GENERALIZATIONS OF THE SIMPLE TORSION CLASS AND THE SPLITTING PROPERTIES

MARK L. TEPLY

In this paper all rings R are associative rings with identity and all modules are members of R-mod, the category of unital left R-modules, unless the contrary is specifically stated.

A subclass \mathcal{T} of *R*-mod is called a hereditary torsion class if \mathcal{T} is closed under submodules, homomorphic images, direct sums, and extensions [14; 15]. With each hereditary torsion class \mathcal{T} , there corresponds a unique class \mathcal{F} such that $(\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory [2; 12; 14; 15]. Such a class \mathcal{F} is called a torsion-free class and is closed under submodules, direct products, extensions, and injective hulls. $(\mathcal{T}, \mathcal{F})$ is called stable if \mathcal{T} is closed under injective hulls [14; 15; 17].

Since simple modules play an important role in ring theory, one hereditary torsion class which is natural to study [2; 3; 5; 15; 16; 17] is

 $\mathscr{S} = \{M \in R \text{-mod} | \text{ every non-zero homomorphic image of } M \text{ has non-zero socle} \}.$

 \mathscr{S} is called the simple torsion class. (Elsewhere in the literature (e.g. [4; 13]), modules in \mathscr{S} have also been studied under the name of Loewy modules.)

A hereditary torsion class \mathscr{T} is called a generalization of the simple torsion class \mathscr{S} if $\mathscr{T} \supseteq \mathscr{S}$. (This terminology comes from [7].)

The hereditary torsion classes, which arise from Krull dimensions, are important generalizations of \mathscr{S} . The Krull dimension of $M \in R$ -mod, which will be denoted by $K \dim M$, is defined by transfinite recursion as follows: if M = 0, $K \dim M = -1$; if α is an ordinal and $K \dim M \leq \alpha$, then $K \dim M = \alpha$ provided that there is no infinite descending chain $M = M_0 \supset M_1 \supset \ldots$ of submodules M_i of M such that, for $i = 1, 2, \ldots, K \dim (M_{i-1}/M_i) \leq \alpha$. (It is of course possible that there is no ordinal α such that $K \dim M = \alpha$.) Given an ordinal α , we can define a hereditary torsion class \mathscr{T}_{α} by

 $\mathscr{T}_{\alpha} = \{M \in R \text{-mod} | \text{ every non-zero homomorphic image of } M \text{ has} \\ \text{a non-zero submodule with Krull dimension } < \alpha \}.$

For any non-zero $M \in R$ -mod, $K \dim M = 0$ if and only if M is an Artinian module. Hence it is an easy exercise to see that $\mathcal{T}_1 = \mathcal{S}$. Clearly, if $\alpha < \beta$, then $\mathcal{T}_{\alpha} \subseteq \mathcal{T}_{\beta}$; so \mathcal{T}_{α} is a generalization of \mathcal{S} whenever $\alpha \geq 1$. For properties of Krull dimension and \mathcal{T}_{α} the reader should consult [10].

Received March 25, 1974 and in revised form, October 1, 1974. This research was supported by NSF Grant GP-39255.

Let \mathscr{T} be a hereditary torsion class with associated torsion theory $(\mathscr{T}, \mathscr{F})$. For $M \in R$ -mod, let $\mathscr{T}(M)$ denote the (necessarily) unique largest submodule of M in \mathscr{T} . A R-module M is said to split if $\mathscr{T}(M)$ is a direct summand of M. Then $(\mathscr{T}, \mathscr{F})$ is said to have the cyclic splitting property (*CSP*) if every cyclic module splits. $(\mathscr{T}, \mathscr{F})$ is said to have the finitely generated splitting property (*FGSP*) if every finitely generated module splits. $\mathscr{T}(M)$ is said to have bounded order if $I\mathscr{T}(M) = 0$ for some (left) ideal I such that $R/I \in \mathscr{T}$; hence $(\mathscr{T}, \mathscr{F})$ has the bounded splitting property (*BSP*) if $\mathscr{T}(M)$ is a direct summand of M whenever $\mathscr{T}(M)$ has bounded order. Finally, $(\mathscr{T}, \mathscr{F})$ is said to have the splitting property (*SP*) if every module splits. For further discussion of these definitions, the reader is referred to [**15**; **17**].

The above splitting properties have been studied for the case $\mathcal{T} = \mathcal{S}$, but not for the case where \mathcal{T} is a generalization of \mathcal{S} . In particular, the splitting properties of $(\mathcal{S}, \mathcal{F})$ are discussed for commutative rings in [3; 5; 15; 17]; a result [16, Theorem 3.5] on SP for $(\mathcal{S}, \mathcal{F})$ has also been obtained for rings which have sufficiently many finitely generated, two-sided ideals. Also [9] and [17] give some general results on SP which may be applied to $(\mathcal{S}, \mathcal{F})$ under certain restrictive ring conditions.

In section one of this paper, we shall obtain theorems on the various splitting properties of generalizations of \mathscr{S} . In section two, these theorems are specialized to the case $\mathscr{T} = \mathscr{S}$; these resulting specializations generalize the main results of [3; 5; 15; 17]. An example is given to show that the theorem of section two on *SP* applies to certain non-local, non-commutative rings that satisfy neither the hypotheses of Gorbachuk's theorems [9, Theorems 2 and 3] nor the author's results [16, Theorem 3.5].

In order to do this, we will be interested in the following two conditions that R may satisfy for a hereditary torsion class \mathcal{T} :

(*) Every two-sided idempotent ideal, which is finitely generated as a left

ideal, has the form Re, where $e^2 = e$.

(* \mathscr{T}) Every non-zero principal left ideal Rx properly contains a two-sided ideal I such that $Rx/I \in \mathscr{T}$.

If R satisfies $(*\mathscr{S})$ and if \mathscr{T} is a generalization of \mathscr{S} , then R also satisfies $(*\mathscr{T})$. The following classes of rings satisfy both (*) and $(*\mathscr{S})$:

(1) commutative rings;

(2) von Neumann regular, left duo rings;

(3) von Neumann regular, left semi-artinian rings;

(4) local right perfect rings, where "local" means that the ring has unique maximal left ideal;

(5) left and right noetherian, hereditary integral domains with no two-sided idempotent ideals (e.g. the ring D[[x]] of all power series with coefficients in a division ring D).

Several other interesting examples of rings which satisfy both (*) and (* \mathscr{S}) are given in section two.

It is possible that a generalization \mathscr{T} of \mathscr{S} may satisfy $(*\mathscr{T})$, but not $(*\mathscr{S})$. To illustrate this fact, we now show how to construct a ring R which satisfies (*) and $(*\mathscr{T}_{\alpha+2})$ for a given non-limit ordinal α , but does not satisfy $(*\mathscr{T}_{\beta})$ for any $\beta \leq \alpha + 1$.

Example 0.1. Let α be a non-limit ordinal. Let D be a commutative integral domain of Krull dimension α such that D has an automorphism ϕ of infinite period. (The existence of such a domain D is justified in the remark following this example.) Let $T = D[x; \phi]$ be the twisted polynomial ring; i.e. the additive group is the additive group of the polynomial ring D[x], and multiplication in $D[x; \phi]$ is defined by $xd = \phi(d)x$ and its consequences. T is a left Öre domain and hence T is a left order in a division ring F. Let R be the subring of power series ring F[[y]] such that the "constant" term of every member of R is in T; i.e.,

$$R = \left\{ t + \sum_{i=1}^{\infty} a_i y^i | t \in T, a_i \in F \right\}.$$

We now outline a proof for showing that R has the desired properties: R satisfies (*) and $(*\mathcal{T}_{\alpha+2})$, but R does not satisfy $(*\mathcal{T}_{\beta})$ for any $\beta \leq \alpha + 1$.

(1) Each two-sided ideal of T is either generated by an element of the form x^n for some integer n or else contains a nonzero element of D. (Consider an element which has least degree among members of the ideal.)

(2) Let

$$z = t + \sum_{i=1}^{\infty} a_i y^i.$$

If $t \neq 0$, then for each $b \in F$ and each positive integer k, there exists $\sum_{i=1}^{\infty} b_i y^i \in R$ such that

$$\left(\sum_{i=1}^{\infty} b_i y^i\right) \left(t + \sum_{i=1}^{\infty} a_i y^i\right) = b y^k.$$

(Solve the coefficient equations inductively.)

(3) By (2), Rz contains the two-sided ideal M generated by the set $\{by|b \in F\}$. (4) If the degree of $t = \sum_{i=0}^{n} d_i x^i \in T$ is positive (i.e., $n \ge 1$) and $d_0 \ne 0$, then Tt contains no two-sided ideals by (1). Hence, if the degree of t is positive and $d_0 \ne 0$, then every proper two-sided ideal I of R which is contained in Rz is contained in M.

