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ON SEQUENCES {««(mod 1)} 

BY 

E. STRZELECKI 

J. Mycielski has conveyed to me the following problem by P. Erdos. Let {tn} 
be a sequence of natural numbers such that 

^ > a > 1 for rc = 1, 2 , . . . , . 
K 

(a) Does there exist an irrational number rj such that the sequence {tnrj (mod 1)} 
is not dense in [0, 1)? 

(b) Does there exist a real number | such that 0 (and if possible also 1) are not 
limit points of the sequence {fwf(mod 1)}? 

P. Erdos and S. J. Taylor have proved in [1] that the set of numbers p such that 
{tnp(mod 1)} has not the equipartition property in the interval [0, 1] has Hausdorff 
dimension 1. 

In this note we use the methods of [2] to give a partial answer to question (b). 
Namely we shall prove the following 

THEOREM. Let {tn} be a sequence of positive (not necessarily natural numbers) 
such that 

<Z„ = ^ ( 5 ) 1 / 3 forn = l,2,...,. 

Then there exist positive numbers | and /? such that 

(1) *nf(mod 1) G [fi, 1 - f l forn = l,29...,. 

Let us note that it is sufficient to prove the theorem under an additional re
striction tha t# n <3 for all naturals. In fact, if for some fixed n,qn=(tn+1/tn)> 3, 
then assuming that s is a natural number such that 

y'% < tn+1 <: y^'x, 
we shall insert between tn and tn+1 new terms 

J *n» J*w> • • • 9 J ln* 

The new extended sequence {tn} will still satisfy (1) (since >/3>l . 73) but we shall 
have q'n<3 for all natural n. Obviously, if the assertion of the theorem holds for 
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some sequence {/̂ } it is also true for any subsequence {tn} of {t„}. In other words, 
to prove the theorem it is sufficient to show that: 

If {tn} is a sequence of positive numbers such that 

(2) (5)1/3 < qn = *-*& < 3 for n = 1, 2, . . . , 

then there exist positive numbers f and /? such that 

tJ(modl)e [$,!-$] forrc = 1,2, . . . . 

The proof of the theorem will be based on several lemmas. We shall refer often 
to the following conditions : 

Given intervals A n = [an9 bn] and Aw+1= [an+l9 bn+1], the interval An+1 is said to 
satisfy condition (An+1) if 

(An+l) <Inan < «n+1 < bn+X < ^n^n' 

An interval A=[x , y] satisfies condition (B) if 

(B) [x9 y](mod 1) c [0, 1]. 

In other words an interval A satisfies B iff no integer is an interior point of A. 
An interval A= [x, y] satisfies condition (C) if 

(C) d = y-x = 1. 

Given a sequence {bn} we shall say that bk satisfies condition (Dkt7n(y))9 (y>0) 
if there exists a natural number m{k) (depending on k) such that 

h 

DEFINITION. Given a sequence of intervals {An}, A n = [an9 bn]9 n=l9 2 , . . . , an 
interval A ^ ^ is said to be a proper mth successor of the interval Ak with y=y0, 

(y0>0)if 

(i) Ak+P satisfy conditions (An+:p) and (B) for /?=l , 2 , . . . , m, 
(ii) dk+m=l9 

(iii) bk satisfies (A.iWI(y0)). 

We now start proving the theorem. In the sequel, {tn} denotes a sequence of 
positive numbers satisfying condition (2). 

LEMMA 1. Assume that 

then bk satisfies (£>ft>w(3~Mx lO^4)). 
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Proof. Since qn<3 for all natural n, we obtain 

729 

bk+m < 6* J s±2 î--10 4 = bkqk - • • qic+m-!—10 4 

h \ Ik' ' ' Qk+m-l' 

<t^a(bk-3-m x 10-*). 

LEMMA 2. Assume that Ak= [ak, bk] satisfies conditions (B) and (C) Z>wf there 
exists no proper first successor ofAk with y=s3 -1 x 10~4, then there is an integer JV, 
(see Fig. 1 ; dots indicate integers) such that 

2(i) 

2(ii) 

where 

zk+i-akqk > qk-lO~\ 

zk+1 = mm(bkqk, N±+i). 

