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Real multiplication through explicit correspondences

Abhinav Kumar and Ronen E. Mukamel

Abstract

We compute equations for real multiplication on the divisor classes of genus-2 curves via algebraic
correspondences. We do so by implementing van Wamelen’s method for computing equations for
endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular
surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal
family for the Hilbert modular surface of discriminant 5 and use our equations to prove a
conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.

1. Introduction

Abelian varieties, their endomorphisms and their moduli spaces play a central role in modern
algebraic geometry and number theory. Their study has important applications in a broad
array of fields, including cryptography, dynamics, geometry, and mathematical physics. Of
particular importance are the abelian varieties with extra endomorphisms (other than those in
Z). In dimension 1, elliptic curves with complex multiplication have been studied extensively.
In this paper, we focus on curves of genus 2 whose Jacobians have real multiplication by a real
quadratic ring O.

For such a curve C over a number field K, we use the ideas from van Wamelen’s work [18–20]
to explicitly compute the action of real multiplication by O on the divisors of C. In particular,
we determine equations for an algebraic correspondence on C, that is, a curve Z with two maps
φ, ψ : Z → C such that the induced endomorphism T = ψ∗ ◦ φ∗ of Jac(C) generates O. The
discovery of the correspondence Z uses floating-point calculations on the analytic Jacobian
Jac(C) ⊗ C. We then rigorously certify the real multiplication of O on Jac(C) by computing
the action of T on 1-forms using exact arithmetic in K, or a small degree extension of K.
Combined with standard equations for the group law on Jac(C), our techniques immediately
lead to an algebraic description the action of O on degree-0 divisors of C.

This paper completes a research program initiated in [4, 11]. Let Mg,n denote the moduli
space of smooth genus-g curves with n marked points, and, for each totally real order O, let
Mg,n(O) denote the locus of curves whose Jacobians admit real multiplication by O. The
paper [4] describes a method for parametrizing the Humbert surface M2(O) = M2,0(O)
for real quadratic O as well as its double cover, the Hilbert modular surface Y (O). It also
carries out the computation for O = OK , the ring of integers of every real quadratic field
K of discriminant less than 100, producing equations for the corresponding Hilbert modular
surfaces. The paper [11] describes a method for computing the action of O on the 1-forms of
curves inM2(O), and uses it in particular to compute algebraic models for Teichmüller curves
M2. Using these techniques, one can furnish equations defining curves C ∈M2(O), rigorously
prove that Jac(C) admits real multiplication by O, and rigorously compute the action of O on
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the 1-forms of C. In this paper we solve the problem of describing the action of O on Jac(C)
as algebraic morphisms by computing the action on the divisors of C.

Example for discriminant 5. To demonstrate our method, consider the genus-2 curve

C : u2 = t5 − t4 + t3 + t2 − 2t+ 1. (1.1)

Equation (1.1) was obtained from the equations in [4]. Using the methods of this paper, we
can formulate and prove the following theorem.

Theorem 1. Let φ : Z → C be the degree-2 cover of C in equation (1.1) defined by

t2x2 − x− t+ 1 = 0.

The curve Z is of genus 6 and admits an additional map ψ : Z → C of degree 2. The induced
endomorphism T = ψ∗ ◦ φ∗ of Jac(C) is self-adjoint with respect to the Rosati involution,
satisfies T 2 − T − 1 = 0, and generates real multiplication by O5.

In § 5 we give several other examples of correspondences on particular genus-2 curves of
varying complexity. In § 6, we describe how to implement our method in families and compute
a correspondence for the entire Hilbert modular surface Y (O5).

Divisor classes supported at eigenform zeros. In the universal† Jacobian over the space
Mg,n(O), there is a natural class of multisection obtained from O-linear combinations of
divisor classes supported at eigenform zeros and marked points. Filip recently showed that such
divisors play a pivotal role in the behavior of geodesics in moduli space [6]. As an application
of our equations for real multiplication, we prove a theorem about such divisors overM2,1(O5)
and prove a conjecture of Wright on dynamics over the moduli space of curves.

In the universal Jacobian overM2,1(O5), let L be the multisection whose values at the curve
C marked at P ∈ C are divisors of the form

(P − Z1)− T · (Z2 − Z1) ∈ Jac(C) (1.2)

where T is a Rosati invariant endomorphism of Jac(C) satisfying T 2 − T − 1 = 0 and Z1 and
Z2 are the zeros of a T -eigenform ω on C. The various choices of endomorphism T , eigenform
ω, and ordering of the zeros of ω give four points in Jac(C) for generic (C,P ) ∈ M2,1(O5).
The vanishing of L defines a closed subvariety of M2,1(O5):

M2,1(O5;L) =

{
(C,P ) ∈M2,1(O5) :

some branch of L
vanishes at (C,P )

}
. (1.3)

One might expectM2,1(O5;L) to be a curve in the 3-foldM2,1(O5) since the relative dimension
of the universal Jacobian is 2. We use our equations for real multiplication to show that
M2,1(O5;L) is unexpectedly large.

Theorem 2. The space M2,1(O5;L) is an irreducible surface in M2,1.

To relate Theorem 2 to dynamics, recall that Mg,n carries a Teichmüller metric and that
every vector tangent toMg,n generates a complex geodesic, that is, a holomorphic immersion
H→Mg,n which is a local isometry. McMullen proved that the locusM2(O) is the closure of

†Technically, it would be more accurate to use the term ‘universal’ to describe the family over the stack
whose underlying coarse moduli space is the Hilbert modular surface. However, we will indulge in this mild
abuse of terminology throughout this paper.
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a complex geodesic in the moduli spaceM2 of unmarked genus-2 curves for each real quadratic
O [12]. A corollary of Theorem 2 shows that M2,1(O5;L) enjoys the same property.