(5) Let $z' = 1 + x \in R$. If *I* is a two-sided ideal such that $Rz'/I \in \mathscr{T}_{\beta}$, then by (4), $Rz'/M \in \mathscr{T}_{\beta}$.

(6) There is a lattice isomorphism between the *R*-submodules of Rz'/M and the *T*-submodules of Tz'. Moreover, Tz' is an α -critical *T*-submodule of *T*. (See [10, Lemma 6.3].) Hence $K \dim_R Rz'/M = K \dim_T Tz' = (K \dim_D D) + 1 = \alpha + 1$, and $K \dim_R N = K \dim_T Tz' = \alpha + 1$ for any submodule *N* of Rz'/M by [10, Proposition 2.3].

(7) By (6), $Rz'/M \in \mathscr{T}_{\alpha+2}$, but $Rz'/M \notin \mathscr{T}_{\beta}$ for any $\beta \leq \alpha + 1$. Hence R does not satisfy $(*\mathscr{T}_{\beta})$ for any $\beta \leq \alpha + 1$ by (5).

(8) By factoring out the highest power of y in z and applying (2), we see that every principal left ideal of R contains M^n for some integer n.

(9) Since $K \dim_R R/M = K \dim_T T = \alpha + 1$, then by (8), $R/L \in \mathscr{T}_{\alpha+2}$ for every non-zero left L of R.

(10) From (8) and (9) it follows that R satisfies $(*\mathcal{T}_{\alpha+2})$.

(11) Let I be an idempotent, two-sided ideal of R which is finitely generated. The coefficients of y^0 of members of I form a finitely generated idempotent ideal I' of T; so by (1), I' must contain an element of D. The coefficients of x^0 of members of I' form a finitely generated idempotent ideal I'' of D. Since D is a commutative domain, I'' = 0 or I'' = D. If I'' = D, then the existence of an element of I' in D implies that $1 \in I'$ and hence I' = T; from (2) it now follows that $I \supseteq M$, and hence I = R. If I'' = 0, then I' = 0 and hence $I \subseteq M$; by considering the least positive integer in the set $\{h|y^h \text{ has nonzero}$ coefficient for some member of I, it is easy to see that $I^2 = I$ implies I = 0. Hence R satisfies (*).

Remark. The example above depends on the existence of certain integral domains D having an automorphism ϕ of infinite period. We now indicate two constructions for such D, one for finite ordinals and one for the general non-limit ordinal case.

(1) Let C be the algebraic closure of Z_2 , the field of two elements. Let ρ be the automorphism of C defined by $\rho(a) = a^2$ for each $a \in C$. If $\alpha = n$ is a finite ordinal, extend ρ to an automorphism ϕ of the polynomial ring $D = C[x_1, x_2, \ldots, x_n]$ by $\phi(x_i) = x_i$ for $i = 1, 2, \ldots, n$. Then K dim $D = n = \alpha$, and ϕ has infinite period. (Note: if $\alpha = 0$, let D = C and $\phi = \rho$.)

(2) Let α be a non-limit ordinal. By [10, Theorem 9.6], there exists a commutative integral domain C with Krull dimension $\alpha - 1$. By examining the proof of [10, Theorem 9.6], we also see that if the base field in the construction for C has characteristic zero, then so does C. (The construction of C is done by forming a big polynomial ring over the base field, localizing at a prime ideal generated by a "gang" of indeterminates, and then passing to a homomorphic image.) Now let D = C[u], the polynomial ring in the indeterminate u. Then $K \dim D = \alpha$, and

$$\phi: D \to D: \sum_{i=1}^{n} c_{i}u^{i} \to \sum_{i=1}^{n} c_{i}(u+1)^{i}$$

is the desired automorphism of infinite period.

Now let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory of *R*-modules, and let *I* be a two-sided ideal of *R*. Then $(\mathcal{T}, \mathcal{F})$ induces a torsion theory $(\mathcal{T}', \mathcal{F}')$ of *R*/*I*-modules in a natural way: $\mathcal{T}' = \{M \in R/I \text{-mod} | M \in \mathcal{T}, \text{ where } M \text{ is}$ viewed as an *R*-module via xm = (x + I)m for all $x \in R$ and $m \in M\}$. Since an *R*/*I* module is a simple *R*/*I*-module if and only if it is simple as an *R*-module in the natural way, then the torsion class \mathscr{S}' induced by \mathscr{S} , is just the simple torsion class for R/I-mod.

LEMMA 0.2. Let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory for R-mod, let I be a two-sided ideal of R, and let $(\mathcal{T}', \mathcal{F}')$ be the torsion theory of R/I-mod induced by $(\mathcal{T}, \mathcal{F})$.

(1) If $(\mathcal{T}, \mathcal{F})$ has CSP (FGSP, BSP, SP), then $(\mathcal{T}', \mathcal{F}')$ has CSP (FGSP, BSP, SP) for R/I-modules.

(2) If I is a finitely generated idempotent left ideal and if R satisfies (*) and (* \mathcal{T}), then R/I satisfies (*) and (* \mathcal{T}').

Proof. (1) is known (e.g., see [17, p. 72] or [15, p. 452]). Both (1) and (2) are straight forward to prove from the appropriate definitions.

1. Splitting properties for generalizations of \mathscr{S} . Before we can give characterizations of the splitting properties for generalizations of \mathscr{S} , we need several elementary lemmas.

LEMMA 1.1. Let \mathscr{T} be a generalization of \mathscr{S} , and let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory with CSP. If $R/I \in \mathscr{F}$, then $I^2 = I$.

Proof. Replace \mathscr{S} by \mathscr{T} in the proof of [15, Proposition 2.1].

LEMMA 1.2. Let \mathscr{T} be a generalization of \mathscr{S} , and let $(\mathscr{T}, \mathscr{F})$ be a hereditary torsion theory for R-mod. Let $R \in \mathscr{F}$, and let R satisfy $(*\mathscr{T})$. If $R/I \in \mathscr{F}$ and if $\oplus \sum_{\alpha \in \mathscr{A}} Rx_{\alpha} \subseteq I$, then there exists a collection $\{I_{\alpha}\}_{\alpha \in \mathscr{A}}$ of two-sided ideals satisfying the following conditions:

- (1) $Rx_{\alpha} \subseteq I_{\alpha} \subseteq I$ for each $\alpha \in \mathscr{A}$;
- (2) $R/I_{\alpha} \in \mathscr{F}$ for each $\alpha \in \mathscr{A}$;
- (3) $I_{\alpha}/Rx_{\alpha} \in \mathscr{T}$ for each $\alpha \in \mathscr{A}$;
- (4) $\sum_{\alpha \in \mathscr{A}} I_{\alpha}$ is direct.

Proof. By (* \mathscr{T}) there exists, for each $\alpha \in \mathscr{A}$, $J_{\alpha} \subset Rx_{\alpha}$ such that J_{α} is a two-sided ideal of R and $Rx_{\alpha}/J_{\alpha} \in \mathscr{T}$. Define I_{α} by $I_{\alpha}/J_{\alpha} = \mathscr{T}(R/J_{\alpha})$ for each $\alpha \in \mathscr{A}$. Clearly $Rx_{\alpha} \subseteq I_{\alpha}$, (2) holds, and (3) holds. Since $(I_{\alpha} + I)/I \in \mathscr{F}$ and since $(I_{\alpha} + I)/I \cong I_{\alpha}/(I \cap I_{\alpha})$ is a homomorphic image of $I_{\alpha}/J_{\alpha} \in \mathscr{T}$, then $(I_{\alpha} + I)/I = 0$; hence $I_{\alpha} \subseteq I$. Since J_{α} is a two-sided ideal for each α , so is I_{α} .

If $0 \neq x \in I_{\beta} \cap \sum_{\alpha \in \mathscr{A} - \{\beta\}} I_{\alpha}$, then $0 \neq x = a_{\beta} = \sum_{\alpha \in B} a_{\alpha}$, where *B* is a finite subset of $\mathscr{A} - \{\beta\}$. Since $R \in \mathscr{F}$, $(Rx_{\alpha} : a_{\alpha})$ is an essential left ideal for each $\alpha \in B \cup \{\beta\}$. Hence there exists

$$y\in\bigcap_{\alpha\in B\,\cup\,\{\beta\}}\,(Rx_{\alpha}\colon a_{\alpha})$$

such that $0 \neq yx = ya_{\beta} = \sum_{\alpha \in B} ya_{\alpha} \in Rx_{\beta} \cap \sum_{\alpha \in B} Rx_{\alpha} = 0$, which is a contradiction. Hence (4) holds.

