathscr{S}. The Krull dimension of $M \in R$-mod, which will be denoted by $K \operatorname{dim} M$, is defined by transfinite recursion as follows: if $M=0$, $K \operatorname{dim} M=-1$; if α is an ordinal and $K \operatorname{dim} M \nless \alpha$, then $K \operatorname{dim} M=\alpha$ provided that there is no infinite descending chain $M=M_{0} \supset M_{1} \supset \ldots$ of submodules M_{i} of M such that, for $i=1,2, \ldots, K \operatorname{dim}\left(M_{i-1} / M_{i}\right) \nless \alpha$. (It is of course possible that there is no ordinal α such that $K \operatorname{dim} M=\alpha$.) Given an ordinal α, we can define a hereditary torsion class \mathscr{T}_{α} by

$$
\begin{aligned}
\mathscr{T}_{\alpha}=\{M \in R \text {-mod } \mid & \text { every non-zero homomorphic image of } M \text { has } \\
& \text { a non-zero submodule with Krull dimension }<\alpha\} .
\end{aligned}
$$

For any non-zero $M \in R$-mod, $K \operatorname{dim} M=0$ if and only if M is an Artinian module. Hence it is an easy exercise to see that $\mathscr{T}_{1}=\mathscr{S}$. Clearly, if $\alpha<\beta$, then $\mathscr{T}_{\alpha} \subseteq \mathscr{T}_{\beta}$; so \mathscr{T}_{α} is a generalization of \mathscr{S} whenever $\alpha \geqq 1$. For properties of Krull dimension and \mathscr{T}_{α} the reader should consult [10].

[^0]Let \mathscr{T} be a hereditary torsion class with associated torsion theory $(\mathscr{T}, \mathscr{F})$ ． For $M \in R$－mod，let $\mathscr{T}(M)$ denote the（necessarily）unique largest submodule of M in \mathscr{T} ．A R－module M is said to split if $\mathscr{T}(M)$ is a direct summand of M ． Then $(\mathscr{T}, \mathscr{F})$ is said to have the cyclic splitting property（CSP）if every cyclic module splits．$(\mathscr{T}, \mathscr{F})$ is said to have the finitely generated splitting property（ $F G S P$ ）if every finitely generated module splits． $\mathscr{T}(M)$ is said to have bounded order if $I \mathscr{T}(M)=0$ for some（left）ideal I such that $R / I \in \mathscr{T}$ ； hence $(\mathscr{T}, \mathscr{F})$ has the bounded splitting property $(B S P)$ if $\mathscr{T}(M)$ is a direct summand of M whenever $\mathscr{T}(M)$ has bounded order．Finally，$(\mathscr{T}, \mathscr{F})$ is said to have the splitting property $(S P)$ if every module splits．For further discus－ sion of these definitions，the reader is referred to $[\mathbf{1 5} ; \mathbf{1 7}]$ ．

The above splitting properties have been studied for the case $\mathscr{T}=\mathscr{S}$ ，but not for the case where \mathscr{T} is a generalization of \mathscr{S} ．In particular，the splitting properties of $(\mathscr{S}, \mathscr{F})$ are discussed for commutative rings in $[\mathbf{3} ; \mathbf{5} ; \mathbf{1 5} ; \mathbf{1 7}]$ ；a result［16，Theorem 3．5］on $S P$ for $(\mathscr{S}, \mathscr{F})$ has also been obtained for rings which have sufficiently many finitely generated，two－sided ideals．Also［9］and ［17］give some general results on $S P$ which may be applied to（ \mathscr{S}, \mathscr{F} ）under certain restrictive ring conditions．

In section one of this paper，we shall obtain theorems on the various split－ ting properties of generalizations of \mathscr{S} ．In section two，these theorems are specialized to the case $\mathscr{T}=\mathscr{S}$ ；these resulting specializations generalize the main results of $[\mathbf{3} ; \mathbf{5} ; \mathbf{1 5} ; \mathbf{1 7}]$ ．An example is given to show that the theorem of section two on $S P$ applies to certain non－local，non－commutative rings that satisfy neither the hypotheses of Gorbachuk＇s theorems［ 9 ，Theorems 2 and 3］ nor the author＇s results［16，Theorem 3．5］．

In order to do this，we will be interested in the following two conditions that R may satisfy for a hereditary torsion class \mathscr{T} ：
（＊）Every two－sided idempotent ideal，which is finitely generated as a left ideal，has the form $R e$ ，where $e^{2}=e$ ．
（＊G）Every non－zero principal left ideal $R x$ properly contains
a two－sided ideal I such that $R x / I \in \mathscr{T}$ ．
If R satisfies $(* \mathscr{S})$ and if \mathscr{T} is a generalization of \mathscr{S} ，then R also satisfies （＊⿹丁口 ）．The following classes of rings satisfy both $\left(^{*}\right)$ and $\left({ }^{*} \mathscr{S}\right)$ ：
（1）commutative rings；
（2）von Neumann regular，left duo rings；
（3）von Neumann regular，left semi－artinian rings；
（4）local right perfect rings，where＂local＂means that the ring has unique maximal left ideal；
（5）left and right noetherian，hereditary integral domains with no two－sided idempotent ideals（e．g．the ring $D[[x]]$ of all power series with coefficients in a division ring D ）．

Several other interesting examples of rings which satisfy both $\left({ }^{*}\right)$ and $\left({ }^{*} \mathscr{S}\right)$ are given in section two．

It is possible that a generalization \mathscr{T} of \mathscr{S} may satisfy (${ }^{*} \mathscr{T}$), but not $(* \mathscr{S})$. To illustrate this fact, we now show how to construct a ring R which satisfies $\left.{ }^{*}\right)$ and $\left({ }^{*} \mathscr{T}_{\alpha+2}\right)$ for a given non-limit ordinal α, but does not satisfy $\left({ }^{*} \mathscr{T}_{\beta}\right)$ for any $\beta \leqq \alpha+1$.

Example 0.1. Let α be a non-limit ordinal. Let D be a commutative integral domain of Krull dimension α such that D has an automorphism ϕ of infinite period. (The existence of such a domain D is justified in the remark following this example.) Let $T=D[x ; \phi]$ be the twisted polynomial ring; i.e. the additive group is the additive group of the polynomial ring $D[x]$, and multiplication in $D[x ; \phi]$ is defined by $x d=\phi(d) x$ and its consequences. T is a left Öre domain and hence T is a left order in a division ring F. Let R be the subring of power series ring $F[[y]]$ such that the "constant" term of every member of R is in T; i.e.,

$$
R=\left\{t+\sum_{i=1}^{\infty} a_{i} y^{i} \mid t \in T, a_{i} \in F\right\} .
$$

We now outline a proof for showing that R has the desired properties: R satisfies $\left(^{*}\right)$ and $\left({ }^{*} \mathscr{T}_{\alpha+2}\right)$, but R does not satisfy $\left({ }^{*} \mathscr{T}_{\beta}\right)$ for any $\beta \leqq \alpha+1$.
(1) Each two-sided ideal of T is either generated by an element of the form x^{n} for some integer n or else contains a nonzero element of D. (Consider an element which has least degree among members of the ideal.)
(2) Let

$$
z=t+\sum_{i=1}^{\infty} a_{i} y^{i}
$$

If $t \neq 0$, then for each $b \in F$ and each positive integer k, there exists $\sum_{i=1}^{\infty} b, y^{i} \in$ R such that

$$
\left(\sum_{i=1}^{\infty} b_{i} y^{i}\right)\left(t+\sum_{i=1}^{\infty} a_{i} y^{i}\right)=b y^{k}
$$