Theorem 3. There is a complex geodesic f : H→M2,1 with f(H) =M2,1(O5;L).

In other words, there is a dynamically natural way to choose finitely many points on each
curve in M2(O5). This was originally conjectured by Wright, and will be proven by other
means in the forthcoming paper [5].

By Filip’s characterization of the behavior of complex geodesics in moduli space [6], every
complex geodesic is dense in a subvariety of Mg,n(O) characterized by O-linear relations
among divisor classes supported at eigenform zeros and marked points. Theorem 3 is the first
example of such a subvariety where a relation involving a ring strictly larger than Z appears.

Prior work on equations for real multiplication. Several authors [7, 8, 14, 15, 21, 22]
have given geometric descriptions of real multiplication based on Humbert’s work on Poncelet
configurations of conics [9, 10, 17]. Our work combines explicit examples or families of genus-2
curves (obtained from the equations for Hilbert modular surfaces computed in [4]) with the
method of van Wamelen outlined in [19, § 3]. The latter uses high-precision numerical sampling
on the Jacobian and subsequent linear algebra to find explicit algebraic descriptions of isogenies
for Jacobians of genus-2 curves. We describe the isogenies through correspondences; see [16]
for other examples of equations for real multiplication obtained through correspondences.
Furthermore, we address the challenge of computing correspondences in families, thereby giving
a description of real multiplication for the universal abelian surface over a Hilbert modular
surface.

Outline. In § 2 we recall some basic facts about Jacobians of curves, their endomorphisms
and correspondences. In § 3 we describe our method for finding the equations of a
correspondence associated to a Jacobian endomorphism. In § 4 we describe how to compute
the induced action on 1-forms and thereby certify the equations obtained by the method in
§ 3. In § 5 we give several examples of varying complexity of explicit correspondences. In § 6 we
address challenges to implementing our algorithm in families, and describe a correspondence
for the entire Hilbert modular surface for discriminant 5. In § 7 we discuss the applications to
dynamics and prove Theorems 2 and 3.

Computer files. Auxiliary files containing computer code to verify the calculations in this
paper are available from http://arxiv.org/abs/1602.01924. To access these, download the
source file for the paper. It is a tar archive, which can be extracted to produce not only
the LATEX file for this paper, but also the computer code. The text file README.txt gives a
brief guide to the various auxiliary files.

2. Background

In this section we recall some general facts about curves, their Jacobians and algebraic
correspondences. We will work over the complex numbers. The basic reference for this section
is [1].

Jacobians. Let C be a smooth projective curve of genus g over C. The holomorphic 1-
forms on C form a g-dimensional vector space Ω(X). Integration gives rise to an embedding
H1(C,Z)→ Ω(C)∗ and the image of this embedding is a lattice. The quotient

Jac(C) = Ω(C)∗/H1(C,Z)
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is a compact, complex torus called the Jacobian of C. The symplectic intersection form on
H1(C,Z) induces a principal polarization on the torus Jac(C) (that is, an isomorphism of this
abelian variety with its dual).

The Abel–Jacobi map. Let Pic0(C) denote the group of degree-0 divisors on C up to linear
equivalence. Integration gives rise to an isomorphism of groups

AJ : Pic0(C)→ Jac(C).

This is the Abel–Jacobi map. When Pic0(C) is thought of as the complex points of the Picard
variety of C, this map is an isomorphism of abelian varieties over C.

The theta divisor. Choosing a base point P0 ∈ C allows us to define a birational map ξ
from the gth symmetric power of C to Pic0(C) via the formula

ξ({P1, . . . , Pg}) =

(∑
i

Pi

)
− gP0.

The divisor {S ∈ Symg(C) : P0 ∈ S} gives rise to a divisor Θ on Jac(C) called the theta
divisor.

Pullback and pushforward. Now consider a holomorphic map ψ : Z → C between curves.
The map ψ induces a map Ω(C)→ Ω(Z) whose dual covers a holomorphic homomorphism

ψ∗ : Jac(Z)→ Jac(C).

Under the identification of Jacobians with degree-0 divisors via the Abel–Jacobi map, ψ∗
corresponds to the pushforward of divisors, that is,

ψ∗

(∑
i

Pi −
∑
i

Qi

)
=
∑
i

ψ(Pi)−
∑
i

ψ(Qi). (2.1)

We call ψ∗ the pushforward map. The map ψ also induces a pullback map

ψ∗ : Jac(C)→ Jac(Z)

obtained as the dual map to ψ∗ by identifying the Jacobians of C and Z with their
corresponding duals via their principal polarizations. For non-constant ψ, we can obtain ψ∗ at
the level of divisors by summing along fibers, that is,

ψ∗
(∑

i

Pi −
∑
i

Qi

)
=
∑
i

ψ−1(Pi)−
∑
i

ψ−1(Qi), (2.2)

while for a constant map ψ∗ = 0. The composition ψ∗ ◦ ψ∗ is the multiplication by deg(ψ)
map on Jac(C).