LEMMA 1.3. Let R, $(\mathcal{T}, \mathcal{F})$, and $\{I_{\alpha}\}_{\alpha \in \mathcal{A}}$ be as in Lemma 1.2. If R satisfies (*)

and $(\mathcal{T}, \mathcal{F})$ has CSP, then, there exists a set of orthogonal idempotents $\{e_{\alpha}\}_{\alpha \in \mathscr{A}}$ such that $I_{\alpha} = Re_{\alpha}$ for each $\alpha \in \mathscr{A}$.

Proof. By Lemma 1.1, $I_{\alpha} = I_{\alpha}^2$ for each $\alpha \in \mathscr{A}$. By CSP, I_{α}/J_{α} is a cyclic module; so from part (1) of Lemma 1.2, it follows that each I_{α} is generated by two elements. Hence the result follows from (*).

LEMMA 1.4. Let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory for R-mod such that $R \in \mathcal{F}$ and R satisfies $(*\mathcal{T})$. Then every (module) direct summand of R is a two-sided ideal of R.

Proof. Let $_{R}R = A \oplus B$, and suppose that $b \in B$. The map $A \to Ab$ given by right multiplication is an *R*-epimorphism. By (* \mathscr{T}) there is a two-sided ideal *T* of *R* such that $T \subseteq A$ and $A/T \in \mathscr{T}$. But $Tb \subseteq A \cap B = 0$; so the induced epimorphism $A/T \to Ab$ implies that $Ab \in \mathscr{T}$. As $R \in \mathscr{F}$, then AB = 0.

We now can state our first main result, which characterizes CSP for generalizations of \mathscr{S} .

THEOREM 1.5. Let \mathcal{T} be a generalization of \mathcal{S} , and let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory for R-mod. If $R \in \mathcal{F}$ and R satisfies (*) and (* \mathcal{T}), then the following statements are equivalent.

- (1) $(\mathcal{T}, \mathcal{F})$ has CSP.
- (2) If $R/K \in \mathscr{F}$, then K is a ring direct summand of R.
- (3) Every cyclic in \mathcal{F} is projective.

Proof. $(2) \Rightarrow (3) \Rightarrow (1)$ is trivial.

Assume (1) holds. Let $R/K \in \mathscr{F}$, and let $\oplus \sum_{\alpha \in \mathscr{A}} Rx_{\alpha}$ be a direct sum of cyclic modules such that $\oplus \sum_{\alpha \in \mathscr{A}} Rx$ is an essential submodule of K. By Lemma 1.3, there exists a family $\{e_{\alpha}\}_{\alpha \in \mathscr{A}}$ of orthogonal idempotents such that $Re_{\alpha} = I_{\alpha}$, where I_{α} is as in Lemma 1.2. Let $I/\oplus \sum_{\alpha \in \mathscr{A}} I_{\alpha} = \mathscr{F}(R/\sum_{\alpha \in \mathscr{A}} I_{\alpha})$ define the two-sided ideal I. Since $I/\sum_{\alpha \in \mathscr{A}} I_{\alpha} \in \mathscr{F}$ and $(I + K)/K \in \mathscr{F}$, it follows from the existence of an epimorphism

$$I/\sum_{\alpha \in \mathscr{A}} I_{\alpha} \to I/(I \cap K) \cong (I+K)/K$$

that $I \subseteq K$. By (1), $I / \sum_{\alpha \in \mathscr{A}} I_{\alpha}$ has an idempotent generator $g + \sum_{\alpha \in \mathscr{A}} I_{\alpha}$ in $R / \sum_{\alpha \in \mathscr{A}} I_{\alpha}$.

Case 1. If Rg = I, then by (*) I = Re for some $e = e^2$. Since I is essential in K it follows that I = K; so (2) follows from Lemma 1.4.

Case 2. If Rg = 0, then $I = \bigoplus \sum_{\alpha \in \mathscr{A}} I_{\alpha}$. Let M_{α} be a maximal submodule of $I_{\alpha} = Re_{\alpha}$ for each $\alpha \in \mathscr{A}$. Then

$$\mathscr{T}\left(R/\oplus \sum_{\alpha\in\mathscr{A}} M_{\alpha}\right) = I/\oplus \sum_{\alpha\in\mathscr{A}} M_{\alpha} \cong \oplus \sum_{\alpha\in\mathscr{A}} I_{\alpha}/M_{\alpha}$$

must be finitely generated by (1). Hence \mathscr{A} is a finite set; so *I* is finitely generated and a summand of *R*. Consequently (2) follows from Lemma 1.4.

Case 3. If $0 \neq Rg \neq I$, then by $(*\mathcal{T})$ there exists a two-sided ideal G such that $G \subseteq Rg$ and $0 \neq Rg/G \in \mathcal{T}$. As in the proof of Lemma 1.3 there exists an idempotent e such that $Re/G = \mathcal{T}(R/G)$ and $Re \subseteq I$.

Write $R = Re \oplus F$, where F = R(1 - e). Note that $I = Re + \sum_{\alpha \in \mathscr{A}} Re_{\alpha}$. By the modular law $I = Re \oplus (I \cap F)$. But

$$I \cap F = (I \cap F)(1-e) \subseteq I(1-e) \cap F \subseteq \left(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}\right) \cap F$$

by Lemma 1.4. Hence $I = Re \oplus [(\sum_{\alpha \in \mathcal{A}} Re_{\alpha}) \cap F]$. By the modular law,

$$\sum_{\alpha \in \mathscr{A}} Re_{\alpha} = \left[\left(\sum_{\alpha \in \mathscr{A}} Re_{\alpha} \right) \cap Re \right] \oplus \left[\left(\sum_{\alpha \in \mathscr{A}} Re_{\alpha} \right) \cap F \right].$$

By [11, Theorem 1], $(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}) \cap F$ is a direct sum of countably generated modules. If $(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}) \cap F$ is not finitely generated, then $(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}) \cap F$ has a countably generated direct summand W which is not finitely generated. By closure under extensions and by $R \in \mathscr{F}$, $R/W \in \mathscr{F}$. Let W be generated by the set $\{x_i\}_{i=1}^{\infty}$. For each positive integer n, there exists a least positive integer k(n) such that $x_{k(n)} \notin Rx_1 + Rx_2 + \ldots + Rx_n$. By Zorn's Lemma, choose K_n maximal with respect to $x_{k(n)} \notin K_n$ and $\sum_{i=1}^n Rx_n \subseteq K_n \subseteq W$. Then $(Rx_{k(n)} + K_n)/K_n$ is an essential simple submodule of R/K_n ; so $(Rx_{k(n)} + K_n)/K_n \in \mathscr{F}$. Since $(\mathscr{F}, \mathscr{F})$ has (CSP), then $(\mathscr{F}, \mathscr{F})$ is stable; hence $R/K_n \in \mathscr{F}$. Define

$$\varphi \colon W \to \oplus \sum_{n=1}^{\infty} W/K_n \colon w \to \sum_n \varphi_n(w),$$

where $\varphi_n : W \to W/K_n$ is the canonical epimorphism given by $w \to w + K_n$. If $H = \ker \varphi$, then $W/H \cong \text{image of } \varphi$. Since $R/W \in \mathscr{F}$, then $\mathscr{T}(R/H) \subseteq W/H$, which is a direct summand of R/H by (1). Hence $\mathscr{T}(R/H)$ is finitely generated. But $\mathscr{T}(R/H) = \mathscr{T}(W/H)$ cannot be finitely generated; for otherwise the isomorphic copy of $\mathscr{T}(W/H)$ in the image of φ would have non-zero coordinates in finitely many W/K_n . This contradiction shows that $(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}) \cap F$ must be finitely generated.

Therefore, $I = Re \oplus [(\sum_{\alpha \in \mathscr{A}} Re_{\alpha}) \cap F]$ is finitely generated. By Lemma 1.3 and (*), I is generated by an idempotent element and hence is a direct summand of R. Since I is an essential submodule of K, I = K; so (2) follows from Lemma 1.4.

One widely studied torsion theory is Goldie's torsion theory $(\mathcal{G}, \mathcal{N})$; e.g., see [6; 8; 15] and their references. \mathcal{G} is the smallest torsion class containing the singular modules; \mathcal{N} is precisely the class of nonsingular modules. If R is a commutative integral domain, then \mathcal{G} coincides with the class of modules which are torsion in the classical sense.

By Theorem 1.5 and an argument of [15, p. 459], we have the following result.

COROLLARY 1.6. Let $(\mathcal{T}, \mathcal{F})$ and R be as in the hypotheses of Theorem 1.5. If $(\mathcal{T}, \mathcal{F})$ has CSP, then $\mathcal{T} = \mathcal{G}$.