(Solve the coefficient equations inductively.)
(3) By (2), $R z$ contains the two-sided ideal M generated by the set $\{b y \mid b \in F\}$.
(4) If the degree of $t=\sum_{i=0}^{n} d_{i} x^{i} \in T$ is positive (i.e., $n \geqq 1$) and $d_{0} \neq 0$, then $T t$ contains no two-sided ideals by (1). Hence, if the degree of t is positive and $d_{0} \neq 0$, then every proper two-sided ideal I of R which is contained in $R z$ is contained in M.
(5) Let $z^{\prime}=1+x \in R$. If I is a two-sided ideal such that $R z^{\prime} / I \in \mathscr{T}_{\beta}$, then by (4), $R z^{\prime} / M \in \mathscr{T}_{\beta}$.
(6) There is a lattice isomorphism between the R-submodules of $R z^{\prime} / M$ and the T-submodules of $T z^{\prime}$. 入oreover, $T z^{\prime}$ is an α-critical T-submodule of T. (See [10, Lemma 6.3].) Hence $K \operatorname{dim}_{R} R z^{\prime} / M=K \operatorname{dim}_{T} T z^{\prime}=\left(K \operatorname{dim}_{D} D\right)+1$ $=\alpha+1$, and $K \operatorname{dim}_{R} N=K \operatorname{dim}_{T} T z^{\prime}=\alpha+1$ for any submodule N of $R z^{\prime} / M$ by [10, Proposition 2.3].
(7) By (6), $R z^{\prime} / M \in \mathscr{T}_{\alpha+2}$, but $R z^{\prime} / M \notin \mathscr{T}_{\beta}$ for any $\beta \leqq \alpha+1$. Hence R does not satisfy ($*^{*} \mathscr{F}_{\beta}$) for any $\beta \leqq \alpha+1$ by (5).
(8) By factoring out the highest power of y in z and applying (2), we see that every principal left ideal of R contains M^{n} for some integer n.
(9) Since $K \operatorname{dim}_{R} R / M=K \operatorname{dim}_{T} T=\alpha+1$, then by (8), $R / L \in \mathscr{T}_{\alpha+2}$ for every non-zero left L of R.
(10) From (8) and (9) it follows that R satisfies $\left({ }^{*} \mathscr{T}_{\alpha+2}\right)$.
(11) Let I be an idempotent, two-sided ideal of R which is finitely generated. The coefficients of y^{0} of members of I form a finitely generated idempotent ideal I^{\prime} of T; so by (1), I^{\prime} must contain an element of D. The coefficients of x^{0} of members of I^{\prime} form a finitely generated idempotent ideal $I^{\prime \prime}$ of D. Since D is a commutative domain, $I^{\prime \prime}=0$ or $I^{\prime \prime}=D$. If $I^{\prime \prime}=D$, then the existence of an element of I^{\prime} in D implies that $1 \in I^{\prime}$ and hence $I^{\prime}=T$; from (2) it now follows that $I \supseteq M$, and hence $I=R$. If $I^{\prime \prime}=0$, then $I^{\prime}=0$ and hence $I \subseteq M$; by considering the least positive integer in the set $\left\{h \mid y^{h}\right.$ has nonzero coefficient for some member of $I\}$, it is easy to see that $I^{2}=I$ implies $I=0$. Hence R satisfies (${ }^{*}$).

Remark. The example above depends on the existence of certain integral domains D having an automorphism ϕ of infinite period. We now indicate two constructions for such D, one for finite ordinals and one for the general nonlimit ordinal case.
(1) Let C be the algebraic closure of Z_{2}, the field of two elements. Let ρ be the automorphism of C defined by $\rho(a)=a^{2}$ for each $a \in C$. If $\alpha=n$ is a finite ordinal, extend ρ to an automorphism ϕ of the polynomial ring $D=$ $C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by $\phi\left(x_{i}\right)=x_{i}$ for $i=1,2, \ldots, n$. Then $K \operatorname{dim} D=n=\alpha$, and ϕ has infinite period. (Note: if $\alpha=0$, let $D=C$ and $\phi=\rho$.)
(2) Let α be a non-limit ordinal. By [10, Theorem 9.6], there exists a commutative integral domain C with Krull dimension $\alpha-1$. By examining the proof of $[\mathbf{1 0}$, Theorem 9.6], we also see that if the base field in the construction for C has characteristic zero, then so does C. (The construction of C is done by forming a big polynomial ring over the base field, localizing at a prime ideal generated by a "gang" of indeterminates, and then passing to a homomorphic image.) Now let $D=C[u]$, the polynomial ring in the indeterminate u. Then $K \operatorname{dim} D=\alpha$, and

$$
\phi: D \rightarrow D: \sum_{i=1}^{n} c_{i} u^{i} \rightarrow \sum_{i=1}^{n} c_{i}(u+1)^{i}
$$

is the desired automorphism of infinite period.
Now let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory of R-modules, and let I be a two-sided ideal of R. Then $(\mathscr{T}, \mathscr{F})$ induces a torsion theory $\left(\mathscr{T}^{\prime}, \mathscr{F}^{\prime}\right)$ of R / I-modules in a natural way: $\mathscr{T}^{\prime}=\{M \in R / I-\bmod \mid M \in \mathscr{T}$, where M is viewed as an R-module via $x m=(x+I) m$ for all $x \in R$ and $m \in M\}$. Since an R / I module is a simple R / I-module if and only if it is simple as an R-module
in the natural way, then the torsion class \mathscr{S}^{\prime} induced by \mathscr{S}, is just the simple torsion class for R / I-mod.

Lemma 0.2. Let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory for R-mod, let I be a two-sided ideal of R, and let $\left(\mathscr{T}^{\prime}, \mathscr{F}^{\prime}\right)$ be the torsion theory of R / I-mod induced by ($\mathscr{T}, \mathscr{F})$.
(1) If $(\mathscr{T}, \mathscr{F})$ has CSP $(F G S P, B S P, S P)$, then $\left(\mathscr{T}^{\prime}, \mathscr{F}^{\prime}\right)$ has CSP (FGSP, $B S P, S P$) for R / I-modules.
(2) If I is a finitely generated idempotent left ideal and if R satisfies (*) and $(* \mathscr{T})$, then R / I satisfies $\left(^{*}\right)$ and $\left({ }^{*} \mathscr{T}^{\prime}\right)$.

Proof. (1) is known (e.g., see [17, p. 72] or [15, p. 452]). Both (1) and (2) are straight forward to prove from the appropriate definitions.

1. Splitting properties for generalizations of \mathscr{S}. Before we can give characterizations of the splitting properties for generalizations of \mathscr{S}, we need several elementary lemmas.

Lemma 1.1. Let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory with CSP. If $R / I \in \mathscr{F}$, then $I^{2}=I$.

Proof. Replace \mathscr{S} by \mathscr{T} in the proof of [15, Proposition 2.1].
Lemma 1.2. Let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory for R-mod. Let $R \in \mathscr{F}$, and let R satisfy (* \mathscr{T}). If $R / I \in \mathscr{F}$ and if $\oplus \sum_{\alpha \in \mathscr{A}} R x_{\alpha} \subseteq I$, then there exists a collection $\left\{I_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ of two-sided ideals satisfying the following conditions:
(1) $R x_{\alpha} \subseteq I_{\alpha} \subseteq I$ for each $\alpha \in \mathscr{A}$;
(2) $R / I_{\alpha} \in \mathscr{F}$ for each $\alpha \in \mathscr{A}$;
(3) $I_{\alpha} / R x_{\alpha} \in \mathscr{T}$ for each $\alpha \in \mathscr{A}$;
(4) $\sum_{\alpha \in \mathscr{A}} I_{\alpha}$ is direct.

Proof. By (${ }^{* \mathscr{T})}$ there exists, for each $\alpha \in \mathscr{A}, J_{\alpha} \subset R x_{\alpha}$ such that J_{α} is a two-sided ideal of R and $R x_{\alpha} / J_{\alpha} \in \mathscr{T}$. Define I_{α} by $I_{\alpha} / J_{\alpha}=\mathscr{T}\left(R / J_{\alpha}\right)$ for each $\alpha \in \mathscr{A}$. Clearly $R x_{\alpha} \subseteq I_{\alpha}$, (2) holds, and (3) holds. Since $\left(I_{\alpha}+I\right) / I \in \mathscr{F}$ and since $\left(I_{\alpha}+I\right) / I \cong I_{\alpha} /\left(I \cap I_{\alpha}\right)$ is a homomorphic image of $I_{\alpha} / J_{\alpha} \in \mathscr{T}$, then $\left(I_{\alpha}+I\right) / I=0$; hence $I_{\alpha} \subseteq I$. Since J_{α} is a two-sided ideal for each α, so is I_{α}.

If $0 \neq x \in I_{\beta} \cap \sum_{\alpha \in \mathcal{A}-\{\beta\}} I_{\alpha}$, then $0 \neq x=a_{\beta}=\sum_{\alpha \in B} a_{\alpha}$, where B is a finite subset of $\mathscr{A}-\{\beta\}$. Since $R \in \mathscr{F},\left(R x_{\alpha}: a_{\alpha}\right)$ is an essential left ideal for each $\alpha \in B \cup\{\beta\}$. Hence there exists

$$
y \in \bigcap_{\alpha \in B \cup\{\beta\}}^{\cap}\left(R x_{\alpha}: a_{\alpha}\right)
$$

such that $0 \neq y x=y a_{\beta}=\sum_{\alpha \in B} y a_{\alpha} \in R x_{\beta} \cap \sum_{\alpha \in B} R x_{\alpha}=0$, which is a contradiction. Hence (4) holds.

Lemma 1.3. Let $R,(\mathscr{T}, \mathscr{F})$, and $\left\{I_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ be as in Lemma 1.2. If R satisfies $\left(^{*}\right)$
and $(\mathscr{T}, \mathscr{F})$ has CSP, then, there exists a set of orthogonal idempotents $\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ such that $I_{\alpha}=R e_{\alpha}$ for each $\alpha \in \mathscr{A}$.

Proof. By Lemma 1.1, $I_{\alpha}=I_{\alpha}{ }^{2}$ for each $\alpha \in \mathscr{A}$. By CSP, I_{α} / J_{α} is a cyclic module; so from part (1) of Lemma 1.2, it follows that each I_{α} is generated by two elements. Hence the result follows from (*).

Lemma 1.4. Let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory for R-mod such that $R \in \mathscr{F}$ and R satisfies (${ }^{*} \mathscr{T}$). Then every (module) direct summand of R is a two-sided ideal of R.