Correspondences. A correspondence Z on C is a holomorphic curve in C × C. Fix a
correspondence Z on C and let φ = π1 and ψ = π2 be the the two projection maps from
Z to C. The correspondence Z gives rise to an endomorphism of Jac(C) via the formula
T = ψ∗ ◦ φ∗. From equations (2.1) and (2.2), we see that T acts on divisors of the form P −Q
by the formula

T (P −Q) = ψ(φ−1(P ))− ψ(φ−1(Q)). (2.3)

Such divisors generate Pic0(C), so equation (2.3) determines the action of T on Pic0(C).
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Conversely, every endomorphism T of the Jacobian endomorphism arises via a correspon-
dence. To see this, we embed C in Jac(C) via the map P 7→ P −P0 (note that when the genus
of C is 2, the resulting cycle is just the theta divisor Θ). Since the image of C under this
embedding generates the group Jac(C), the restriction of T to C determines T . This map T |C
is a C-valued point of Jac(C) ∼= Pic0

C , and by the functorial property of the Picard variety,
it corresponds to a line bundle L on C × C, whose fibers L|C×P are all of degree 0. Then
we can take Z to be an effective divisor corresponding to the line bundle L ⊗ π∗1(OC(gP0)).
Concretely, the intersection of Z with P × C consists of points (P,Qi) with Q1, . . . , Qg ∈ C
satisfying T · (P − P0) =

∑
iQi − gP0. Using this fact, it is easily checked that the two

constructions are inverse to each other.

3. Computing equations for correspondences

In this section we describe our method for discovering correspondences. The methods
in this section are numerical and rely on floating point approximation. Nonetheless, the
correspondences we obtain are presented by equations with exact coefficients lying in a number
field. In § 4 we will describe how to certify these equations using only rigorous integer arithmetic
in number fields to prove theorems about real multiplication on genus-2 Jacobians.

Setup. Our starting point is a fixed curve C of genus 2 known to have a Jacobian
endomorphism T generating real multiplication by the real quadratic order OD of discriminant
D. Such curves can be supplied by the methods in [4]. We assume that C and T are defined
over a number field K and that C is presented as a hyperelliptic curve

C : u2 = h(t) with h ∈ K[t] monic, deg(h) = 5. (3.1)

We fix an embedding K ⊂ C so that we can change base to C and work with the analytic
curve Can and the analytic Jacobian Jan = Jac(Can). For simplicity we have assumed in this
section that h is monic of degree 5 so that C has a K-rational Weierstrass point P0 at infinity.
We discuss below how to handle the sextic case (see Remark 13).

Analytic Jacobians in Magma. The computer system Magma has several useful functions
for working with analytic Jacobians and their endomorphisms, implemented by van Wamelen.
An excellent introduction may be found in [19], and extensive documentation is available in
the Magma handbook [2]. The relevant functions for us are as follows.

(a) AnalyticJacobian (see also BigPeriodMatrix): computes the periods of dt/u and t dt/u in
Ω(C), yielding a numerical approximation to the period matrix Π(Can) and a model for
the analytic Jacobian Jan = C2/Π(Can) · Z4.

(b) EndomorphismRing: computes generators for the endomorphism ring of Jan. Each
endomorphism T an is presented as a pair of matrices T an

Ω ∈ M2(C) and T an
Z ∈ M4(Z)

satisfying Π(Can) · TZ = TΩ ·Π(Can) (up to floating point precision).
(c) ToAnalyticJacobian: computes the Abel–Jacobi map by numerical integration.
(d) FromAnalyticJacobian: computes the inverse of the Abel–Jacobi map using theta

functions.

Discovering correspondences. We compute equations defining the correspondence Z on C
associated to T as follows.

(1) Compute the analytic Jacobian Jan and an endomorphism T an generating real
multiplication.

(2) Choose low height points Pi = (ti, ui) ∈ Can with ti ∈ K.
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(3) For each i, numerically compute points Ri = (t(Ri), u(Ri)) and Qi = (t(Qi), u(Qi)) in
Can such that

AJ(Qi +Ri − 2P0) = T an · (AJ(P − P0)).

(4) For each i, compute the exact coefficients of the polynomial Fi(x) = (x−t(Qi))(x−t(Ri))
in K[x] using LLL.

(5) Interpolate to determine a polynomial F ∈ K(t)[x] which specializes to Fi at t = t(Pi)
and let Z be the degree-2 cover defined by F , that is, with

K(Z) = K(C)[x]/(F ). (3.2)

To realize Z as a divisor in C × C, we need to compute a square root for h(x) in K(Z). For
small examples, this can be done by working in the function field of Z. In general, we revisit
steps (3) and (4) and do the following.

(6) For each i, determine u(Qi) as a K-linear combination of u(Pi) and u(Pi)t(Qi).
(7) Interpolate to determine a rational function y ∈ K(Z) which is a K(t)-linear combination

of u and ux and equals u(Qi) when specialized to (t, u, x) = (t(Pi), u(Pi), t(Qi)).

Remark 4. Typically we use AnalyticJacobian and EndomorphismRing to carry out step (1),
and ToAnalyticJacobian and FromAnalyticJacobian to carry out step (3). The remainder of the
algorithm requires only the matrix T an

Ω (and not T an
Z ) which could also be obtained using the

algorithm in [11] rather than EndomorphismRing.

Remark 5. We do not carry out a detailed analysis of the floating point precision needed or
the running time of our algorithm. We remark that 400 digits of precision were sufficient for the
examples in this paper and that the machine used to perform the computations in this paper
(4 GHz, 32 GB RAM) completed the entire sampling and interpolation process for individual
correspondences in minutes. For our most complicated example, presented in Theorem 12,
CPU time was under 2 minutes.