As a consequence of the corollary, when R is a commutative integral domain and \mathcal{T} is a generalization of \mathcal{S} , $(\mathcal{T}, \mathcal{F})$ has CSP if and only if \mathcal{T} contains the usual torsion class. In particular, if R has Krull dimension α , then $(\mathcal{T}_{\beta}, \mathcal{F}_{\beta})$ has CSP if and only if $\beta \geq \alpha$.

But, for the ring of Example 0.1, $(\mathcal{T}_{\alpha+2}, \mathcal{F}_{\alpha+2})$ has *CSP* by Theorem 1.5 and part (9) of Example 0.1. However, $\mathscr{S} \neq \mathcal{T}_{\alpha+2} \neq R$ -mod.

LEMMA 1.7. Let \mathcal{T} be a hereditary torsion class for R-mod. If R satisfies (* \mathcal{T}), then every left ideal I contains a two-sided ideal I' such that $I/I' \in \mathcal{T}$; moreover, if $\mathcal{T}(R) = 0$, then I' is essential in I.

Proof. For each $x \in I$, we use $(*\mathscr{T})$ to find a two-sided ideal I_x such that $Rx/I_x \in \mathscr{T}$. Set $I' = \sum_{x \in I} I_x$. It is easy to see that I' has the desired properties.

We now can use Corollary 1.6 and Lemma 1.7 to apply results of [6] and [8] in order to obtain results about FGSP and BSP for generalizations of \mathcal{S} .

THEOREM 1.8. Let \mathscr{T} be a generalization of \mathscr{S} , and let $(\mathscr{T}, \mathscr{F})$ be a torsion theory for R-mod. If $R \in \mathscr{F}$ and if R satisfies (*) and (* \mathscr{T}), then the following statements are equivalent.

(1) $(\mathcal{T}, \mathcal{F})$ has FGSP.

(2) $\mathscr{T} = \mathscr{G}$, and each finitely generated module $F \in \mathscr{F}$ has the following properties: (a) F is finitely related; (b) hd $F \leq 1$; (c) $\operatorname{Tor}_1^R(\operatorname{Hom}_z(A, D), F) = 0$ for any $A \in \mathscr{T}$ and any divisible Abelian group D.

(3) (a) (A:x) is finitely generated for every $x \in E(R)$ and every finitely generated $A \subseteq E(R)$, where E(R) denotes the injective hull of R;

(b) if I is any right ideal which contains a two-sided, essential left ideal of R, then I_R is flat and $\operatorname{Tor}_{1^R}(R/I, E(R)) = 0$; and

(c) if L is an essential left ideal of R, then $R/L \in \mathscr{T}$.

Proof. By Corollary 1.6, $\mathscr{T} = \mathscr{G}$; so the equivalence of (1) and (2) follows from [**6**, Corollary 2]. By $R \in \mathscr{F}$ and Lemma 1.7, every essential left ideal of R contains an essential two-sided ideal of R; so the equivalence of (1) and (3) follows from [**8**, Theorem 4.9].

COROLLARY 1.9. Let R be a commutative ring, let \mathcal{T} be a generalization of \mathcal{S} , and let $(\mathcal{T}, \mathcal{F})$ be a torsion theory for R-mod. If $R \in \mathcal{F}$, then the following statements are equivalent.

(1) $(\mathcal{T}, \mathcal{F})$ has FGSP.

(2) R is semihereditary, $R \cap A$ is finitely generated for every finitely generated $A \subseteq E(R)$, and $R/L \in \mathscr{T}$ for every essential left ideal L of R.

Proof. Combine Corollary 1.6 and [8, Corollary 4.10] to obtain this result.

Before we can deal with the *BSP* for $(\mathcal{T}, \mathcal{F})$, we must introduce a Loewy-type construction and prove a technical homological lemma.

Suppose that T is a two-sided ideal of R and that R/T is a right semiartinian ring (which occurs whenever R/T is left perfect). Define the two-sided ideals T_{α} of R inductively as follows: $T_0 = T$; if α is not a limit ordinal, then $T_{\alpha}/T_{\alpha-1}$ is the right socle of $R/T_{\alpha-1}$; if α is a limit ordinal, then $T_{\alpha} = \bigcup_{\beta < \alpha} T_{\beta}$. Hence the set $\{T_{\alpha}/T\}_{\alpha \in \mathscr{A}}$ forms a right Loewy series for R/T, where \mathscr{A} is an index set of ordinals such that $T_{\beta}/T = R/T$ for some $\beta \in \mathscr{A}$.

LEMMA. 1.10. Suppose that R/T is a left perfect ring and that K is a right ideal of R satisfying $T_{\alpha} \subseteq K \subseteq T_{\alpha+1}$ for some ordinal α . If T_{α} and $T_{\alpha+1}$ are flat as right R-modules, so is K.

Proof. Since $T_{\alpha+1}$ is flat, we have the exact sequence

$$\operatorname{Tor}_{2^{R}}(T_{\alpha+1}/K, _) \to \operatorname{Tor}_{1^{R}}(K, _) \to \operatorname{Tor}_{1^{R}}(T_{\alpha+1}, _) = 0;$$

so it suffices to show that $\operatorname{Tor}_{2^{R}}(T_{\alpha+1}/K, -) = 0$. Since $T_{\alpha+1}/T_{\alpha}$ is semisimple, then as a right *R*-module

$$T_{\alpha+1}/T_{\alpha} \cong (K/T_{\alpha}) \oplus (T_{\alpha+1}/K),$$

and hence

$$\operatorname{Tor}_{2^{R}}(T_{\alpha+1}/T_{\alpha}, -) \cong \operatorname{Tor}_{2^{R}}(K/T_{\alpha}, -) \oplus \operatorname{Tor}_{2^{R}}(T_{\alpha+1}/K, -).$$

Consequently, it is sufficient to show that $\operatorname{Tor}_{2^{R}}(T_{\alpha+1}/T_{\alpha}, -) = 0$. But this follows from the flatness of $T_{\alpha+1}$ and T_{α} and the exact sequence

 $\operatorname{Tor}_{2^{R}}(T_{\alpha+1}, -) \to \operatorname{Tor}_{2^{R}}(T_{\alpha+1}/T_{\alpha}, -) \to \operatorname{Tor}_{1^{R}}(T_{\alpha}, -).$

THEOREM 1.11. Let \mathcal{T} be a generalization of \mathcal{S} , and let $(\mathcal{T}, \mathcal{F})$ be a torsion theory. If $R \in \mathcal{F}$ and if R satisfies (*) and (* \mathcal{T}), then the following statements are equivalent.

(1) $(\mathcal{T}, \mathcal{F})$ has BSP and is stable.

(2) R is a finite direct sum of left \ddot{O} re domains D_i (i = 1, 2, ..., n), each of which has the following properties:

(a) for each two-sided ideal I of D_i , D_i/I is a left perfect ring and $D_i/I \in \mathscr{T}$;

(b) if H is any right ideal of D_i which contains a two-sided ideal, then H is flat and $\operatorname{Tor}_1^{D_i}(D_i/H, E(D_i)) = 0$.

(3) R is a finite direct sum of left Ore domains $D_i(i = 1, 2, ..., n)$, each of which satisfies the following properties:

(i) for each two-sided ideal I of D_i , D_i/I is a left perfect ring and $D_i/I \in \mathscr{T}$;

(ii) each two-sided ideal of D_i is flat as a right module;

(iii) if M is a maximal right ideal of D_i which contains a two-sided ideal, then $\operatorname{Tor}_1^{D_i}(D_i/M, E(D_i)) = 0.$

Proof. (1) \Rightarrow (2). Let *M* be a finitely generated module. By (1) and [17, Lemma 3.2], there exists a left ideal *I* of *R* such that every element of $\mathscr{T}(M)$ has an annihilator of the form $\bigcap_{i=1}^{n} (I : r_i)$, where $r_1, r_2, \ldots, r_n \in R$ and $R/I \in$

 \mathscr{T} . By (* \mathscr{T}) and Lemma 1.7, *I* contains a two-sided ideal *I'* such that $I/I' \in \mathscr{T}$. Hence $I'\mathscr{T}(M) = 0$; so $\mathscr{T}(M)$ has bounded order. By (1) *M* splits. Therefore, $(\mathscr{T}, \mathscr{F})$ has *FGSP* and hence *CSP*.

Thus $\mathscr{T} = \mathscr{G}$ by Corollary 1.6. Moreover, since $(*\mathscr{T})$ holds, it follows from Lemma 1.7 that our definition of *BSP* for \mathscr{G} coincides with the definition for *BSP* given in [8] (in this case). Whenever *R* is a direct sum of rings, then $(\mathscr{G}, \mathscr{N})$ has *BSP* if and only if the Goldie torsion theory for each direct summand has *BSP* (see [15, p. 452]). It now follows from [8, Theorem 5.3] that it is sufficient to show that *R* is a (ring) direct sum of finitely many left Öre domains.