Proof. Let ${ }_{R} R=A \oplus B$, and suppose that $b \in B$. The map $A \rightarrow A b$ given by right multiplication is an R-epimorphism. By (${ }^{* \mathscr{T}}$) there is a two-sided ideal T of R such that $T \subseteq A$ and $A / T \in \mathscr{T}$. But $T b \subseteq A \cap B=0$; so the induced epimorphism $A / T \rightarrow A b$ implies that $A b \in \mathscr{T}$. As $R \in \mathscr{F}$, then $A B=0$.

We now can state our first main result, which characterizes CSP for generalizations of \mathscr{S}.

Theorem 1.5. Let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory for R-mod. If $R \in \mathscr{F}$ and R satisfies (*) and (*G), then the following statements are equivalent.
(1) $(\mathscr{T}, \mathscr{F})$ has CSP.
(2) If $R / K \in \mathscr{F}$, then K is a ring direct summand of R.
(3) Every cyclic in \mathscr{F} is projective.

Proof. $(2) \Rightarrow(3) \Rightarrow(1)$ is trivial.
Assume (1) holds. Let $R / K \in \mathscr{F}$, and let $\oplus \sum_{\alpha \in \mathscr{A}} R x_{\alpha}$ be a direct sum of cyclic modules such that $\oplus \sum_{\alpha \in \mathscr{A}} R x$ is an essential submodule of K. By Lemma 1.3 , there exists a family $\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ of orthogonal idempotents such that $R e_{\alpha}=I_{\alpha}$, where I_{α} is as in Lemma 1.2. Let $I / \oplus \sum_{\alpha \in \mathscr{A}} I_{\alpha}=\mathscr{T}\left(R / \sum_{\alpha \in \mathscr{A}} I_{\alpha}\right)$ define the two-sided ideal I. Since $I / \sum_{\alpha \in \mathscr{A}} I_{\alpha} \in \mathscr{T}$ and $(I+K) / K \in \mathscr{F}$, it follows from the existence of an epimorphism

$$
I / \sum_{\alpha \in \mathscr{A}} I_{\alpha} \rightarrow I /(I \cap K) \cong(I+K) / K
$$

that $I \subseteq K$. By (1), $I / \sum_{\alpha \in \mathscr{A}} I_{\alpha}$ has an idempotent generator $g+\sum_{\alpha \in \mathscr{A}} I_{\alpha}$ in $R / \sum_{\alpha \in \mathscr{A}} I_{\alpha}$.

Case 1. If $R g=I$, then by $\left(^{*}\right) I=\operatorname{Re}$ for some $e=e^{2}$. Since I is essential in K it follows that $I=K$; so (2) follows from Lemma 1.4.

Case 2. If $R g=0$, then $I=\oplus \sum_{\alpha \in \mathscr{A}} I_{\alpha}$. Let M_{α} be a maximal submodule of $I_{\alpha}=R e_{\alpha}$ for each $\alpha \in \mathscr{A}$. Then

$$
\mathscr{J}\left(R / \oplus \sum_{\alpha \in \mathscr{A}} M_{\alpha}\right)=I / \oplus \sum_{\alpha \in \mathscr{A}} M_{\alpha} \cong \oplus \sum_{\alpha \in \mathscr{A}} I_{\alpha} / M_{\alpha}
$$

must be finitely generated by (1). Hence \mathscr{A} is a finite set; so I is finitely generated and a summand of R. Consequently (2) follows from Lemma 1.4.

Case 3. If $0 \neq R g \neq I$, then by ($* \mathscr{T}$) there exists a two-sided ideal G such that $G \subseteq R g$ and $0 \neq R g / G \in \mathscr{T}$. As in the proof of Lemma 1.3 there exists an idempotent e such that $R e / G=\mathscr{T}(R / G)$ and $R e \subseteq I$.

Write $R=R e \oplus F$, where $F=R(1-e)$. Note that $I=R e+\sum_{\alpha \in \mathscr{A}} R e_{\alpha}$. By the modular law $I=R e \oplus(I \cap F)$. But

$$
I \cap F=(I \cap F)(1-e) \subseteq I(1-e) \cap F \subseteq\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F
$$

by Lemma 1.4. Hence $I=\operatorname{Re} \oplus\left[\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F\right]$.
By the modular law,

$$
\sum_{\alpha \in \mathscr{A}} R e_{\alpha}=\left[\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap R e\right] \oplus\left[\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F\right]
$$

By [11, Theorem 1], $\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F$ is a direct sum of countably generated modules. If $\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F$ is not finitely generated, then $\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F$ has a countably generated direct summand W which is not finitely generated. By closure under extensions and by $R \in \mathscr{F}, R / W \in \mathscr{F}$. Let W be generated by the set $\left\{x_{i}\right\}_{i=1}^{\infty}$. For each positive integer n, there exists a least positive integer $k(n)$ such that $x_{k(n)} \notin R x_{1}+R x_{2}+\ldots+R x_{n}$. By Zorn's Lemma, choose K_{n} maximal with respect to $x_{k(n)} \notin K_{n}$ and $\sum_{i=1}^{n} R x_{n} \subseteq K_{n} \subseteq W$. Then $\left(R x_{k(n)}+\right.$ $\left.K_{n}\right) / K_{n}$ is an essential simple submodule of R / K_{n}; so $\left(R x_{k(n)}+K_{n}\right) / K_{n} \in \mathscr{T}$. Since $(\mathscr{T}, \mathscr{F})$ has $(C S P)$, then $(\mathscr{T}, \mathscr{F})$ is stable; hence $R / K_{n} \in \mathscr{T}$. Define

$$
\varphi: W \rightarrow \oplus \sum_{n=1}^{\infty} W / K_{n}: w \rightarrow \sum_{n} \varphi_{n}(w)
$$

where $\varphi_{n}: W \rightarrow W / K_{n}$ is the canonical epimorphism given by $w \rightarrow w+K_{n}$. If $H=\operatorname{ker} \varphi$, then $W / H \cong$ image of φ. Since $R / W \in \mathscr{F}$, then $\mathscr{T}(R / H) \subseteq$ W / H, which is a direct summand of R / H by (1). Hence $\mathscr{T}(R / H)$ is finitely generated. But $\mathscr{T}(R / H)=\mathscr{T}(W / H)$ cannot be finitely generated; for otherwise the isomorphic copy of $\mathscr{T}(W / H)$ in the image of φ would have non-zero coordinates in finitely many W / K_{n}. This contradiction shows that ($\sum_{\alpha \in \mathscr{A}} R e_{\alpha}$) $\cap F$ must be finitely generated.

Therefore, $I=\operatorname{Re} \oplus\left[\left(\sum_{\alpha \in \mathscr{A}} R e_{\alpha}\right) \cap F\right]$ is finitely generated. By Lemma 1.3 and $\left({ }^{*}\right), I$ is generated by an idempotent element and hence is a direct summand of R. Since I is an essential submodule of $K, I=K$; so (2) follows from Lemma 1.4.

One widely studied torsion theory is Goldie's torsion theory (\mathscr{G}, \mathcal{N}); e.g., see $[\mathbf{6} ; \mathbf{8} ; \mathbf{1 5}]$ and their references. \mathscr{G} is the smallest torsion class containing the singular modules; \mathscr{N} is precisely the class of nonsingular modules. If R is a commutative integral domain, then \mathscr{G} coincides with the class of modules which are torsion in the classical sense.

By Theorem 1.5 and an argument of $[\mathbf{1 5}, \mathrm{p} .459]$, we have the following result.

Corollary 1.6. Let $(\mathscr{T}, \mathscr{F})$ and R be as in the hypotheses of Theorem 1.5. If $(\mathscr{T}, \mathscr{F})$ has CSP, then $\mathscr{T}=\mathscr{G}$.

As a consequence of the corollary, when R is a commutative integral domain and \mathscr{T} is a generalization of $\mathscr{S},(\mathscr{T}, \mathscr{F})$ has CSP if and only if \mathscr{T} contains the usual torsion class. In particular, if R has Krull dimension α, then $\left(\mathscr{T}_{\beta}, \mathscr{F}_{\beta}\right)$ has CSP if and only if $\beta \geqq \alpha$.

But, for the ring of Example 0.1, $\left(\mathscr{T}_{\alpha+2}, \mathscr{F}_{\alpha+2}\right)$ has CSP by Theorem 1.5 and part (9) of Example 0.1. However, $\mathscr{S} \neq \mathscr{T}_{\alpha+2} \neq R$-mod.

Lemma 1.7. Let \mathscr{T} be a hereditary torsion class for R-mod. If R satisfies (* \mathscr{T}), then every left ideal I contains a two-sided ideal I^{\prime} such that $I / I^{\prime} \in \mathscr{T}$; moreover, if $\mathscr{T}(R)=0$, then I^{\prime} is essential in I.

Proof. For each $x \in I$, we use (*T) to find a two-sided ideal I_{x} such that $R x / I_{x} \in \mathscr{T}$. Set $I^{\prime}=\sum_{x \in I} I_{x}$. It is easy to see that I^{\prime} has the desired properties.

We now can use Corollary 1.6 and Lemma 1.7 to apply results of [6] and [8] in order to obtain results about $F G S P$ and $B S P$ for generalizations of \mathscr{S}.