? N, 

N ^ l 

ak<*k 

b v q kHk 

Fig. 1 
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Proof. Since dk=bk—ak=l and qk> (5)1 / 3>1, we have 

(3) bkqk-akqk = qk > 1 

and so, the interval #fcAfc= [akqk, bkqk] contains at least one integer. Denote by Nt 

the smallest integer belonging to the interval qk&k. Then we have 

J V x - K akqk <NX< bkqk. 

Assuming that bkqk>N±+1 +10~4 we have 

Thus putting aAH_1=7V1, iAj+1=iV1+l, we obtain an interval [a&+1, 6A+1] satisfying 
04+i), B and C, and since bk+1=N±+1 <bkqk—10^, by Lemma 1, bk satisfies the 
condition D^ÇS^x 10~~4). This means that Ak+1 is a proper first successor of Ak 

with y = 3 - 1 x 10-4, contrary to the assumptions of Lemma 2. Consequently, 

(4) bkqk < Nt+l + lO-*. 

Now if arf^Ni then bkqk—akqk=bkqk—N1<l + 10~^<qki contrary to (3). Hence 
the inequality 2(i) is proved completely. 

Now, if bjAkKN-L+l, then zk+1=bkqk and therefore, by (3) 

Zfc+i—dW* = ^ > 4fc-10~4. 
If, on the other hand 6&^fc>iV1 + l, then 2rA.+1=iV1+l and, by (4) and (3), we 

obtain 

z*+i-ûW* = ^i+1-flrffc > M/c-%4/c-10""4 = gfc-10~4 

as required in 2(ii). 

LEMMA 3. Assume that in addition to the conditions of Lemma 2, Ak has also no 
proper second successor with 7 = 3~2xl0~4, then there exists an integer N2 (see 
Fig. 2) such that 

3(i) AT8-1 < akqkqk+1 < N2 < Nxqk+1 < Nz+1< zk+1qk+1 < jV2+2+10"4, 

3(ii) zk+2-akqkqk+1 > qkqk+1-4 X 10~4, 

where 

= mm(zk+1qk+1, iV2+2). 

Proof. As in the proof of Lemma 2, denote by N2 the smallest integer such that 
N2>akqkqk+1. The interval [akqkqk+1, Nift+i] cannot contain two integers since they 
would be the endpoints of a proper second successor of A&. It is easy to show that 
the length of this interval is greater than 1, and so N2 cannot coincide with any of 
its endpoints. So, 

AT2-1 < akqkqk+1 < N2 < NxqM < N2+l. 

Assuming that zk+1qk+1<N2+l, we obtain 
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• N 2 - l 

a k V ^ k + l 

+ N l ^ k ' + l 

• N2 + l 

Z k + l q k + l 

Fig. 2 

but, by 2(ii) and (3), we have 

z*+i*H-i-«*&fefi > ( ^ - l ° " 4 ) ^ + i > 2-8-

Again, as in Lemma 2, the inequality zk+1qk+1>N2+2+lQ~~'k implies the existence 
of a second proper successor with y=3~ 2 x 10~4. This remark concludes the proof 
of inequality 3(i). 

Now, if zk+1qk+1<N2+2 then, zk+2=zk+1qk+1 and thus, by 2(ii) and 2, 

(5) zk+2-akqkqk+1 = (zk+1-akqk)qk+1 > ( ^ - 1 0 " 4 ) ^ + 1 > qkqM-3 X 1(T4. 