Let $\sum_{\alpha \in \mathscr{A}} Rx_{\alpha}$ be any essential submodule of R with $x_{\alpha} \neq 0$ for each $\alpha \in \mathscr{A}$. By the proof of Lemma 1.3 and by Lemma 1.4, there exist two-sided ideals $\{J_{\alpha}\}_{\alpha \in \mathscr{A}}$ and orthogonal idempotents $\{e_{\alpha}\}_{\alpha \in \mathscr{A}}$ such that $J_{\alpha} \subsetneq Rx_{\alpha} \subseteq Re_{\alpha}$. By [8, Theorem 5.3], $R/\sum_{\alpha \in \mathscr{A}} J_{\alpha}$ is a left perfect ring. Since $\{e_{\beta} + \sum_{\alpha \in \mathscr{A}} J_{\alpha}\}_{\beta \in \mathscr{A}}$ is a set of non-zero orthogonal idempotents in $R/\sum_{\alpha \in \mathscr{A}} J_{\alpha}$, then \mathscr{A} must be a finite set by [1, Theorem P]. Hence $_{R}R$ is finite dimensional.

Let $\oplus \sum_{i=1}^{n} Ry_i$ be a maximal direct sum of nonzero uniform left ideals of R. By Lemma 1.3, there exists a set $\{e_i\}_{i=1}^{n}$ of orthogonal idempotents such that

 $\oplus \sum_{i=1}^{n} Ry_i \subseteq \oplus \sum_{i=1}^{n} Re_i;$

thus $R = \bigoplus \sum_{i=1}^{n} Re_i$ is a ring direct sum by Lemma 1.4. Set $D_i = Re_i$. Since $R \in \mathscr{F}$, then Ry_i is an essential uniform submodule of $Re_i = D_i$; thus D_i must be an integral domain (as $\mathscr{T} = \mathscr{G}$).

(2) \Rightarrow (1). Condition (* \mathscr{T}) and $R \in \mathscr{F}$ imply that the set of essential left ideals has a cofinal subset of two-sided ideals (by Lemma 1.7). Hence our definition of *BSP* for (\mathscr{G}, \mathscr{N}) coincides with that of [8] in this case. From (2) and [8, Theorem 5.3] it follows that the Goldie theory for each D_i has *BSP*, and hence (\mathscr{G}, \mathscr{N}) must have *BSP* (as $R = D_i + D_2 + \ldots + D_n$). Also (\mathscr{G}, \mathscr{N}) is stable. But condition 2(a) and Lemma 1.7 imply that a cyclic module is in \mathscr{G} if and only if it is in \mathscr{T} ; hence $\mathscr{T} = \mathscr{G}$.

 $(2) \Rightarrow (3)$. This is trivial.

(3) \Rightarrow (2). First, we let *H* be a right ideal of *D*, where *D* is any D_i . Assuming that *H* contains a two-sided ideal *T*, we wish to show that (i) and (ii) imply that *H* is a flat right *D*-module. This will be done by transfinite induction. By (i) D/T is left perfect; so we define $K_{\alpha} = H \cap T_{\beta}$ for all $\beta \in \mathscr{A}$. (T_{β} is defined just prior to Lemma 1.10.)

Since $T = T_0 \subseteq K_1 \subseteq T_1$, then Lemma 1.10 and (ii) imply that K_1 is a flat right *D*-module.

Suppose that $\beta = \alpha + 1$ is not a limit ordinal, and suppose $K_{\beta-1}$ is a flat right *D*-module. By Lemma 1.10 and (ii), *K* is a flat right *D*-module whenever *K* is a right ideal such that $T_{\alpha} \subseteq K \subseteq T_{\alpha+1}$. Set $K = K_{\beta} + T_{\alpha} = (H \cap T_{\alpha+1}) + T_{\alpha}$. Then *K* is a flat right *D*-module, and the exact sequence

$$0 \to K_\beta \to K \to K/K_\beta \to 0$$

yields the exact sequence

 $\operatorname{Tor}_{2}{}^{D}(K/K_{\beta}, _) \to \operatorname{Tor}_{1}{}^{D}(K_{\beta}, _) \to \operatorname{Tor}_{1}{}^{D}(K, _) = 0.$

Thus it suffices to show that $\operatorname{Tor}_{2^{R}}(K/K_{\beta}, -) = 0$. Now $K/K_{\beta} \cong ((H \cap T_{\beta}) + T_{\beta-1})/(H \cap T_{\beta}) \cong T_{\beta-1}/(H \cap T_{\beta-1} \cap T_{\beta}) = T_{\beta-1}/(H \cap T_{\beta-1})$. Since $T_{\beta-1}$ is flat by (ii) and since $H \cap T_{\beta-1}$ is flat by our induction hypothesis, then there is an exact sequence

$$0 = \operatorname{Tor}_{2^{D}}(T_{\beta-1}, _) \to \operatorname{Tor}_{2^{D}}(T_{\beta-1}/(H \cap T_{\beta-1}), _)$$

$$\to \operatorname{Tor}_{1^{D}}(H \cap T_{\beta-1}, _) = 0.$$

Hence $\operatorname{Tor}_{2^{D}}(K/K_{\beta}, -) \cong \operatorname{Tor}_{2^{D}}(T_{\beta-1}/(H \cap T_{\beta-1}), -) = 0.$

Let β be a limit ordinal, and assume that K_{α} is a flat right *D*-module for all $\alpha < \beta$. Since $K_{\beta} = H \cap T_{\beta} = \bigcup_{\alpha < \beta} (H \cap T_{\alpha}) = \lim H \cap T_{\alpha}$, then

$$\operatorname{Tor}_{1}^{D}(K_{\beta,-}) = \operatorname{Tor}_{1}^{D}(\varinjlim K_{\alpha,-}) = \varinjlim \operatorname{Tor}_{1}^{D}(K_{\alpha,-}) = 0.$$

Hence K_{β} is a flat right *D*-module.

Since D/T is left perfect, $H = H \cap T_{\beta}$ for some ordinal β ; hence H must be a flat right D-module.

Next, we wish to show that if H is a right ideal of D which contains a twosided ideal T, then (i) and (iii) imply that $\operatorname{Tor}_1^D(D/H, E(D)) = 0$, where Dis any D_i . By (i), D/T is left perfect; so every nonzero homomorphic image of the right D-module D/H has nonzero (right) socle. Moreover each simple right module which appears in the (right) Loewy series for D/H (see [4; 13; 16]) must be annihilated by T; i.e. the annihilator of any element of a simple right module which appears in the Loewy series for D/H must be a maximal right ideal which contains a two-sided ideal. Hence if D/M is a simple right module which appears in the Loewy series for D/H, then $\operatorname{Tor}_1^D(D/M, E(D)) = 0$ by (iii). Since Tor_1^D commutes with direct sums and direct limits, an easy transfinite induction on the (right) Loewy series of D/H shows that $\operatorname{Tor}_1^D(D/H, E(D)) = 0$.

Remarks. (1) The proof of Theorem 1.11 is actually the first time that we needed to use the property that *I* is proper in Rx in condition (* \mathscr{T}). In particular, we needed the "proper" hypothesis to insure that the idempotents $\{e_{\beta} + \sum_{\alpha \in \mathscr{A}} J_{\alpha}\}_{\beta \in \mathscr{A}}$ were all nonzero.

(ii) If R = D[[x]] is the ring of all power series with coefficients in a division ring D, then $(\mathcal{G}, \mathcal{F})$ has BSP and is stable by Theorem 1.11.

(iii) If R is the ring of Example 0.1, then $\mathcal{T}_{\alpha+2} = \mathcal{G}$ by Corollary 1.6 and its subsequent comments. Therefore $\mathcal{T}_{\alpha+2}$ is stable. Since R has no nontrivial idempotent elements and since $R/M \cong T$ is not a left perfect ring, then $(\mathcal{T}_{\alpha+2}, \mathcal{F}_{\alpha+2})$ does not have BSP by Theorem 1.11.

The following corollaries of Theorem 1.11 show that it is very difficult for $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ to have (BSP) unless $\mathcal{T}_{\alpha} = \mathcal{S}$ or *R*-mod.

COROLLARY 1.12. Let R be a left and right duo ring satisfying (*). Let $\alpha \geq 1$ be an ordinal, and suppose that $\mathcal{T}_{\alpha}(R) = 0$. If $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ has BSP and is stable, then $\mathcal{T}_{\alpha} = \mathcal{S} = \mathcal{G}$.