Theorem 1.8. Let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a torsion theory for R-mod. If $R \in \mathscr{F}$ and if R satisfies $\left(^{*}\right)$ and (* $\left.\mathscr{T}\right)$, then the following statements are equivalent.
(1) $(\mathscr{T}, \mathscr{F})$ has $F G S P$.
(2) $\mathscr{T}=\mathscr{G}$, and each finitely generated module $F \in \mathscr{F}$ has the following properties: (a) F is finitely related; (b) $h d F \leqq 1$; (c) $\operatorname{Tor}_{1}{ }^{R}\left(\operatorname{Hom}_{z}(A, D), F\right)=$ 0 for any $A \in \mathscr{T}$ and any divisible Abelian group D.
(3) (a) $(A: x)$ is finitely generated for every $x \in E(R)$ and every finitely generated $A \subseteq E(R)$, where $E(R)$ denotes the injective hull of R;
(b) if I is any right ideal which contains a two-sided, essential left ideal of R, then I_{R} is flat and $\operatorname{Tor}_{1}{ }^{R}(R / I, E(R))=0$; and
(c) if L is an essential left ideal of R, then $R / L \in \mathscr{T}$.

Proof. By Corollary $1.6, \mathscr{T}=\mathscr{G}$; so the equivalence of (1) and (2) follows from [6, Corollary 2]. By $R \in \mathscr{F}$ and Lemma 1.7, every essential left ideal of R contains an essential two-sided ideal of R; so the equivalence of (1) and (3) follows from [8, Theorem 4.9].

Corollary 1.9. Let R be a commutative ring, let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a torsion theory for R-mod. If $R \in \mathscr{F}$, then the following statements are equivalent.
(1) $(\mathscr{T}, \mathscr{F})$ has FGSP.
(2) R is semihereditary, $R \cap A$ is finitely generated for every finitely generated $A \subseteq E(R)$, and $R / L \in \mathscr{T}$ for every essential left ideal L of R.

Proof. Combine Corollary 1.6 and [8, Corollary 4.10] to obtain this result.
Before we can deal with the $B S P$ for $(\mathscr{T}, \mathscr{F})$, we must introduce a Loewytype construction and prove a technical homological lemma.

Suppose that T is a two-sided ideal of R and that R / T is a right semiartinian ring (which occurs whenever R / T is left perfect). Define the two-sided ideals T_{α} of R inductively as follows: $T_{0}=T$; if α is not a limit ordinal, then $T_{\alpha} / T_{\alpha-1}$ is the right socle of $R / T_{\alpha-1}$; if α is a limit ordinal, then $T_{\alpha}=\bigcup_{\beta<\alpha} T_{\beta}$. Hence the set $\left\{T_{\alpha} / T\right\}_{\alpha \in \mathscr{A}}$ forms a right Loewy series for R / T, where \mathscr{A} is an index set of ordinals such that $T_{\beta} / T=R / T$ for some $\beta \in \mathscr{A}$.

Lemma. 1.10. Suppose that R / T is a left perfect ring and that K is a right ideal of R satisfying $T_{\alpha} \subseteq K \subseteq T_{\alpha+1}$ for some ordinal α. If T_{α} and $T_{\alpha+1}$ are flat as right R-modules, so is K.

Proof. Since $T_{\alpha+1}$ is flat, we have the exact sequence

$$
\operatorname{Tor}_{2}^{R}\left(T_{\alpha+1} / K,{ }_{-}\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(K,{ }_{-}\right) \rightarrow \operatorname{Tor}_{1}{ }^{R}\left(T_{\alpha+1},-\right)=0 ;
$$

so it suffices to show that $\operatorname{Tor}_{2}{ }^{R}\left(T_{\alpha+1} / K,{ }_{-}\right)=0$. Since $T_{\alpha+1} / T_{\alpha}$ is semisimple, then as a right R-module

$$
T_{\alpha+1} / T_{\alpha} \cong\left(K / T_{\alpha}\right) \oplus\left(T_{\alpha+1} / K\right)
$$

and hence

$$
\operatorname{Tor}_{2}^{R}\left(T_{\alpha+1} / T_{\alpha},-\right) \cong \operatorname{Tor}_{2}^{R}\left(K / T_{\alpha},-\right) \oplus \operatorname{Tor}_{2}^{R}\left(T_{\alpha+1} / K,-\right)
$$

Consequently, it is sufficient to show that $\operatorname{Tor}_{2}{ }^{R}\left(T_{\alpha+1} / T_{\alpha},{ }_{-}\right)=0$. But this follows from the flatness of $T_{\alpha+1}$ and T_{α} and the exact sequence

$$
\operatorname{Tor}_{2}^{R}\left(T_{\alpha+1},-\right) \rightarrow \operatorname{Tor}_{2}^{R}\left(T_{\alpha+1} / T_{\alpha},-\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(T_{\alpha},-\right)
$$

Theorem 1.11. Let \mathscr{T} be a generalization of \mathscr{S}, and let $(\mathscr{T}, \mathscr{F})$ be a torsion theory. If $R \in \mathscr{F}$ and if R satisfies $\left(^{*}\right)$ and (* $\left.\mathscr{T}\right)$, then the following statements are equivalent.
(1) $(\mathscr{T}, \mathscr{F})$ has BSP and is stable.
(2) R is a finite direct sum of left Öre domains $D_{i}(i=1,2, \ldots, n)$, each of which has the following properties:
(a) for each two-sided ideal I of $D_{i}, D_{i} / I$ is a left perfect ring and $D_{i} / I \in \mathscr{T}$;
(b) if H is any right ideal of D_{i} which contains a two-sided ideal, then H is flat and $\operatorname{Tor}_{1}{ }^{D_{i}}\left(D_{i} / H, E\left(D_{i}\right)\right)=0$.
(3) R is a finite direct sum of left Öre domains $D_{i}(i=1,2, \ldots, n)$, each of which satisfies the following properties:
(i) for each two-sided ideal I of $D_{i}, D_{i} / I$ is a left perfect ring and $D_{i} / I \in \mathscr{T}$;
(ii) each two-sided ideal of D_{i} is flat as a right module;
(iii) if M is a maximal right ideal of D_{i} which contains a two-sided ideal, then $\operatorname{Tor}_{1}{ }^{D_{i}}\left(D_{i} / M, E\left(D_{i}\right)\right)=0$.

Proof. (1) $\Rightarrow(2)$. Let M be a finitely generated module. By (1) and [17, Lemma 3.2], there exists a left ideal I of R such that every element of $\mathscr{T}(M)$ has an annihilator of the form $\bigcap_{i=1}^{n}\left(I: r_{i}\right)$, where $r_{1}, r_{2}, \ldots, r_{n} \in R$ and $R / I \in$
\mathscr{T}. By (* $\mathscr{T})$ and Lemma 1.7, I contains a two-sided ideal I^{\prime} such that $I / I^{\prime} \in$ \mathscr{T}. Hence $I^{\prime} \mathscr{T}(M)=0$; so $\mathscr{T}(M)$ has bounded order. By (1) M splits. Therefore, $(\mathscr{T}, \mathscr{F})$ has $F G S P$ and hence $C S P$.

Thus $\mathscr{T}=\mathscr{G}$ by Corollary 1.6. Moreover, since (${ }^{* T}$) holds, it follows from Lemma 1.7 that our definition of $B S P$ for \mathscr{G} coincides with the definition for $B S P$ given in [8] (in this case). Whenever R is a direct sum of rings, then $(\mathscr{G}, \mathscr{N})$ has $B S P$ if and only if the Goldie torsion theory for each direct summand has $B S P$ (see [15, p. 452]). It now follows from [8, Theorem 5.3] that it is sufficient to show that R is a (ring) direct sum of finitely many left Öre domains.

Let $\sum_{\alpha \in \mathscr{A}} R x_{\alpha}$ be any essential submodule of R with $x_{\alpha} \neq 0$ for each $\alpha \in \mathscr{A}$. By the proof of Lemma 1.3 and by Lemma 1.4, there exist two-sided ideals $\left\{J_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ and orthogonal idempotents $\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ such that $J_{\alpha} \subsetneq R x_{\alpha} \subseteq R e_{\alpha}$. By [8, Theorem 5.3], $R / \sum_{\alpha \in \mathscr{A}} J_{\alpha}$ is a left perfect ring. Since $\left\{e_{\beta}+\sum_{\alpha \in \mathscr{A}} J_{\alpha}\right\}_{\beta \in \mathscr{A}}$ is a set of non-zero orthogonal idempotents in $R / \sum_{\alpha \in \mathscr{A}} J_{\alpha}$, then \mathscr{A} must be a finite set by [$\mathbf{1}$, Theorem P]. Hence ${ }_{R} R$ is finite dimensional.