To be able to carry out these steps, we need a large supply of sample points, and sufficient
precision. As far as Z is concerned the number of sample points needed for interpolation to
find the equation of Z, we closely follow the argument of [18, § 3]. There it is observed that the
coefficients of F (which are x1 +x2 and x1x2 in the notation of [18]) are rational functions in t
and have degrees which are bounded by the intersection number of α(Θ) and 2Θ. In our case,
this equals trQ(

√
D)/Q(α2). Consequently, we choose α ∈ OD for which the trace is minimized:

α = ±
√
D/2 if D is even, and α = (±1±

√
D)/2 if D is odd. In practice, since the degrees of

the functions involved may be quite a bit smaller than the upper bound, it is more efficient in
terms of both time and computer memory to choose a small sample size and attempt to see if
the computation of Z succeeds.

Remark 6. From the equations for Z and the maps φ, ψ to C, we can compute the action
of T on divisors of the form P −Q using equation (2.3). We can then use standard equations
[3] for the group law on Jac(C) to extend this formula to arbitrary divisor classes of degree 0.
Similarly, we can compute the algebraic action of an arbitrary element m+ nT ∈ Z[T ] of the
real quadratic order using formulas for the group law.

Example. We conclude this section with an example for discriminant 5. Let K = Q and
let C be the genus-2 curve defined by

C : u2 = h(t) where h(t) = t5 − t4 + t3 + t2 − 2t+ 1. (3.3)

The Jacobian of C corresponds to the point (g, h) = (− 8
3 ,

47
2 ) in the model computed in [4] for

the Hilbert modular surface Y (O5) parametrizing principally polarized abelian surfaces with
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an action of O5. By the method outlined above, we discover that the degree-2 branched cover
f : Z → C defined by

F (x) = 0 where F (x) = t2x2 − x− t+ 1 ∈ K(C)[x] (3.4)

is a correspondence associated to real multiplication by O5. In fact, setting

y =
1

t3
u− t+ 1

t3
ux ∈ K(Z), (3.5)

we find that y is a square root of h(x) in K(Z), and the map ψ(t, u, x) = (x, y) defines a
second map Z → C. In § 4 we will prove that T = ψ∗ ◦ φ∗ generates real multiplication by
O5, thereby certifying these equations for Z. We note here that the degree of ψ is 2 since,
fixing x, there are two choices for t satisfying equation (3.4), and u is determined by (x, y, t)
by equation (3.5). The curve Z has genus 6, as can be readily computed in Magma or Maple.

Remark 7. It would be interesting to use the tools in this paper to study the geometry
of correspondences over Hilbert modular surfaces. In particular, one might explore how the
geometry of Z varies with C and T , and how Z specializes at curves C lying on arithmetically
and dynamically interesting loci such as Teichmüller curves and Shimura curves. For instance,
compare Theorems 1 and 14 for discriminant 5 and Theorems 8 and 10 for discriminant 12.

4. Minimal polynomials and action on 1-forms

In this section we describe how to certify the equations we discovered by the method in § 3.
We have now determined an equation for a curve Z with an obvious degree-2 map φ : Z → C
given by φ(t, u, x) = (t, u). We have also computed equations for a second map ψ : Z → C
given by ψ(t, u, x) = (x, y).

We will now describe how to compute the action TΩ of T = ψ∗ ◦ φ∗ on Ω(C). Since the
representation of the endomorphism ring of Jac(C) on Ω(C) is faithful, the minimal polynomial
for T is equal to the minimal polynomial for TΩ. Fixing ω ∈ Ω(C), to compute TΩ(ω), we first
pull back along ψ and then push forward along φ. The order of composition is reversed since
the functor sending C to the vector space Ω(C) is contravariant, whereas the functor sending
C to Jac(C) is covariant. Pullbacks are straightforward, and the pushforward along φ can be
computed from the rule

φ∗(v η) = tr(v)ω when η = φ∗(ω) and v ∈ K(Z). (4.1)

The trace on the right-hand side is with respect to the field extension K(Z) over the subfield
isomorphic to K(C) associated to the map φ. We now see that

TΩ(ω) = φ∗ ◦ ψ∗(ω) = tr(ψ∗(ω)/φ∗(ω)) · ω. (4.2)

The trace on the right-hand side of equation (4.2) is over the field extension K(t, u, x)/K(t, u)
and can be computed easily from the equations defining φ. We return to the example in the
previous section.

Example. Let Z ⊂ C × C be the correspondence defined by equations (3.3)–(3.5). Let
ω1 = dt/u and ω2 = t dt/u be the standard basis for Ω(C). To compute the action of TΩ on
Ω(C), we need to work with the function field K(Z) and its derivations. The derivations form
a one-dimensional vector space over K(Z). It is spanned by both dx and dt, and the relation
between them is computed by implicitly differentiating equation (3.4). We compute

ψ∗(ω1)

φ∗(ω1)
=
dx/y

dt/u
=

(−2t4 + t3 − t2)x+ (−2t4 + 4t3 − t2 − t+ 1)

4t3 − 4t2 + 1
. (4.3)
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We now need to compute the trace of the right-hand side over K(t, u). From equation (3.4),
we see that the trace of x is 1/t2, and therefore the trace of the right-hand side of equation (4.3)
is 1− t. We conclude that

TΩ(dt/u) = (1− t) dt/u. (4.4)

Similarly, we compute that TΩ(t dt/u) = −dt/u and hence the matrix for TΩ is

M =

(
1 −1
−1 0

)
. (4.5)

The minimal polynomial for M , hence for TΩ and T as well, is T 2 − T − 1. We conclude that
T generates a ring Z[T ] isomorphic to O5.