Proof. Since R is a left duo ring, then R satisfies $(*\mathscr{S})$ and hence $(*\mathscr{T}_{\alpha})$. By Theorem 1.11, $R = D_i + D_2 + \ldots + D_n$ (ring direct sum) such that, for each $i = 1, 2, \ldots, n$ and each two-sided ideal K_i of $D_i, D_i/K_i$ is a left perfect ring. Since D_i/K_i is left perfect and R is left and right duo, then D_i/K_i is right perfect; hence $D_i/K_i \in \mathscr{S}$ by [1, Theorem P].

From Corollary 1.6, $\mathcal{T}_{\alpha} = \mathcal{G}$. Let *I* be an essential left ideal of *R*. By Lemma 1.7 there exists a two-sided ideal $I' \subseteq I$ such that $I/I' \in \mathcal{T}_{\alpha} = \mathcal{G}$. Then $I' = \sum_{i=1}^{n} (D_i \cap I')$. Set $K_i = D_i \cap I'$. It follows that

$$R/I' \cong \left(\oplus \sum_{i=1}^{n} D_i \right) \Big/ \left(\oplus \sum_{i=1}^{n} K_i \right) \cong \oplus \sum_{i=1}^{n} D_i / K_i \in \mathscr{S},$$

hence $R/I \in \mathscr{S}$. Therefore, every cyclic module in \mathscr{T}_{α} is \mathscr{S} , so it follows that $\mathscr{T}_{\alpha} = \mathscr{S}$.

COROLLARY 1.13. Let R be a commutative ring. Let $\alpha \geq 1$ be an ordinal, and suppose that $\mathcal{T}_{\alpha}(R) = 0$. If $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ has BSP and is stable, then $\mathcal{T}_{\alpha} = \mathcal{S} = \mathcal{G}$.

COROLLARY 1.14. Let R be a commutative Noetherian ring. Let $\alpha \geq 1$ be an ordinal, and suppose that $\mathcal{T}_{\alpha}(R) = 0$. If $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ has BSP, then $\mathcal{T}_{\alpha} = \mathcal{S} = \mathcal{G}$.

Proof. Since R is commutative and Noetherian, every hereditary torsion theory is stable [14]; so the result follows from Corollary 1.13.

COROLLARY 1.15. Let R be a commutative ring. Let $\alpha \geq 1$ be an ordinal. Then $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ has SP if and only if R is a semiartinian ring.

Proof. This corollary is immediate from Lemma 0.2, [14, Proposition 4.2], Corollary 1.13, and [17, Theorem 5.1].

COROLLARY 1.16. Let R be a ring which has Krull dimension as a right Rmodule. Suppose that $\alpha \geq 1$ is an ordinal, $\mathcal{T}_{\alpha}(R) = 0$, and R satisfies (*) and (* \mathcal{T}_{α}). If $(\mathcal{T}_{\alpha}, \mathcal{F}_{\alpha})$ has BSP and is stable, then $\mathcal{T}_{\alpha} = \mathcal{G} = \mathcal{G}$.

Proof. By Theorem 1.11, $R = D_i + D_2 + \ldots + D_n$ (ring direct sum) such that, for each $i = 1, 2, \ldots, n$ and each two-sided ideal K of $D_i, D_i/K$ is a left perfect ring. Since R_R has Krull dimension; so does $(D_i/K)_R$. But a semi-artinian (right) R-module with Krull dimension is artinian. Therefore, rad (D_i/K) is nilpotent, and hence D_i/K is also right perfect. Thus $D_i/K \in \mathscr{S}$. The Corollary now follows from the same argument used in the second paragraph of the proof of Corollary 1.12.

2. The case $\mathcal{T} = \mathcal{S}$. We begin section two with the following generalization of [15, Theorem 4.3].

THEOREM 2.1. If $\mathscr{G}(R) = 0$ and if R satisfies (*) and (* \mathscr{G}), then the following statements are equivalent.

(1) $(\mathcal{G}, \mathcal{F})$ has CSP.

(2) R is a (ring) direct sum of finitely many left \ddot{O} re domains and $\mathscr{G} = \mathscr{G}$.

Proof. (2) \Rightarrow (1). Let $D = D_1 \dotplus D_2 \dotplus \dots \dashv D_n$ be a ring direct sum. It is known that $\mathscr{G} = \mathscr{S}$ has *CSP* if and only if, for each $i = 1, 2, \dots, n$, the torsion theory induced on D_i -mod by $\mathscr{G} = \mathscr{S}$ has *CSP* (see [15, p. 452]).

Since each D_i is a left Öre domain, then \mathscr{G} induces the classical torsion theory on D_i -mod for each i = 1, 2, ..., n. But then each induced torsion theory has *CSP*.

 $(1) \Rightarrow (2)$. We have $\mathscr{S} = \mathscr{G}$ by Corollary 1.6. Temporarily assume that R is left finite dimensional. Then let $\sum_{i=1}^{n} Rx_i$ be a maximal direct sum of cyclic submodules of R. By Lemma 1.3, there exist orthogonal idempotents e_1, e_2, \ldots, e_n , such that

$$\oplus \sum_{i=1}^{n} Rx_{i} \subseteq \oplus \sum_{i=1}^{n} Re_{i} \subseteq R$$

Since $\oplus \sum_{i=1}^{n} Re_i$ is a direct summand of R, then $\sum_{i=1}^{n} Re_i = R$. Since $R \in \mathscr{F}$ and $\mathscr{S} = \mathscr{G}$, then $(0:x) = \sum_{i \neq j} Re_j$ for any nonzero $x \in Re_i$. Hence each Re_i is an integral domain.

Consequently, it is sufficient to show that R is left finite dimensional. Let $\oplus \sum_{\alpha \in \mathscr{A}} Rx_{\alpha}$ be a direct sum of principal left ideals which is essential in R. By Lemma 1.3, we obtain an infinite set of orthogonal idempotents $\{e_{\alpha}\}_{\alpha \in \mathscr{A}}$ such that $L = \sum_{\alpha \in \mathscr{A}} Re_{\alpha}$ is an essential submodule of R. By Corollary 1.6, $A = R/L \in \mathscr{S}$. Hence rad A is right T-nilpotent; so in A idempotents can be lifted modulo rad A. Let S be a simple module in Soc $(A/\operatorname{rad} A)$. Then S is generated by an idempotent element f' of $A/\operatorname{rad} A$, which can be lifted to an idempotent f'' of A. Let $f \in R$ such that f'' = f + L. Hence for some finite subset \mathscr{C} of \mathscr{A} , $f^2 - f \in \sum_{i \in \mathscr{C}} Re_i$. Let $R' = R/\sum_{i \in \mathscr{C}} Re_i$, and let \mathscr{S}' be the torsion theory for R'-mod which is induced by \mathscr{S} . Then $\mathscr{S}'(R') = 0$, and by Lemma 0.2, R' satisfies $(*\mathscr{S}')$. Hence $(Rf + \sum_{i \in \mathscr{C}} Re_i) \ge 1$ is a two-sided ideal of R' by Lemma 1.4. Thus $Rf + \sum_{i \in \mathscr{C}} Re_i$ is an idempotent two-sided ideal of R; so by (*) there exists an idempotent e such that $Re = Rf + \sum_{i \in \mathscr{C}} Re_i$. Hence (Re + L)/L = (Rf + L)/L and

$$\left[\frac{Rf+L}{L}\right] / \left[\operatorname{Rad} A \cap \frac{Rf+L}{L}\right] \cong \frac{Af'' + \operatorname{rad} A}{\operatorname{rad} A} = Af' = S.$$

Consequently, $Re/(Re \cap L) \cong (Re + L)/L$ has a unique maximal ideal.

Since $R/Re \in \mathscr{F}$ and $R/Re_{\alpha} \in \mathscr{F}$ for $\alpha \in \mathscr{A}$, then $R/(Re \cap Re_{\alpha}) \in \mathscr{F}$ for $\alpha \in \mathscr{A}$. Hence by Theorem 1.5, there exist orthogonal idempotents $\{h_{\alpha}\}_{\alpha \in \mathscr{A}}$ such that $Rh_{\alpha} = Re \cap Re_{\alpha}$. If $B = \{\alpha \in \mathscr{A} | h_{\alpha} \neq 0\}$ were finite, then

$$0 \neq Re/(Re \cap L) = Re/\sum_{\alpha \in \mathscr{A}} Rh_{\alpha}$$

is a direct summand of $Re \in \mathscr{F}$. But $Re/(Re \cap L) \in \mathscr{S}$, which gives a contradiction. Hence B must be infinite. We partition B into disjoint infinite sets Δ and Γ , each with infinite cardinality. Choose $M \subseteq Re$ maximal with respect to

$$M \cap \sum_{\alpha \in \Delta} Rh_{\alpha} = 0$$

and

$$M\supseteq\sum_{\alpha\in\Gamma}Rh_{lpha}$$

Then $R/M \in \mathscr{F}$; so M is a (ring) direct summand of R (and Re) by Theorem 1.5. Let $Re = M \oplus N$. Since M and N are finitely generated left R-modules, then $M \not\subseteq L$ and $N \not\subseteq L$. Since M and N are generated by orthogonal idempotents, we obtain the non-trivial ring direct sum

$$(Re + L)/L = ((M + L)/L) \oplus ((N + L)/L).$$

This direct sum forces a contradiction to the fact that (Re + L)/L has a unique maximal (left) ideal.