Let $\oplus \sum_{i=1}^{n} R y_{i}$ be a maximal direct sum of nonzero uniform left ideals of R. By Lemma 1.3, there exists a set $\left\{e_{i}\right\}_{i=1}^{n}$ of orthogonal idempotents such that

$$
\oplus \sum_{i=1}^{n} R y_{i} \subseteq \oplus \sum_{i=1}^{n} R e_{i}
$$

thus $R=\oplus \sum_{i=1}^{n} R e_{i}$ is a ring direct sum by Lemma 1.4. Set $D_{i}=R e_{i}$. Since $R \in \mathscr{F}$, then $R y_{i}$ is an essential uniform submodule of $R e_{i}=D_{i}$; thus D_{i} must be an integral domain (as $\mathscr{T}=\mathscr{G}$).
$(2) \Rightarrow(1)$. Condition (* \mathscr{T}) and $R \in \mathscr{F}$ imply that the set of essential left ideals has a cofinal subset of two-sided ideals (by Lemma 1.7). Hence our definition of $B S P$ for $(\mathscr{G}, \mathscr{N})$ coincides with that of [8] in this case. From (2) and $\left[8\right.$, Theorem 5.3] it follows that the Goldie theory for each D_{i} has $B S P$, and hence $(\mathscr{G}, \mathscr{N})$ must have $B S P$ (as $\left.R=D_{i} \dot{+} D_{2} \dot{+} \ldots \dot{+} D_{n}\right)$. Also (\mathscr{G}, \mathcal{N}) is stable. But condition $2(\mathrm{a})$ and Lemma 1.7 imply that a cyclic module is in \mathscr{G} if and only if it is in \mathscr{T}; hence $\mathscr{T}=\mathscr{G}$.
$(2) \Rightarrow(3)$. This is trivial.
(3) $\Rightarrow(2)$. First, we let H be a right ideal of D, where D is any D_{i}. Assuming that H contains a two-sided ideal T, we wish to show that (i) and (ii) imply that H is a flat right D-module. This will be done by transfinite induction. By (i) D / T is left perfect; so we define $K_{\alpha}=H \cap T_{\beta}$ for all $\beta \in \mathscr{A}$. (T_{β} is defined just prior to Lemma 1.10.)

Since $T=T_{0} \subseteq K_{1} \subseteq T_{1}$, then Lemma 1.10 and (ii) imply that K_{1} is a flat right D-module.

Suppose that $\beta=\alpha+1$ is not a limit ordinal, and suppose $K_{\beta-1}$ is a flat right D-module. By Lemma 1.10 and (ii), K is a flat right D-module whenever K is a right ideal such that $T_{\alpha} \subseteq K \subseteq T_{\alpha+1}$. Set $K=K_{\beta}+T_{\alpha}=\left(H \cap T_{\alpha+1}\right)$ $+T_{\alpha}$. Then K is a flat right D-module, and the exact sequence

$$
0 \rightarrow K_{\beta} \rightarrow K \rightarrow K / K_{\beta} \rightarrow 0
$$

yields the exact sequence

$$
\operatorname{Tor}_{2}{ }^{D}\left(K / K_{\beta},-\right) \rightarrow \operatorname{Tor}_{1}{ }^{D}\left(K_{\beta},-\right) \rightarrow \operatorname{Tor}_{1}{ }^{D}\left(K,,_{-}\right)=0 .
$$

Thus it suffices to show that $\operatorname{Tor}_{2}^{R}\left(K / K_{\beta},{ }_{-}\right)=0$. Now $K / K_{\beta} \cong\left(\left(\mathrm{H} \cap T_{\beta}\right)\right.$ $\left.+T_{\beta-1}\right) /\left(H \cap T_{\beta}\right) \cong T_{\beta-1} /\left(H \cap T_{\beta-1} \cap T_{\beta}\right)=T_{\beta-1} /\left(H \cap T_{\beta-1}\right)$. Since $T_{\beta-1}$ is flat by (ii) and since $H \cap T_{\beta-1}$ is flat by our induction hypothesis, then there is an exact sequence

$$
\left.\begin{array}{rl}
0=\operatorname{Tor}_{2}^{D}\left(T_{\beta-1},-\right.
\end{array}\right) \rightarrow \operatorname{Tor}_{2}^{D}\left(T_{\beta-1} /\left(H \cap T_{\beta-1}\right),{ }_{-}\right) . ~\left(\operatorname{Tor}_{1}^{D}\left(H \cap T_{\beta-1},-\right)=0 .\right.
$$

Hence $\operatorname{Tor}_{2}{ }^{D}\left(K / K_{\beta},{ }_{-}\right) \cong \operatorname{Tor}_{2}{ }^{D}\left(T_{\beta-1} /\left(H \cap T_{\beta-1}\right),{ }_{-}\right)=0$.
Let β be a limit ordinal, and assume that K_{α} is a flat right D-module for all $\alpha<\beta$. Since $K_{\beta}=H \cap T_{\beta}=\bigcup_{\alpha<\beta}\left(H \cap T_{\alpha}\right)=\lim H \cap T_{\alpha}$, then

$$
\operatorname{Tor}_{1}^{D}\left(K_{\beta,-}\right)=\operatorname{Tor}_{1}^{D}\left(\xrightarrow{\lim } K_{\alpha,-}\right)=\xrightarrow{\lim } \operatorname{Tor}_{1}^{D}\left(K_{\alpha,-}\right)=0 .
$$

Hence K_{β} is a flat right D-module.
Since D / T is left perfect, $H=H \cap T_{\beta}$ for some ordinal β; hence H must be a flat right D-module.

Next, we wish to show that if H is a right ideal of D which contains a twosided ideal T, then (i) and (iii) imply that $\operatorname{Tor}_{1}{ }^{D}(D / H, E(D))=0$, where D is any D_{i}. By (i), D / T is left perfect; so every nonzero homomorphic image of the right D-module D / H has nonzero (right) socle. Moreover each simple right module which appears in the (right) Loewy series for D / H (see $[\mathbf{4} ; \mathbf{1 3} ; \mathbf{1 6}]$) must be annihilated by T; i.e. the annihilator of any element of a simple right module which appears in the Loewy series for D / H must be a maximal right ideal which contains a two-sided ideal. Hence if D / M is a simple right module which appears in the Loewy series for D / H, then $\operatorname{Tor}_{1}{ }^{D}(D / M, E(D))=0$ by (iii). Since $\mathrm{Tor}_{1}{ }^{D}$ commutes with direct sums and direct limits, an easy transfinite induction on the (right) Loewy series of D / H shows that $\operatorname{Tor}_{1}{ }^{D}(D / H$, $E(D))=0$.

Remarks. (1) The proof of Theorem 1.11 is actually the first time that we needed to use the property that I is proper in $R x$ in condition (*TT). In particular, we needed the "proper" hypothesis to insure that the idempotents $\left\{e_{\beta}+\sum_{\alpha \in \mathscr{A}} J_{\alpha}\right\}_{\beta \in \mathscr{A}}$ were all nonzero.
(ii) If $R=D[[x]]$ is the ring of all power series with coefficients in a division ring D, then $(\mathscr{S}, \mathscr{F})$ has $B S P$ and is stable by Theorem 1.11.
(iii) If R is the ring of Example 0.1, then $\mathscr{T}_{\alpha+2}=\mathscr{G}$ by Corollary 1.6 and its subsequent comments. Therefore $\mathscr{T}_{\alpha+2}$ is stable. Since R has no nontrivial idempotent elements and since $R / M \cong T$ is not a left perfect ring, then $\left(\mathscr{T}_{\alpha+2}, \mathscr{F}_{\alpha+2}\right)$ does not have BSP by Theorem 1.11.

The following corollaries of Theorem 1.11 show that it is very difficult for $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ to have (BSP) unless $\mathscr{T}_{\alpha}=\mathscr{S}$ or R-mod.

Corollary 1.12. Let R be a left and right duo ring satisfying (*). Let $\alpha \geqq 1$ be an ordinal, and suppose that $\mathscr{T}_{\alpha}(R)=0$. If $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ has BSP and is stable, then $\mathscr{T}_{\alpha}=\mathscr{S}=\mathscr{G}$.

Proof. Since R is a left duo ring, then R satisfies $\left({ }^{*} \mathscr{S}\right)$ and hence $\left({ }^{*} \mathscr{T}_{\alpha}\right)$. By Theorem 1.11, $R=D_{i} \dot{+} D_{2} \dot{+} \ldots \dot{+} D_{n}$ (ring direct sum) such that, for each $i=1,2, \ldots, n$ and each two-sided ideal K_{i} of $D_{i}, D_{i} / K_{i}$ is a left perfect ring. Since D_{i} / K_{i} is left perfect and R is left and right duo, then D_{i} / K_{i} is right perfect; hence $D_{i} / K_{i} \in \mathscr{S}$ by [1, Theorem P].

From Corollary 1.6, $\mathscr{T}_{\alpha}=\mathscr{G}$. Let I be an essential left ideal of R. By Lemma 1.7 there exists a two-sided ideal $I^{\prime} \subseteq I$ such that $I / I^{\prime} \in \mathscr{T}_{\alpha}=\mathscr{G}$. Then $I^{\prime}=\sum_{i=1}^{n}\left(D_{i} \cap I^{\prime}\right)$. Set $K_{i}=D_{i} \cap I^{\prime}$. It follows that

$$
R / I^{\prime} \cong\left(\oplus \sum_{i=1}^{n} D_{i}\right) /\left(\oplus \sum_{i=1}^{n} K_{i}\right) \cong \oplus \sum_{i=1}^{n} D_{i} / K_{i} \in \mathscr{S}
$$

hence $R / I \in \mathscr{S}$. Therefore, every cyclic module in \mathscr{T}_{α} is \mathscr{S}, so it follows that $\mathscr{T}_{\alpha}=\mathscr{S}$.