Rosati involution. The adjoint for T with respect to the Rosati involution is the
endomorphism

T † = (ψ∗ ◦ φ∗)† = φ∗ ◦ ψ∗. (4.6)

By computing the action of T † on Ω(C) by the procedure above, we verify that T †Ω = TΩ and
conclude that T = T † is self-adjoint with respect to the Rosati involution.

We note that the proof of Theorem 1 stated in the introduction is now complete.

5. Further examples

We now describe several other examples of the results one can obtain via our method.
We choose relatively simple curves and small discriminants for purposes of illustration. For
instance, the first two examples have Weierstrass points at∞, and the others have two rational
points at ∞. Each of the theorems stated in this section is proved by carrying out an analysis
similar to our analysis of the curve defined by equation (3.3) in § 3 and § 4. We provide computer
code in the auxiliary files to carry out these analyses.

Our first example involves a quadratic ring of slightly larger discriminant.

Theorem 8. Let C be the curve defined by u2 = t5−6t4+15t3−22t2+17t and let φ : Z → C
be the degree-2 branched cover defined by

t(t2 − 3t+ 1)2x2 − (4t5 − 23t4 + 46t3 − 37t2 + 6t+ 17)x+ 4t(t4 − 6t3 + 15t2 − 22t+ 17) = 0.

The curve Z is of genus 12 and admits a map ψ : Z → C of degree 5. The induced
endomorphism T = ψ∗ ◦φ∗ of Jac(C) satisfies T 2− 3 = 0 and generates real multiplication by
O12.

Remark 9. The curve C in Theorem 8 corresponds to the point (e, f) = ( 34
27 ,−

5
3 ) on

Y (O12) in the coordinates of [4]. The proof of the theorem proceeds along similar lines to that
of Theorem 1. The map ψ : Z → C takes (t, u, x) to (x, y) where

y = − t
6 − 5t5 + 12t4 − 21t3 + 32t2 − 17t− 17

t2(t2 − 3t+ 1)3
xu+

2(t− 2)(t4 − 2t3 − t2 − 2t+ 17)

t(t2 − 3t+ 1)3
u.

The function field of Z is generated by x and u. We depict a plane model for Z in Figure 1.

Our next example illustrates how the method developed in this paper may be used to identify
eigenforms and determine points on Teichmüller curves. Recall that WD is the moduli space of
genus-2 eigenforms forOD with a double zero, and is a disjoint union of Teichmüller curves [12].
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Figure 1. We plot the curve Z of Theorem 8 in the (1/x, 1/u)-plane.

Theorem 10. Let C be the curve u2 = t5 − 2t4 − 12t3 − 8t2 + 52t+ 24 and let φ : Z → C
be the degree-2 branched cover defined by

16(t− 2)(t+ 1)2x2 − (3t4 + 16t3 + 12t2 − 192t− 164)x

+ (9t5 − 12t4 − 140t3 − 48t2 + 276t+ 16) = 0.

The curve Z is of genus 11 and admits a map ψ : Z → C of degree 5. The induced
endomorphism T = ψ∗ ◦ φ∗ of Jac(C) satisfies T 2 − 3 = 0 and generates real multiplication
by O12. Moreover, the moduli point corresponding to C on Y (O12) lies on the Weierstrass–
Teichmüller curve W12.

Remark 11. The curve C in Theorem 10 was shown in [4] to have a Jacobian which admits
real multiplication by O12. In fact, it corresponds to the point (e, f) = (− 3

8 ,−
1
2 ) on Y (O12)

in the coordinates of [4]. In [11], we showed using the eigenform location algorithm that dt/u
is an eigenform for O12 to conclude that this point lies on W12. The equations for Z and the
maps φ, ψ yield an alternate proof of both of these facts. For completeness, we note that the
expression for the rational function y on Z needed to define ψ : (t, u, x) 7→ (x, y) is

y = −11t4 − 24t3 + 12t2 − 112t− 132

64(t− 2)2(t+ 1)3
xu
√

3− 15t5 − 28t4 − 36t3 + 288t2 − 52t− 144

64(t− 2)2(t+ 1)3
u
√

3.

The rest of the verification is carried out in the computer code.

Our next example involves a genus-2 curve without a rational Weierstrass point. The
resulting correspondence is more complicated, but still well within the reach of our method.

Theorem 12. Let C be the curve u2 = t6 + t5 + 7t2 − 5t + 4, and let φ : Z → C be the
degree-2 branched cover defined by

(3t3 − t2 + t+ 1)(368t4 − 597t3 − 233t2 + 233t+ 41)x2 + x(4(199t4 − 31t3 − 185t2 − 33t+ 6)u

+ 2(430t7 − 1601t6 + 876t5 − 623t4 − 338t3 + 257t2 − 168t− 65))
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+ 4(138t5 − 153t4 − 21t3 + 55t2 + 3t− 18)u

+ 552t8 − 1616t7 − 1435t6 + 4654t5 − 3949t4 + 900t3 + 1035t2 − 690t+ 21 = 0. (5.1)

The curve Z is of genus 11 and admits a map ψ to C of degree 4. The induced endomorphism
T = ψ∗ ◦ φ∗ of Jac(C) satisfies T 2 − 2 = 0 and generates real multiplication by O8.