If on the other hand, %flçA.+1>iV2+2, then zk+2—N2+2 and by (2), 2(ii), 3(i) 
and (5) 

ZJH-2—0*&*H-I = N2+2-akqkqk+1 > zk+lqk+1-10-*-akqkqk+1 > M H l - 4 x 10~4, 

LEMMA 4. Assume that \ satisfies conditions of Lemma 3 awrf //to at least one of 
the ratios qk, qk+1, qk+2 is not less than 1.73. 
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T t-

u3-i 

a k W l q k + 2 
-* 

N 2 q k + 2 

N +1 
-*= 
\ + l q k+l q k+2 

t N. + 2 

(N2 + D q k + 2 

• V 3 

^k+2 qk+2 

Fig. 3 

Denote (see Figs. 2 ««rf 3) 

A(1) = qk+2[akqkqk+1, N2], 

A(2) = qM[N29 iVi^+J, 

A ( , , = « w [ f i « w ^ i + 1 L 

A(4) = ^+ 2[iV2+l,z f c + 2]. 

4̂* least one of the intervals A(i) ( /=1 , 2, 3, 4) contains a proper third successor of 
Ak With y=3~3 Xl0~4. 

Proof. Assume that the assertion of Lemma 4 is not true. By arguments similar 
to those used in the proof of Lemmas 2 and 3, we infer that (see fig. 3) the intervals 
A(1), A(2), A(3) contain not more than one integer each. The interval A(4) contains 
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not more than two integers, and in case A(4) contains two integers and M is the 
larger of them, zk+2qk+2<M-\0^. Consequently, the interval A=[akqkqk+1qk+2, 
zk+2qk+2] contains not more than five integers. In case A contains four integers only, 
its length / < 5 . In the remaining case, the right endpoint of A exceeds the largest 
integer M 6 A by less than 10~~4. So, in this case /<5+10~"4. In other words, the 
assumption that the assertion of Lemma 4 is incorrect implies that 

(6) / = zk+2qk+2--akqkqk+1qk+2 < 5 + 10-4. 

On the other hand, by 3(ii) and (2) we have 

(7) 
^ 4 r f w - i * * f 2 - l - 2 x l 0 3. 

Since qn > (5)1/3 for each natural n and, by assumption, at least one of qk, qk+1, qk+2 

is not less than 1.73, we obtain 

^ f c + A + 2 > ( 2 5 ) 1 / 3 x l . 7 3 > 5 . 0 1 . 

Thus (7) implies that 

/ > 5 + 1 0 x l ( r 3 - 1 . 2 x l 0 - 3 > 5 + l(T4, 

which contradicts inequality (6). This concludes the proof of Lemma 4. 

LEMMA 5. Assume that Ak satisfies conditions of Lemma 3 and none of the intervals 
qkAk (see Fig. 1), [N±qk+1, zk+1qk+1] (see Fig. 2), A(4) (see Fig. 3) contains more than 
one integer. Then there is a third proper successor ofAk with y=3~ 3 x 10""4. 

Proof. If qkAk contains one integer only, this means that b^KN^l (see Fig. 1) 
and so zk+1=bkqk. Similarly, conditions of Lemma 5 imply that 

(8) zk+2 = zk+1qk+1 = bkqkqk+1. 

Assume that Ak has no third proper successor. It has been shown in Lemma 4 
that in this case if A(4) contains one integer only then 

* = zk+2qk+2—akqkqk+1qk+2 < 5. 

In view of (8), we obtain 

(bk~cik)qkqk+1qk+2 < 5. 
But bk—ak=l9 so 

QkQk+iQ.k+z < 5> 

which is impossible because qn> (5)1/3 for all natural n. The contradiction proves 
Lemma 5. 

LEMMA 6. Assume that Ak satisfies conditions of Lemma 3 and there is no third 
proper successor of Ak with y=3~~3x 10~4. Then each of the intervals A(1), A(2), A(3) 

defined in Lemma 4 contains exactly one integer. 
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Proof. As we know already from the proof of Lemma 4, the conditions of Lemma 
6 imply that each of the above intervals contains not more than one integer. 
Assuming that at least one of them does not contain an integer, we would obtain 
that 

I = ^k+2qjc+2-dkqkqk+1qk+2 < 4 + 1 0 - 4 . 

On the other hand, since qn> (5)1/3 for each natural n, by (7), we obtain 

I > qhqMqM-\2*Hlr* > 5 - 1 . 2 x l ( T 3 > 4+10"4 . 