Corollary 1.13. Let R be a commutative ring. Let $\alpha \geqq 1$ be an ordinal, and suppose that $\mathscr{T}_{\alpha}(R)=0$. If $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ has BSP and is stable, then $\mathscr{T}_{\alpha}=\mathscr{S}=\mathscr{G}$.

Corollary 1.14. Let R be a commutative Noetherian ring. Let $\alpha \geqq 1$ be an ordinal, and suppose that $\mathscr{T}_{\alpha}(R)=0$. If $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ has BSP, then $\mathscr{T}_{\alpha}=\mathscr{S}=\mathscr{G}$.

Proof. Since R is commutative and Noetherian, every hereditary torsion theory is stable [14]; so the result follows from Corollary 1.13.

Corollary 1.15. Let R be a commutative ring. Let $\alpha \geqq 1$ be an ordinal. Then $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ has $S P$ if and only if R is a semiartinian ring.

Proof. This corollary is immediate from Lemma 0.2, [14, Proposition 4.2], Corollary 1.13, and [17, Theorem 5.1].

Corollary 1.16. Let R be a ring which has Krull dimension as a right R module. Suppose that $\alpha \geqq 1$ is an ordinal, $\mathscr{T}_{\alpha}(R)=0$, and R satisfies $\left(^{*}\right)$ and $\left(* \mathscr{T}_{\alpha}\right)$. If $\left(\mathscr{T}_{\alpha}, \mathscr{F}_{\alpha}\right)$ has BSP and is stable, then $\mathscr{T}_{\alpha}=\mathscr{S}=\mathscr{G}$.

Proof. By Theorem 1.11, $R=D_{i} \dot{+} D_{2} \dot{+} \ldots \dot{+} D_{n}$ (ring direct sum) such that, for each $i=1,2, \ldots, n$ and each two-sided ideal K of $D_{i}, D_{i} / K$ is a left perfect ring. Since R_{R} has Krull dimension; so does $\left(D_{i} / K\right)_{R}$. But a semiartinian (right) R-module with Krull dimension is artinian. Therefore, $\operatorname{rad}\left(D_{i} / K\right)$ is nilpotent, and hence D_{i} / K is also right perfect. Thus $D_{i} / K \in \mathscr{S}$. The Corollary now follows from the same argument used in the second paragraph of the proof of Corollary 1.12.
2. The case $\mathscr{T}=\mathscr{S}$. We begin section two with the following generalization of [15, Theorem 4.3].

Theorem 2.1. If $\mathscr{S}(R)=0$ and if R satisfies $\left({ }^{*}\right)$ and $\left({ }^{*} \mathscr{S}\right)$, then the following statements are equivalent.
(1) $(\mathscr{S}, \mathscr{F})$ has CSP.
(2) R is a (ring) direct sum of finitely many left Öre domains and $\mathscr{S}=\mathscr{G}$.

Proof. (2) \Rightarrow (1). Let $D=D_{1} \dot{+} D_{2} \dot{+} \ldots \dot{+} D_{n}$ be a ring direct sum. It is known that $\mathscr{G}=\mathscr{S}$ has $C S P$ if and only if, for each $i=1,2, \ldots, n$, the torsion theory induced on D_{i} - \bmod by $\mathscr{G}=\mathscr{S}$ has CSP (see [15, p. 452]).

Since each D_{i} is a left Öre domain, then \mathscr{G} induces the classical torsion theory on D_{i}-mod for each $i=1,2, \ldots, n$. But then each induced torsion theory has CSP.
(1) $\Rightarrow(2)$. We have $\mathscr{S}=\mathscr{G}$ by Corollary 1.6. Temporarily assume that R is left finite dimensional. Then let $\sum_{i=1}^{n} R x_{i}$ be a maximal direct sum of cyclic submodules of R. By Lemma 1.3, there exist orthogonal idempotents e_{1}, e_{2}, \ldots, e_{n}, such that

$$
\oplus \sum_{i=1}^{n} R x_{i} \subseteq \oplus \sum_{i=1}^{n} R e_{i} \subseteq R
$$

Since $\oplus \sum_{i=1}^{n} R e_{i}$ is a direct summand of R, then $\sum_{i=1}^{n} R e_{i}=R$. Since $R \in \mathscr{F}$ and $\mathscr{S}=\mathscr{G}$, then $(0: x)=\sum_{i \neq j} R e_{j}$ for any nonzero $x \in R e_{i}$. Hence each $R e_{i}$ is an integral domain.

Consequently, it is sufficient to show that R is left finite dimensional. Let $\oplus \sum_{\alpha \in \mathscr{A}} R x_{\alpha}$ be a direct sum of principal left ideals which is essential in R. By Lemma 1.3, we obtain an infinite set of orthogonal idempotents $\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ such that $L=\sum_{\alpha \in \mathscr{A}} R e_{\alpha}$ is an essential submodule of R. By Corollary 1.6, $A=$ $R / L \in \mathscr{S}$. Hence $\operatorname{rad} A$ is right T-nilpotent; so in A idempotents can be lifted modulo rad A. Let S be a simple module in $\operatorname{Soc}(A / \operatorname{rad} A)$. Then S is generated by an idempotent element f^{\prime} of $A / \operatorname{rad} A$, which can be lifted to an idempotent $f^{\prime \prime}$ of A. Let $f \in R$ such that $f^{\prime \prime}=f+L$. Hence for some finite subset \mathscr{C} of $\mathscr{A}, f^{2}-f \in \sum_{i \in \mathscr{G}} R e_{i}$. Let $R^{\prime}=R / \sum_{i \in \mathscr{G}} R e_{i}$, and let \mathscr{S}^{\prime} be the torsion theory for R^{\prime}-mod which is induced by \mathscr{S}. Then $\mathscr{S}^{\prime}\left(R^{\prime}\right)=0$, and by Lemma $0.2, R^{\prime}$ satisfies (${ }^{(} \mathscr{S}^{\prime}$). Hence $\left(R f+\sum_{i \in \mathscr{G}} R e\right) / \sum_{i \in \mathscr{G}} R e_{i}$ is a twosided ideal of R^{\prime} by Lemma 1.4. Thus $R f+\sum_{i \in \mathscr{G}} R e_{i}$ is an idempotent twosided ideal of R; so by $\left({ }^{*}\right)$ there exists an idempotent e such that $R e=R f+$ $\sum_{i \in \mathscr{C}} R e_{i}$. Hence $(R e+L) / L=(R f+L) / L$ and

$$
\left[\frac{R f+L}{L}\right] /\left[\operatorname{Rad} A \cap \frac{R f+L}{L}\right] \cong \frac{A f^{\prime \prime}+\operatorname{rad} A}{\operatorname{rad} A}=A f^{\prime}=S
$$

Consequently, $\operatorname{Re} /(\operatorname{Re} \cap L) \cong(\operatorname{Re}+L) / L$ has a unique maximal ideal.
Since $R / \operatorname{Re} \in \mathscr{F}$ and $R / R e_{\alpha} \in \mathscr{F}$ for $\alpha \in \mathscr{A}$, then $R /\left(R e \cap R e_{\alpha}\right) \in \mathscr{F}$ for $\alpha \in \mathscr{A}$. Hence by Theorem 1.5, there exist orthogonal idempotents $\left\{h_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ such that $R h_{\alpha}=\operatorname{Re} \cap R e_{\alpha}$. If $B=\left\{\alpha \in \mathscr{A} \mid h_{\alpha} \neq 0\right\}$ were finite, then

$$
0 \neq R e /(R e \cap L)=R e / \sum_{\alpha \in \mathscr{A}} R h_{\alpha}
$$

is a direct summand of $\operatorname{Re} \in \mathscr{F}$. But $\operatorname{Re} /(\operatorname{Re} \cap L) \in \mathscr{S}$, which gives a contradiction. Hence B must be infinite. We partition B into disjoint infinite sets Δ and Γ, each with infinite cardinality. Choose $M \subseteq R e$ maximal with respect to

$$
M \cap \sum_{\alpha \in \Delta} R h_{\alpha}=0
$$

and

$$
M \supseteq \sum_{\alpha \in \Gamma} R h_{\alpha}
$$

Then $R / M \in \mathscr{F}$; so M is a (ring) direct summand of R (and $R e$) by Theorem 1.5. Let $R e=M \oplus N$. Since M and N are finitely generated left R-modules, then $M \nsubseteq L$ and $N \nsubseteq L$. Since M and N are generated by orthogonal idempotents, we obtain the non-trivial ring direct sum

$$
(R e+L) / L=((M+L) / L) \oplus((N+L) / L)
$$

This direct sum forces a contradiction to the fact that $(R e+L) / L$ has a unique maximal (left) ideal.