Remark 13. The curve C in Theorem 12 corresponds to the point (r, s) = (1
8 ,

59
32 ) on Y (O8)

in the coordinates of [4]. Note that the coefficients of the polynomial F defining Z are not
in K(t), in contrast to the case where C is a quintic hyperelliptic curve. This is because the
hyperelliptic involution does not preserve the chosen point at infinity P0, and therefore does
not commute with the deck transformation of φ : Z → C. Therefore, the discovery part of our
algorithm in which we compute equations for Z has to be modified slightly. The coefficients of
F can be computed by determining a K-linear relation between 1, t(Qi), t(Qi)

2, ui = u(Pi)
and uit(Qi) by LLL for each i (rather than between the first three quantities as in the quintic
case). The coefficients in these relations are values of rational functions specialized at ti = t(Pi),
and we can interpolate to determine these rational functions exactly. A similar modification
must be made to solve for y ∈ K(Z). For brevity, we have omitted the expression for y here,
although it is available in the computer files.

6. Correspondences in families

In this section we describe a correspondence on a universal family of genus-2 curves over the
entire Hilbert modular surface Y (O5). There is one significant obstacle to implementing the
method described in § 3 in families. Suppose {Cµ : µ ∈ U} is a family of curves parametrized
by the base U each of which admits real multiplication by O. The method described in § 3
allows us to compute a correspondence Zµ over Cµ for any particular µ ∈ U . However, the first
step in computing Zµ involves a choice of analytic Jacobian endomorphism T an

µ generating O.
There are typically two choices for T an

µ with a given minimal polynomial, and it is important
to make these choices so that the matrices T an

µ,Ω vary continuously in µ and the Zµ are fibers
of a single family.

To overcome this obstacle we first normalize the entire family so that dt/u and t dt/u are
eigenforms, using the eigenform location algorithm in [11]. Then we simply choose T an

µ to
have T an

µ,Ω equal to a constant diagonal matrix. Having consistently chosen T an
µ in this way, we

compute Zµ for various values of µ and interpolate to determine a correspondence over the
entire family. The result is the following theorem.

Theorem 14. For (p, q) ∈ C2, let C(p, q) be the curve defined by the equation

u2 = t6 + 2pt5 + 10qt3 + 10q2t− 5(p− 1)q2 (6.1)

and let φ : Z(p, q)→ C(p, q) be the degree-2 branched cover defined by

(2t− p)(4t+ (3 + α)p)x2

+ (2(−α− 1)u+ α(2t3 − 2pt2 + p2t+ 2q)− (6t3 − 6pt2 − p2t− 10q))x

− 2((1− α)t− p)u+ α(2t4 − p2t2 + 6qt− 4pq)

− (2t4 − 2pt3 + 3p2t2 − 10qt+ 10pq) = 0, (6.2)

where α =
√

5. For generic (p, q) ∈ C2, the curve Z(p, q) is of genus 8 and admits a holomorphic
map ψ to C(p, q) of degree 3. The endomorphism T = ψ∗ ◦ φ∗ of Jac(C(p, q)) is self-adjoint
with respect to the Rosati involution and generates real multiplication by O5.
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The only complication in the proof of Theorem 14 is that we need to work in the function
field over the base field Q(p, q) rather than Q. We provide computer code in the auxiliary files
to carry out the certification as in our previous examples. For brevity, we have omitted the
lengthy expression for y in the map ψ : (t, u, x) 7→ (x, y); it is available from the computer files.
For that choice of y, the endomorphism T has minimal polynomial T 2 − T − 1. (Replacing y
with −y gives rise to an endomorphism with minimal polynomial T 2 + T − 1.)

Remark 15. The coordinates for Y (O5) in Theorem 14 are related to the coordinates (m,n)
appearing in [4] by

(p, q) = (m2/5− n2, (m− αn)(5n2 −m2)(5n2 −m2 + 5)/125). (6.3)

In particular, our coordinates are quadratic twists of those appearing in [4]. This is because
they are adapted to the eigenform moduli problem, not the real multiplication moduli problem.
The field of definition of a point (p, q) is the field of definition of the eigenforms dt/u and t dt/u,
which need not agree with the field of definition of real multiplication. In fact, these moduli
problems are isomorphic over Q(

√
5), but not over Q. This also explains the appearance of

α =
√

5 in the equation defining Z(p, q).

7. Divisor classes supported at eigenform zeros

We now turn to the applications in dynamics for our equations for real multiplication stated
in the introduction. Recall that L is the multisection in the universal Jacobian overM2,1(O5)
whose values at the pointed curve (C,P ) are divisors of the form in equation (1.2). Our goal
is to prove that the locus M2,1(O5;L) defined by the vanishing of L is an irreducible surface
inM2,1 and thatM2,1(O5;L) is the closure of a complex geodesic for the Teichmüller metric.

Marking eigenform zeros. We start by passing to a cover of M2,1(O5) on which we can
describe the multisection L in terms of sections. To that end we define Mze

2 (O5) to be the
space of pairs (C,Z) where C ∈ M2(O5) and Z ∈ C is a zero of an eigenform for real
multiplication by O5. Similarly, we define Mze

2,1(O5) to be the pointed version consisting of
triples (C,P, Z) with (C,P ) ∈M2,1(O5) and (C,Z) ∈Mze

2 (O5). Here we are allowing Z = P .
The space Mze

2 (O5) is birational to the Hilbert modular surface Y (O5). To see this, fix
γ ∈ O5 satisfying γ2 − γ − 1 = 0. A point (C,Z) ∈ Mze

2 (O5) determines a Rosati invariant
endomorphism Tγ(C,Z) of Jac(C) by the requirement that the line of 1-forms on C vanishing
at Z are γ-eigenforms for Tγ(C,Z). The map (C,Z) 7→ (Jac(C), Tγ(C,Z)) is birational. In
particular, Mze

2 (O5) is an irreducible surface.