Example 2.2. Let F be a field, and let ϕ be an automorphism of F. Extend ϕ to F[x] by $\phi(x) = x$. Let D be the quotient field of F[x]. Let

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \middle| a \in F[x], b \in D \right\}$$

with addition given coordinatewise (in the usual way) and multiplication defined by the rule

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \begin{bmatrix} c & d \\ 0 & c \end{bmatrix} = \begin{bmatrix} ac & \phi(a) \cdot d + bc \\ 0 & ac \end{bmatrix}$$

Then *R* is a ring. (We note that *R* is commutative if and only if ϕ is the identity map if and only if the multiplication above is the usual matrix multiplication!) We observe that

rad
$$R = \left\{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \middle| b \in D \right\}$$
, and $(\operatorname{rad} R)^2 = 0$.

The reader can now verify the following statements.

(1) If $y \in R$ and $y \notin rad R$, then $Ry \supseteq rad R$.

(2) If $I^2 = I \neq 0$, then $I \not\subseteq \operatorname{rad} R$; so $I/\operatorname{rad} R$ is an idempotent ideal of $R/\operatorname{rad} R$. Since $R/\operatorname{rad} R$ is (ring) isomorphic to F[x], then $I/\operatorname{rad} R = R/\operatorname{rad} R$; so R satisfies (*).

(3) If $y \in R$ - rad R, then by (1) we may choose a two-sided ideal K maximal with respect to rad $R \subseteq K$ and $y \notin K$. Then $Ry/K \in \mathscr{S}$ (as R/rad R is isomorphic to F[x]).

(4) Any left ideal contained in rad R is two-sided. Thus if $y \in rad R$ and

if K is a left ideal chosen such that $K \subseteq Ry$ and K is maximal with respect to $y \notin K$, then K is a two-sided ideal and $Ry/K \in \mathscr{S}$.

- (5) Combining (3) and (4), we see that R satisfies $(*\mathcal{T})$.
- (6) $\mathscr{G}(R/\operatorname{rad} R) = 0$, and rad R is not a direct summand of R.

(7) Since $\mathscr{S}(R) = 0$, Theorem 2.1 implies that R does not have CSP.

Example 2.3. Let D' be a subdivision ring of the division ring D. Let R be the subring of the power series ring D[[x]] consisting of those series whose constant term is in D'; i.e.

$$R = \left\{ d' + \sum_{i=1}^{\infty} d_i x^i | d' \in D', d_i \in D \right\}.$$

The reader can verify the following statements.

(1) R is an integral domain; so $\mathscr{S}(R) = 0$.

(2) If $d' + \sum_{i=1}^{\infty} d_i x^i \in R$ and $d' \neq 0$, then, by solving coefficient equations of x^i in the usual way, $d' + \sum_{i=1}^{\infty} d_i x^i$ has an inverse in R.

(3) The left ideal M generated by $\{dx|d \in D\}$ is the unique maximal left ideal of R. M is a two-sided ideal.

(4) Every principal left ideal contains a power of M; hence (* \mathscr{S}) holds for R.

(5) R contains no nontrivial idempotent ideals by a "least degree" argument; so (*) holds for R.

(6) Therefore Theorem 2.1 applies to show that $(\mathcal{G}, \mathcal{F})$ has CSP.

(7) We also note that D is (left) Noetherian and has Krull dimension if and only if D is a finite dimensional vector space over D'.

In view of [1, Theorem P], Theorem 1.11 becomes the following generalization of [15, Corollary 4.5] whenever $\mathscr{T} = \mathscr{S}$.

THEOREM 2.4. Let $\mathscr{G}(R) = 0$, and suppose that R satisfies (*) and (* \mathscr{G}). Then the following statements are equivalent.

(1) $(\mathcal{G}, \mathcal{F})$ has BSP and is stable.

(2) R is a finite direct sum of left \ddot{O} re domains D_i (i = 1, 2, ..., n), each of which satisfies the following properties:

- (i) for each two-sided ideal I of D_i , D_i/I is a left and right perfect ring.
- (ii) each two-sided ideal of D_i is flat as a right module.
- (iii) if M is a maximal right ideal of D_i which contains a two-sided ideal, then $\operatorname{Tor}_1^{D_i}(D_i/M, E(D_i)) = 0$.

COROLLARY 2.5. Let R be a left duo von Neumann regular ring. Then $(\mathcal{S}, \mathcal{F})$ has BSP and is stable if and only if R is a left semiartinian ring.

Proof. The "if" part is trivial. The "only if" part follows from Lemma 0.2 and Theorem 2.4 (as a regular integral domain is a division ring).

In order to prove our main result on SP for $(\mathcal{S}, \mathcal{F})$, we need the following result of Gorbachuk.

PROPOSITION 2.6 [9, Theorem 2]. Let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory.

Then $(\mathcal{T}, \mathcal{F})$ does not have SP provided that there exists a sequence P_1, P_2, \ldots of left ideals of R satisfying the following properties:

(i) $R/P_n \in \mathscr{T}$ for $n = 1, 2, \ldots$;

(ii) $R/(\bigcap_{n=1}^{\infty} P_n) \notin \mathscr{T};$

(iii) for each n = 1, 2, ..., there exists an integer m(n) and a $p_n \in P_n$ such that p_n has zero as its left annihilator and

 $P_{n+1}p_1p_2\ldots p_n \supseteq p_1p_2\ldots p_{m(n)}R.$

We now can state a generalization of the main results of [3; 5] and the characterization of (SP) for $(\mathcal{S}, \mathcal{F})$ given for commutative rings in [15] and [17].

THEOREM 2.7. Suppose that R satisfies (*) and (* \mathscr{S}). Then (\mathscr{S}, \mathscr{F}) has SP if and only if R is a left semiartinian ring.

Proof. The "if" part is trivial. "Only if": Since R has (*) and (* \mathscr{S}) and (\mathscr{S} , \mathscr{F}) has SP, then, by passing to the ring $R/\mathscr{S}(R)$ and applying Lemma 0.2, we may assume that $\mathscr{S}(R) = 0$. By Theorem 2.4 and Lemma 0.2, we may assume that R is a left Öre domain such that (a) R/I is a left and right perfect ring for all nonzero two-sided ideals I of R and (b) R satisfies (*) and (* \mathscr{S}).

Suppose that d is a nonzero element of R and that d does not have a left inverse. Then

 $Rd \supseteq Rd^2 \supseteq Rd^3 \supseteq \ldots$

Let $K = \bigcap_{n=1}^{\infty} Rd^n$. If $K \neq 0$, there exists a nonzero, two-sided ideal $H \subseteq K$ by (* \mathscr{S}). Thus the set $\{Rd^n/H\}$ is an infinite descending chain of principal left ideals of R/H. But R/H is right perfect, and hence R/H can have no infinite descending chain of principal left ideals by [1, Theorem P]. This contradiction forces K to be 0.

Consequently, Gorbachuk's result (Proposition 2.6) will imply a contradiction to the hypothesis, $(\mathcal{G}, \mathcal{F})$ has SP, provided that we can construct a sequence of (left) ideals P_n and a sequence of nonzero elements p_n such that

(i) $R/P_n \in \mathscr{S}$,

(ii) $\bigcap_{n=1}^{\infty} P_n = 0$,

(iii) $p_n \in P_n$, and

(iv) $P_{n+1}p_1p_2\ldots p_n \supseteq p_1p_2\ldots p_{n+2}R$.

To do this, we proceed inductively to define $p_n \in P_n \subseteq Rd^n$.

By $(*\mathcal{T})$ there exists a two sided ideal $T \subsetneq Rd$. Since $R \in \mathcal{F}$, $T \neq 0$. Since R/T is right perfect, $R/T \in \mathcal{S}$. Set $P_1 = T$, and let p_1 be any nonzero element of P_1 .