Example 2.2. Let F be a field, and let ϕ be an automorphism of F. Extend ϕ to $F[x]$ by $\phi(x)=x$. Let D be the quotient field of $F[x]$. Let

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \right\rvert\, a \in F[x], b \in D\right\}
$$

with addition given coordinatewise (in the usual way) and multiplication defined by the rule

$$
\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]\left[\begin{array}{ll}
c & d \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
a c & \phi(a) \cdot d+b c \\
0 & a c
\end{array}\right]
$$

Then R is a ring. (We note that R is commutative if and only if ϕ is the identity map if and only if the multiplication above is the usual matrix multiplication!) We observe that

$$
\operatorname{rad} R=\left\{\left.\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right] \right\rvert\, b \in D\right\}, \quad \text { and } \quad(\operatorname{rad} R)^{2}=0
$$

The reader can now verify the following statements.
(1) If $y \in R$ and $y \notin \operatorname{rad} R$, then $R y \supseteq \operatorname{rad} R$.
(2) If $I^{2}=I \neq 0$, then $I \nsubseteq \operatorname{rad} R$; so $I / \operatorname{rad} R$ is an idempotent ideal of $R / \mathrm{rad} R$. Since $R / \mathrm{rad} R$ is (ring) isomorphic to $F[x]$, then $I / \operatorname{rad} R=R / \mathrm{rad} R$; so R satisfies (${ }^{*}$).
(3) If $y \in R-\operatorname{rad} R$, then by (1) we may choose a two-sided ideal K maximal with respect to $\operatorname{rad} R \subseteq K$ and $y \notin K$. Then $R y / K \in \mathscr{S}(\operatorname{as} R / \operatorname{rad} R$ is isomorphic to $F[x]$).
(4) Any left ideal contained in $\operatorname{rad} R$ is two-sided. Thus if $y \in \operatorname{rad} R$ and
if K is a left ideal chosen such that $K \subseteq R y$ and K is maximal with respect to $y \notin K$, then K is a two-sided ideal and $R y / K \in \mathscr{S}$.
(5) Combining (3) and (4), we see that R satisfies (${ }^{*} \mathscr{T}$).
(6) $\mathscr{S}(R / \operatorname{rad} R)=0$, and $\operatorname{rad} R$ is not a direct summand of R.
(7) Since $\mathscr{S}(R)=0$, Theorem 2.1 implies that R does not have CSP.

Example 2.3. Let D^{\prime} be a subdivision ring of the division ring D. Let R be the subring of the power series ring $D[[x]]$ consisting of those series whose constant term is in D^{\prime}; i.e.

$$
R=\left\{d^{\prime}+\sum_{i=1}^{\infty} d_{i} x^{i} \mid d^{\prime} \in D^{\prime}, d_{i} \in D\right\}
$$

The reader can verify the following statements.
(1) R is an integral domain; so $\mathscr{S}(R)=0$.
(2) If $d^{\prime}+\sum_{i=1}^{\infty} d_{i} x^{i} \in R$ and $d^{\prime} \neq 0$, then, by solving coefficient equations of x^{i} in the usual way, $d^{\prime}+\sum_{i=1}^{\infty} d_{i} x^{i}$ has an inverse in R.
(3) The left ideal M generated by $\{d x \mid d \in D\}$ is the unique maximal left ideal of $R . M$ is a two-sided ideal.
(4) Every principal left ideal contains a power of M; hence $(* \mathscr{S})$ holds for R.
(5) R contains no nontrivial idempotent ideals by a "least degree" argument; so (*) holds for R.
(6) Therefore Theorem 2.1 applies to show that $(\mathscr{S}, \mathscr{F})$ has CSP.
(7) We also note that D is (left) Noetherian and has Krull dimension if and only if D is a finite dimensional vector space over D^{\prime}.

In view of [1, Theorem P$]$, Theorem 1.11 becomes the following generalization of [15, Corollary 4.5] whenever $\mathscr{T}=\mathscr{S}$.

Theorem 2.4. Let $\mathscr{S}(R)=0$, and suppose that R satisfies (*) and (* \mathscr{S}). Then the following statements are equivalent.
(1) $(\mathscr{S}, \mathscr{F})$ has BSP and is stable.
(2) R is a finite direct sum of left Öre domains $D_{i}(i=1,2, \ldots, n)$, each of which satisfies the following properties:
(i) for each two-sided ideal I of $D_{i}, D_{i} / I$ is a left and right perfect ring.
(ii) each two-sided ideal of D_{i} is flat as a right module.
(iii) if M is a maximal right ideal of D_{i} which contains a two-sided ideal, then $\operatorname{Tor}_{1}{ }^{D} i\left(D_{i} / M, E\left(D_{i}\right)\right)=0$.
Corollary 2.5. Let R be a left duo von Neumann regular ring. Then (\mathscr{S}, \mathscr{F}) has $B S P$ and is stable if and only if R is a left semiartinian ring.

Proof. The "if" part is trivial. The "only if" part follows from Lemma 0.2 and Theorem 2.4 (as a regular integral domain is a division ring).

In order to prove our main result on $S P$ for $(\mathscr{S}, \mathscr{F})$, we need the following result of Gorbachuk.

Proposition $2.6[9$, Theorem 2]. Let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory.

Then $(\mathscr{T}, \mathscr{F})$ does not have $S P$ provided that there exists a sequence P_{1}, P_{2}, \ldots of left ideals of R satisfying the following properties:
(i) $R / P_{n} \in \mathscr{T}$ for $n=1,2, \ldots$;
(ii) $R /\left(\bigcap_{n=1}^{\infty} P_{n}\right) \notin \mathscr{T}$;
(iii) for each $n=1,2, \ldots$, there exists an integer $m(n)$ and a $p_{n} \in P_{n}$ such that p_{n} has zero as its left annihilator and

$$
P_{n+1} p_{1} p_{2} \ldots p_{n} \supseteq p_{1} p_{2} \ldots p_{m(n)} R
$$

We now can state a generalization of the main results of $[\mathbf{3} ; \mathbf{5}]$ and the characterization of $(S P)$ for (\mathscr{S}, \mathscr{F}) given for commutative rings in [15] and [17].

Theorem 2.7. Suppose that R satisfies (${ }^{*}$) and (* \mathscr{S}). Then ($\left.\mathscr{S}, \mathscr{F}\right)$ has $S P$ if and only if R is a left semiartinian ring.

Proof. The "if" part is trivial. "Only if": Since R has $\left({ }^{*}\right)$ and $\left({ }^{*} \mathscr{S}\right)$ and (\mathscr{S}, \mathscr{F}) has $S P$, then, by passing to the ring $R / \mathscr{S}(R)$ and applying Lemma 0.2 , we may assume that $\mathscr{S}(R)=0$. By Theorem 2.4 and Lemma 0.2 , we may assume that R is a left Öre domain such that (a) R / I is a left and right perfect ring for all nonzero two-sided ideals I of R and (b) R satisfies $\left(^{*}\right)$ and (${ }^{*} \mathscr{S}$).

Suppose that d is a nonzero element of R and that d does not have a left inverse. Then

$$
R d \supsetneq R d^{2} \supsetneq R d^{3} \supsetneq \ldots
$$

Let $K=\bigcap_{n=1}^{\infty} R d^{n}$. If $K \neq 0$, there exists a nonzero, two-sided ideal $H \subseteq K$ by ($* \mathscr{S}$). Thus the set $\left\{R d^{n} / H\right\}$ is an infinite descending chain of principal left ideals of R / H. But R / H is right perfect, and hence R / H can have no infinite descending chain of principal left ideals by [1, Theorem P]. This contradiction forces K to be 0 .

Consequently, Gorbachuk's result (Proposition 2.6) will imply a contradiction to the hypothesis, $(\mathscr{S}, \mathscr{F})$ has $S P$, provided that we can construct a sequence of (left) ideals P_{n} and a sequence of nonzero elements p_{n} such that
(i) $R / P_{n} \in \mathscr{S}$,
(ii) $\cap_{n=1}^{\infty} P_{n}=0$,
(iii) $p_{n} \in P_{n}$, and
(iv) $P_{n+1} p_{1} p_{2} \ldots p_{n} \supseteq p_{1} p_{2} \ldots p_{n+2} R$.

To do this, we proceed inductively to define $p_{n} \in P_{n} \subseteq R d^{n}$.
By (${ }^{*} \mathscr{T}$) there exists a two sided ideal $T \subsetneq R d$. Since $R \in \mathscr{F}, T \neq 0$. Since R / T is right perfect, $R / T \in \mathscr{S}$. Set $P_{1}=T$, and let p_{1} be any nonzero element of P_{1}.

Now suppose that $p_{k-1} \in P_{k-1} \subseteq R d^{k-1}$ has been defined appropriately. Let

$$
0 \neq x \in R d^{k} \cap P_{k-1} p_{1} p_{2} \ldots p_{k-2}
$$

which is possible since R is a left Ore domain. (In case $k=2, p_{0}=1$.) By (*TT) there exists a two sided ideal $T^{\prime} \subsetneq R x$. Since R / T^{\prime} is right perfect,
$R / T^{\prime} \in \mathscr{S}$. Since $R \in \mathscr{F}, T^{\prime} \neq 0$. Set $P_{k}=T^{\prime}$, and let p_{k} be any nonzero element of P_{k}. Since P_{k} is two-sided, then $p_{1} p_{2} \ldots p_{k} R \subseteq P_{k} \subset R x \subseteq P_{k-1} p_{1} p_{2} \ldots p_{k-2}$. Moreover,

$$
\bigcap_{n=1}^{\infty} P_{n} \subseteq \bigcap_{n=1}^{\infty} R d^{n}=K=0 ;
$$

so we have constructed the desired sequence.
The following corollary may be viewed as a generalization of $[\mathbf{5}$, Theorem 3.9].