Sections. Let η be the hyperelliptic involution on C. We can now define a section Lγ of the
universal Jacobian over Mze

2,1(O5) by the formula

Lγ(C,P, Z) = (P − Z)− Tγ(C,Z) · (η(Z)− Z) ∈ Jac(C). (7.1)

Let Mze
2,1(O5;Lγ) denote the locus in Mze

2,1(O5) where Lγ vanishes. Similarly, we define
T1−γ(C,Z), L1−γ andMze

2,1(O5;L1−γ) by replacing γ with its Galois conjugate 1−γ. From the
definition of the multisection L, it is clear the map forgetting Z sends the union ofMze

2,1(O5;Lγ)
and Mze

2,1(O5;L1−γ) onto M2,1(O5;L). In fact, each of these spaces individually maps onto
M2,1(O5;L) since the sections Lγ and L1−γ are related by Lγ(C,P, Z) = L1−γ(C,P, η(Z)).
We record this fact in the following proposition.

Proposition 16. The space Mze
2,1(O5;Lγ) maps onto M2,1(O5;L).
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We will now use our equations for real multiplication to show thatMze
2,1(O5;Lγ) is a section

of Mze
2,1(O5)→Mze

2 (O5).

Proposition 17. For each (C,Z) ∈ Mze
2 (O5), there is a unique solution P ∈ C to the

equation Lγ(C,P, Z) = 0.

Proof. The uniqueness is easy and does not require our equations for real multiplication. If
P1, P2 are solutions to Lγ(C,P, Z) = 0, then P1 − P2 is a principal divisor. Since the smooth
genus-2 curve C admits no degree-1 rational map, we must have P1 = P2.

The locus in Mze
2 (O5) consisting of pairs (C,Z) which admit a solution to Lγ(C,P, Z) = 0

is closed. This follows from the fact thatMze
2,1(O5)→Mze

2 (O5) is a projective map and, since
Mze

2 (O5) is irreducible, it is enough to check that the generic pair (C,Z) ∈ Mze
2 (O5) admits

such a solution.
Recall the notation of Theorem 14 and its proof in the auxiliary files. For generic (p, q) ∈ C2,

we have a genus-2 curve C(p, q), a Rosati invariant endomorphism T (p, q) of Jac(C(p, q))
satisfying T (p, q)2 − T (p, q) − 1 = 0, and a T (p, q)-eigenform ω(p, q) = t dt/u with eigenvalue
γ = (1 + α)/2. To mark a zero of ω(p, q), we choose z a square root of 5(1− p) and set

Z(z, q) = (0, zq) ∈ C(p, q). (7.2)

Counting dimensions, we see that the (z, q)-plane parametrizes an open subset ofMze
2 (O5) by

the formula (z, q) 7→ (C(z, q), Z(z, q)). We further define

P (z, q) = (2(1− p), z(8− 16p+ 8p2 + 5q)/α) ∈ C(z, q). (7.3)

Using our equations for the correspondence defining T (z, q) and equation (2.3), we compute the
divisor T (z, q) · (η(Z(z, q))−Z(z, q)). Combined with standard formulas for the group law on
Jac(C) (which have been implemented in Magma), we verify that Lγ(C(z, q), P (z, q), Z(z, q))
= 0. We include code in the auxiliary files to verify this equation.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The locusMze
2,1(O5;Lγ) is biregular to the irreducible surfaceMze

2 (O5)
by Proposition 17, and maps onto M2,1(O5;L) by a map of finite degree. Therefore
M2,1(O5;L) is an irreducible surface in M2,1.

Complex geodesics in moduli space. We now prove Theorem 3 about geodesics in M2,1

which is a corollary of Theorem 2. We refer the reader to the survey articles [23, 24] for
background on geodesics in the moduli space of curves.

Proof of Theorem 3. Fix a curve C ∈ M2(O5) and an O5-eigenform ω on C. The form ω
generates a complex geodesic fω : H → M2 with fω(i) = C and f ′ω(i) tangent to M2(O5).
By [12], the image of fω is contained in M2(O5). We choose C and ω generically so that
fω(H) =M2(O5) (cf. [13]).

The values of fω are related to C by Teichmüller mappings. In particular, there is a
distinguished holomorphic 1-form ωτ (up to scale) on Cτ = fω(τ) and a homeomorphism
C → Cτ which is affine for the singular flat metrics |ω| and |ωτ |. The zeros of ω are in bijection
with those of ωτ via the Teichmüller mapping and, by [12], ωτ is also an O5-eigenform. We
conclude that there is a holomorphic zero marked lift

f ze
ω : H→Mze

2 (O5) (7.4)

https://doi.org/10.1112/S1461157016000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000188


real multiplication through explicit correspondences 41

Figure 2. Genus-2 eigenforms for O5 can be built out of a parallelogram U ⊂ C and the similar
parallelogram γU by a connected sum. The resulting form has zeros at Z1 = 0 and Z2 = t and the
marked point P = γt satisfies Lγ(C,P, Z1) = 0.

whose composition with the map forgetting Z equals fω. Composing f ze
ω with the section

Mze
2 (O5)→Mze

2,1(O5;Lγ) and the map forgetting Z, we obtain a map

fPω : H→M2,1

which is a section of fω over M2,1 →M2.
There are several ways to conclude that fPω is a complex geodesic. The map fPω is a

section over the complex geodesic fω, and such sections are complex geodesics by a well-
known argument relying on the equality of the Kobayashi and Teichmüller metrics on Mg,n.
Alternatively, for (Cτ , Pτ ) = fPω (τ) we have an O5-eigenform ωτ and a zero Zτ of ωτ satisfying
Lγ(Cτ , Pτ , Zτ ) = 0. We conclude that the relative periods

∫Pτ

Zτ

ωτ and γ

∫η(Zτ )

Zτ

ωτ

differ by an absolute period of ωτ . Consequently, the Teichmüller mapping from C → Cτ sends
P to Pτ and fPω is a complex geodesic.