Now suppose that $p_{k-1} \in P_{k-1} \subseteq Rd^{k-1}$ has been defined appropriately. Let

 $0 \neq x \in Rd^k \cap P_{k-1}p_1p_2 \dots p_{k-2},$

which is possible since R is a left Ore domain. (In case $k = 2, p_0 = 1$.) By (* \mathscr{T}) there exists a two sided ideal $T' \subsetneq Rx$. Since R/T' is right perfect,

 $R/T' \in \mathscr{S}$. Since $R \in \mathscr{F}$, $T' \neq 0$. Set $P_k = T'$, and let p_k be any nonzero element of P_k . Since P_k is two-sided, then $p_1 p_2 \dots p_k R \subseteq P_k \subset Rx \subseteq P_{k-1} p_1 p_2 \dots p_{k-2}$. Moreover,

$$\bigcap_{n=1}^{\infty} P_n \subseteq \bigcap_{n=1}^{\infty} Rd^n = K = 0;$$

so we have constructed the desired sequence.

The following corollary may be viewed as a generalization of [5, Theorem 3.9].

COROLLARY 2.8. Let R be a von Neumann regular, left duo ring. Then $(\mathcal{G}, \mathcal{F})$ has SP if and only if R is a left semiartinian ring.

We now give an example of a ring R such that $(\mathcal{G}, \mathcal{F})$ can be tested for SP by Theorem 2.7, and R does not satisfy the hypothesis of any other theorem on SP.

Example 2.9. For each integer $m \ge 2$, let m^* denote the least prime factor of m. Let A_m be the algebraic closure of the field $Z/(m^*)$, where Z denotes the integers. Then A_m has an automorphism ϕ_m defined by $\phi_m(a) = a^{m^*}$ for each $a \in A_m$. Set

$$P_m = \left\{ \sum_{i=1}^{\infty} a_{m\,i} x_m^{\ i} | a_{m\,i} \in A_m \right\}.$$

Then elements of P_m can be added in the obvious way and multiplied as power series subject to the twisting rule, $xa = \phi_m(a) x$ for all $a \in A_m$, and its consequences. Now define

$$R = \{c + \pi_{m_1} + \pi_{m_2} + \ldots + \pi_{m_n} | c \in \mathbb{Z}, \pi_{m_i} \in P_{m_i}\},\$$

where the m_i range over the integers ≥ 2 . Again elements of R can be added in the obvious way. Define multiplication for R by the following rules and their consequences:

- (i) $\pi_{m_i}\pi_{m_j} = 0$ for $\pi_{m_i} \in P_{m_i}, \pi_{m_j} \in P_{m_j}, m_i \neq m_j$;
- (ii) for $c \in Z$ and $\pi_{m_i} \in P_{m_i}$, $c\pi_{m_i} = (c + (m_i^*)) \pi_{m_i}$ and $\pi_{m_i}c = \pi_{m_i}$ $(c + (m_i^*))$, where the multiplication on the right side of each equation is the multiplication of P_{m_i} ;

(iii) any two elements of R in P_{m_i} multiply as elements of P_{m_i} .

Then *R* is a ring.

Let X be the ideal of R defined by $X = P_2 + P_3 + P_4 + \ldots$ If I is an ideal of R contained in X, it follows easily (by considering the term of least degree that can appear a member of I) that $I = I^2$ implies I = 0. If $J^2 = J$ and $J \not\subseteq X$, then (J + X)/X is an idempotent (left) ideal of R/X. Since R/X is (ring) isomorphic to Z, then J + X = R. Hence J contains an element

of the form

 $\pm 1 + \pi_{m_1} + \pi_{m_2} + \ldots + \pi_{m_n}$

where $\pi_{m_i} \in P_i$. But by the method of comparing coefficients of twisted power series, it is straightforward to construct an inverse of this element. Thus $1 \in J$; so J = R. Therefore, R satisfies (*).

Since R/X is ring isomorphic to Z, then R is not local; so the results of [17, Section 3] cannot be applied to R. Also, if $c \neq 1$ and $c + \pi_{m_1} + \pi_{m_2} + \ldots + \pi_{m_n} \in R$, then choose a prime number p and positive integer k such that p divides c and $p^k > \max{m_1, m_2, \ldots, m_n}$. Hence

$$x_{p^k}(c + \pi_{m_1} + \ldots + \pi_{m_n}) = 0 = (c + \pi_{m_1} + \ldots + \pi_{m_n})x_{p^k}$$

From this fact and an argument in the previous paragraph, it follows that every element of R with zero left or right annihilator is invertible. Thus R does not satisfy the hypotheses of [9, Theorem 2 or 3].

If $0 \neq r \in R$, then there exists an integer m such that $0 \neq x_m r \in P_m$. Hence Rx_m^2r is a proper nonzero submodule of Rr. Therefore, soc R = 0. But then, if $R/I \in \mathscr{S}$, $I \cap Rx_n \neq 0$ for every $n \geq 2$. Let $k \in Z$ such that (Rk + X)/X = (I + X)/X. If $I \neq R$, then we may assume $k \geq 2$; so, for each $j = 1, 2, \ldots$, there must be a generator of I of the form

$$sk + \pi_{m_1} + \ldots + \pi_{m_e} + \pi_{(k^*)j} + \pi_{m_f} + \ldots + \pi_{m_n},$$

where $s \in Z$, $\pi_{m_i} \in P_{m_i}$, and $0 \neq \pi_k \in P_{(k^*)^j}$. Hence *I* cannot be finitely generated as a left ideal. Thus *R* does not satisfy the hypothesis of [**16**, Theorem 3.5].

Since soc R = 0, we can apply Theorem 2.7 to show that R does not split, provided that R satisfies (* \mathscr{G}). Let

$$r = a + \sum_{i=1}^{\infty} a_{m_1i} x_{m_1}^{i} + \sum_{i=1}^{\infty} a_{m_2i} x_{m_2}^{i} + \ldots + \sum_{i=1}^{\infty} a_{m_ni} x_{m_n}^{i} \in R,$$

where $a \in Z$ and $\sum_{i=1}^{\infty} a_{m_j} i x_{m_j}^{i} \in P_j$ for $j = 2, 3, \ldots, n$. We wish to find a two-sided ideal *T* properly contained in *Rr* such that $Rr/T \in \mathscr{S}$. If $a = \pm 1$, *r* is invertible; so we assume that $a \neq \pm 1$. If $a \neq 0$, set

$$H = \sum \{P_k | k^* \text{ relatively prime to } a\};$$

if a = 0, set H = 0. For each m_j^* which divides a, let t_j be the least positive integer t such that $a_{m_j t} \neq 0$. Then some laborious computation shows that $T = Ra^2 + H + P_{m_1}{}^{t_1} + P_{m_2}{}^{t_2} + \ldots + P_{m_n}{}^{t_n}$ is the desired two-sided ideal of R.

In fact, since 1 and 0 are the only idempotent elements of R, $(\mathcal{S}, \mathcal{F})$ does not even have CSP for R-mod by Theorem 2.1.

References

1. H. Bass, Finitistic homological dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.

- 2. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
- 3. Noetherian splitting rings are Artinian, J. London Math. Soc. 42 (1967), 732-736.
- 4. L. Fuchs, Torsion preradicals and ascending Loewy series of modules, J. Reine Angew. Math. 239/240 (1969), 169–179.
- 5. J. D. Fuelberth, On commutative splitting rings, Proc. London Math. Soc. 20 (1970), 393-408.
- 6. J. D. Fuelberth and M. L. Teply, The singular submodule of a finitely generated module splits off, Pacific J. Math. 40 (1972), 73-82.
- 7. J. S. Golan, On the torsion-theoretic spectrum of a non-commutative ring (preprint, 1973).
- 8. K. R. Goodearl, Singular torsion and the splitting properties, Mem. Amer. Math. Soc. 124 (1972).
- E. L. Gorbachuk, Splitting torsion and pretorsion in the category of right Λ-modules, Mat. Zametki 2 (1967), 681-688.
- 10. R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133 (1973).
- 11. I. Kaplansky, Projective modules, Ann. of Math. 68 (1958), 372-377.
- J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Mathematics 177 (Springer-Verlag, Berlin, 1971).
- 13. T. S. Shores, The Structure of Loewy modules, J. Reine Agnew. Math. 254 (1972), 204-220.
- 14. B. Stenström, *Rings and modules of quotients*, Lecture Notes in Mathematics 237 (Springer-Verlag, Berlin, 1971).
- 15. M. L. Teply, The torsion submodule of a cyclic module splits off, Can. J. Math 24 (1972), 450-464.
- On non-commutative splitting rings, J. London Math. Soc. 4 (1971), 157-164. (See also Corrigendum in J. London Math. Soc. 6 (1973), 267-268.)
- M. L. Teply and J. D. Fuelberth, The torsion submodule splits off, Math. Ann. 188 (1970), 270-284.

University of Florida, Gainesville, Florida