Corollary 2.8. Let R be a von Neumann regular, left duo ring. Then $(\mathscr{S}, \mathscr{T})$ has $S P$ if and only if R is a left semiartinian ring.

We now give an example of a ring R such that (\mathscr{S}, \mathscr{T}) can be tested for $S P$ by Theorem 2.7, and R does not satisfy the hypothesis of any other theorem on $S P$.

Example 2.9. For each integer $m \geqq 2$, let m^{*} denote the least prime factor of m. Let A_{m} be the algebraic closure of the field $Z /\left(m^{*}\right)$, where Z denotes the integers. Then A_{m} has an automorphism ϕ_{m} defined by $\phi_{m}(a)=a^{m^{*}}$ for each $a \in A_{m}$. Set

$$
P_{m}=\left\{\sum_{i=1}^{\infty} a_{m i} x_{m}{ }^{i} \mid a_{m i} \in A_{m}\right\}
$$

Then elements of P_{m} can be added in the obvious way and multiplied as power series subject to the twisting rule, $x a=\phi_{m}(a) x$ for all $a \in A_{m}$, and its consequences. Now define

$$
R=\left\{c+\pi_{m_{1}}+\pi_{m_{2}}+\ldots+\pi_{m_{n}} \mid c \in Z, \pi_{m_{i}} \in P_{m_{i}}\right\}
$$

where the m_{i} range over the integers $\geqq 2$. Again elements of R can be added in the obvious way. Define multiplication for R by the following rules and their consequences:
(i) $\pi_{m_{i}} \pi_{m_{j}}=0$ for $\pi_{m_{i}} \in P_{m_{i}}, \pi_{m_{j}} \in P_{m_{j}}, m_{i} \neq m_{j}$;
(ii) for $c \in Z$ and $\pi_{m_{i}} \in P_{m_{i}}, c \pi_{m_{i}}=\left(c+\left(m_{i}^{*}\right)\right) \pi_{m_{i}}$ and $\pi_{m_{i}} c=\pi_{m_{i}}$ $\left(c+\left(m_{i}{ }^{*}\right)\right)$, where the multiplication on the right side of each equation is the multiplication of $P_{m_{i}}$;
(iii) any two elements of R in $P_{m_{i}}$ multiply as elements of $P_{m_{i}}$.

Then R is a ring.
Let X be the ideal of R defined by $X=P_{2}+P_{3}+P_{4}+\ldots$ If I is an ideal of R contained in X, it follows easily (by considering the term of least degree that can appear a member of I) that $I=I^{2}$ implies $I=0$. If $J^{2}=J$ and $J \nsubseteq X$, then $(J+X) / X$ is an idempotent (left) ideal of R / X. Since R / X is (ring) isomorphic to Z, then $J+X=R$. Hence J contains an element
of the form

$$
\pm 1+\pi_{m_{1}}+\pi_{m_{2}}+\ldots+\pi_{m_{n}}
$$

where $\pi_{m_{i}} \in P_{i}$. But by the method of comparing coefficients of twisted power series, it is straightforward to construct an inverse of this element. Thus $1 \in J$; so $J=R$. Therefore, R satisfies (*).

Since R / X is ring isomorphic to Z, then R is not local; so the results of $[\mathbf{1 7}$, Section 3] cannot be applied to R. Also, if $c \neq 1$ and $c+\pi_{m_{1}}+\pi_{m_{2}}+\ldots+$ $\pi_{m_{n}} \in R$, then choose a prime number p and positive integer k such that p divides c and $p^{k}>\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. Hence

$$
x_{p^{k}}\left(c+\pi_{m_{1}}+\ldots+\pi_{m_{n}}\right)=0=\left(c+\pi_{m_{1}}+\ldots+\pi_{m_{n}}\right) x_{p^{k}} .
$$

From this fact and an argument in the previous paragraph, it follows that every element of R with zero left or right annihilator is invertible. Thus R does not satisfy the hypotheses of [9, Theorem 2 or 3].

If $0 \neq r \in R$, then there exists an integer m such that $0 \neq x_{m} r \in P_{m}$. Hence $R x_{m}{ }^{2} r$ is a proper nonzero submodule of $R r$. Therefore, soc $R=0$. But then, if $R / I \in \mathscr{S}, I \cap R x_{n} \neq 0$ for every $n \geqq 2$. Let $k \in Z$ such that $(R k+X) / X=(I+X) / X$. If $I \neq R$, then we may assume $k \geqq 2$; so, for each $j=1,2, \ldots$, there must be a generator of I of the form

$$
s k+\pi_{m_{1}}+\ldots+\pi_{m_{e}}+\pi_{\left(k^{*}\right) j}+\pi_{m f}+\ldots+\pi_{m_{n}},
$$

where $s \in Z, \pi_{m_{i}} \in P_{m_{i}}$, and $0 \neq \pi_{k} \in P_{\left(k^{*}\right) j}$. Hence I cannot be finitely generated as a left ideal. Thus R does not satisfy the hypothesis of $[\mathbf{1 6}$, Theorem 3.5].

Since soc $R=0$, we can apply Theorem 2.7 to show that R does not split, provided that R satisfies (${ }^{*} \mathscr{S}$). Let

$$
r=a+\sum_{i=1}^{\infty}{a_{m_{1} i} x_{m_{1}}{ }^{i}+\sum_{i=1}^{\infty} a_{m_{2} i} x_{m 2}{ }^{i}+\ldots+\sum_{i=1}^{\infty} a_{m_{n i}} x_{m_{n}}{ }^{i} \in R, ~, ~, ~}
$$

where $a \in Z$ and $\sum_{i=1}^{\infty} a_{m_{j}} i x_{m_{j}}{ }^{i} \in P_{j}$ for $j=2,3, \ldots, n$. We wish to find a two-sided ideal T properly contained in Rr such that $\operatorname{Rr} / T \in \mathscr{S}$. If $a= \pm 1$, r is invertible; so we assume that $a \neq \pm 1$. If $a \neq 0$, set

$$
H=\sum\left\{P_{k} \mid k^{*} \text { relatively prime to } a\right\} ;
$$

if $a=0$, set $H=0$. For each $m_{j}{ }^{*}$ which divides a, let t_{j} be the least positive integer t such that $a_{m j t} \neq 0$. Then some laborious computation shows that $T=R a^{2}+H+P_{m_{1}}{ }^{t_{1}}+P_{m_{2}}{ }^{t_{2}}+\ldots+P_{m_{n}}{ }^{t_{n}}$ is the desired two-sided ideal of R.

In fact, since 1 and 0 are the only idempotent elements of R, $(\mathscr{S}, \mathscr{F})$ does not even have CSP for R-mod by Theorem 2.1.

References

1. H. Bass, Finitistic homological dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
2. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
3. -_ Noetherian splitting rings are Artinian, J. London Math. Soc. 42 (1967), 732-736.
4. L. Fuchs, Torsion preradicals and ascending Loewy series of modules, J. Reine Angew. Math. 239/240 (1969), 169-179.
5. J. D. Fuelberth, On commutative splitting rings, Proc. London Math. Soc. 20 (1970), 393-408.
6. J. D. Fuelberth and M. L. Teply, The singular submodule of a finitely generated module splits off, Pacific J. Math. 40 (1972), 73-82.
7. J. S. Golan, On the torsion-theoretic spectrum of a non-commutative ring (preprint, 1973).
8. K. R. Goodearl, Singular torsion and the splitting properties, Mem. Amer. Math. Soc. 124 (1972).
9. E. L. Gorbachuk, Splitting torsion and pretorsion in the category of right Λ-modules, Mat. Zametki 2 (1967), 681-688.
10. R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133 (1973).
11. I. Kaplansky, Projective modules, Ann. of Math. 68 (1958), 372-377.
12. J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Mathematics 177 (Springer-Verlag, Berlin, 1971).
13. T. S. Shores, The Structure of Loewy modules, J. Reine Agnew. Math. 254 (1972), 204-220.
14. B. Stenström, Rings and modules of quotients, Lecture Notes in Mathematics 237 (SpringerVerlag, Berlin, 1971).
15. M. L. Teply, The torsion submodule of a cyclic module splits off, Can. J. Math 24 (1972), 450-464.
16. - On non-commutative splitting rings, J. London Math. Soc. 4 (1971), 157-164. (See also Corrigendum in J. London Math. Soc. 6 (1973), 267-268.)
17. M. L. Teply and J. D. Fuelberth, The torsion submodule splits off, Math. Ann. 188 (1970), 270-284.

University of Florida, Gainesville, Florida

[^0]: Received March 25, 1974 and in revised form, October 1, 1974. This research was supported by NSF Grant GP-39255.