Thus we have a complex geodesic fPω inM2,1 such that fPω (H) lies inM2,1(O5;L) and maps
onto M2(O5). Since both M2,1(O5;L) and M2(O5) are irreducible surfaces, we must have

fPω (H) =M2,1(O5;L).

Polygons and marked points. McMullen described how to polygonally present eigenforms
for O in genus 2 [13]. Set γ = (1 +

√
5)/2 to be the golden mean. Eigenforms for discriminant

5 are obtained from a parallelogram U ⊂ C centered at 0 and the similar parallelogram
γU ⊂ C by gluing opposing sides on each parallelogram and performing a connected sum
along a straight line interval I connecting 0 and t ∈ U . The form dz is invariant under these
gluing maps and the resulting quotient (C,ω) = (U#IγU, dz)/ ∼ is an O5-eigenform. Wright’s
conjecture of the existence of a dynamically natural way to mark curves inM2(O5) posited in
particular that one could mark the eigenform (U#IγU)/ ∼ at the point P = γt in the polygon
γU (see Figure 2).

One way to see that the algebraically presented locus M2,1(O5;L) in Theorem 3 equals
the locus polygonally presented by Wright is by first checking that they agree somewhere, for
example at the regular decagon eigenform which is the limit of (C(z, q), P (z, q)) as q → 0
in our parametrization. The period relations imposed by the vanishing of L then imply that
the points marked in M2,1(O5;L) coincide with Wright’s polygonal description at a nearby
generic point. Therefore, the algebraic and polygonal descriptions agree along an entire complex
geodesic which is dense in M2,1(O5;L).
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10. B. Jakob, ‘Poncelet 5-gons and abelian surfaces’, Manuscripta Math. 83 (1994) no. 2, 183–198.
11. A. Kumar and R. E. Mukamel, 2014 Algebraic models and arithmetic geometry of Teichmüller curves

in genus two’, Preprint, 2014, arXiv:1406.7057.
12. C. T. McMullen, ‘Billiards and Teichmüller curves on Hilbert modular surfaces’, J. Amer. Math. Soc.

16 (2003) 857–885.
13. C. T. McMullen, ‘Dynamics of SL2(R) over moduli space in genus two’, Ann. of Math. (2) 165 (2007)

397–456.
14. Y. Sakai, ‘Poncelet’s theorem and curves of genus two with real multiplication of ∆ = 5’, J. Ramanujan

Math. Soc. 24 (2009) no. 2, 143–170.
15. Y. Sakai, ‘Construction of genus two curves with real multiplication by Poncelets theorem’, Dissertation,

Waseda University, 2010.
16. B. A. Smith, ‘Explicit endomorphisms and correspondences’, PhD Thesis, University of Sydney, 2005.
17. G. van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 16

(Springer, Berlin, 1988).
18. P. B. van Wamelen, ‘Proving that a genus 2 curve has complex multiplication’, Math. Comp. 68 (1999)

no. 228, 1663–1677.
19. P. B. van Wamelen, ‘Computing with the analytic Jacobian of a genus 2 curve’, Discovering mathematics

with Magma (Springer, Berlin, 2006) 117–135.
20. P. B. van Wamelen, ‘Poonen’s question concerning isogenies between Smart’s genus 2 curves’, Math.

Comp. 69 (2000) no. 232, 1685–1697.
21. J. Wilson, ‘Curves of genus 2 with real multiplication by a square root of 5’, DPhil Thesis, Oxford

University, 1998.
22. J. Wilson, ‘Explicit moduli for curves of genus 2 with real multiplication by Q(

√
5)’, Acta Arith. 93

(2000) no. 2, 121–138.
23. A. Wright, ‘Translation surfaces and their orbit closures: An introduction for a broad audience’, EMS

Surv. Math. Sci. 2 (2015) 63–108.
24. A. Zorich, ‘Flat surfaces’, On random matrices, zeta functions and dynamical systems, Frontiers in

Number Theory, Physics and Geometry 1 (Springer, Berlin, 2006) 439–586.

Abhinav Kumar
Department of Mathematics
Stony Brook University
Stony Brook, NY 11794
USA

thenav@gmail.com

Ronen E. Mukamel
Department of Mathematics
Rice University MS 136
6100 Main St.
Houston, TX 77005
USA

ronen@rice.edu

https://doi.org/10.1112/S1461157016000188 Published online by Cambridge University Press

http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
http://www.arxiv.org/abs/1406.7057
https://doi.org/10.1112/S1461157016000188

	1 Introduction
	2 Background
	3 Computing equations for correspondences
	4 Minimal polynomials and action on 1-forms
	5 Further examples
	6 Correspondences in families
	7 Divisor classes supported at eigenform zeros
	References