LEMMA 7. Assume that Ak satisfies conditions of Lemma 6 and qk+z < 1.73. Then 
Ak contains a fourth proper successor with y=3~4X 10~4. 

Proof. Denote by zA.+3=min(zfc+2^+2, N3+3) (see Fig. 3). Let us note that 
according to Lemma 6 the endpoints of intervals A(1), A(2), A(3) and the corre
sponding integers are distributed as shown on Fig. 3. Moreover N3+3<zk+3. 
Assume that none of the intervals ^+3^7=fe-h3[(^2+l)?/fc+2> N3+3] and 
ft+3^8=?;fc+3[^3+3, Zk+s\ contains a proper fourth successor of Ak (see Fig. 3 and 
4). 

In this case ô7qk+3 contains at most one integer, ôsqk+3 contains at most two 
integers. In case ^ 3 ^ 3 contains two integers and M' is the larger one, by Lemma 1 „ 

**fs«*+3 < M'+10- 4 . 

Denote by N the largest integer satisfying the inequality 

(9) N < (N2+l)qk+2qk+s. 

It follows (see Fig. 4) that 

(10) zMqM-N < 3 + 10-4. 

By Lemma 4, qk+2< 1 -73. By assumption of Lemma 7, qk+3< 1.73. Thus qk+2qk+3<C 
3. Consequently, 

(11) ( ^ 2 + 1 ) ^ + 2 ^ + 3 - ^ 2 ^ + 2 ^ + 3 = qjc+2qk+3 < 3. 

Inequalities (9) and (11) imply that 

(12) JV-3 < N2qMqM, 

and from (10) we obtain 

(13) z , + 3 ^ + 3 - ( ^ ~ 3 ) < 6 + 10-4. 

Assume now that each of the intervals <5ift+3 and ô2qk+3 (see Fig. 4) contains not 
more than one integer. In view of (12), it follows that there is no more than one 
integer between akqk • • • qk+3 and N— 3. Thus 

(14) N-3-akqk--qM<2. 
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W - - q k + 3 

N 3 q k + 3 

N-3 

N2qk+2qk+3 

N 

(N2+l)qk+2qk+3 

(N3+3)qk+3 

Z k+3 q k+3 

Fig. 4 (dots denote integers). 

F rom (13) and (14) we obtain 

(15) ^+3^+3-0*4* • • • qk+z < 8 + KT4. 

Similarly as it has been done before we can prove that 

(16) zk+3qk+z-akqk • • • & * > & • • • 4 * ^ - 4 X10"3 > 5(5)1/3-4 X10"3 > 8.5. 

Since inequalities (15) and (16) are incompatible, at least one of the intervals 
ôxqk+z and ô2qk+z contains two integers, thus yielding a proper fourth successor 
for Ak. 

This completes the proof of Lemma 7. 

r 

u 

1 

r~ 
& 

X 

r 
L 

https://doi.org/10.4153/CMB-1975-127-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-127-7


736 E. STRZELECKI [December 

LEMMA 8. Assume that Ak satisfies conditions of Lemma 6 and qk+z>1.73. If 
there is no 4th proper successor of Ak with y = 3~~4x 10~~4 and 5 th proper successor 
ofAk with 7 = 3 - 5 X 10~4 then there is a 6thproper successor ofAk with y = 3~6 X 10~4. 

Proof. Since Ak has no first, second or third proper successors, by Lemma 5, 
at least one of the intervals qkAk (see Fig. 1), [ A ^ ^ i , zk+1qk+1] (see Fig. 2) or Ak 

(see Fig. 3) contains two integers. We shall assume that A(4) contains two integers: 
Nz+3 and Nz+4 (see Fig. 3). Remaining cases can be considered in a similar 
manner. Put 

ak+1 = Nl9 bk+1 = zk+1 (Notations of Lemma 2 and Fig. 1), 

ak+2 = N2+l, bk+2 = zk+2 (Notations of Lemma 3 and Fig. 2), 

ak+z = A/3+3, bk+z = Nz+4 (Notations of Lemma 4 and Fig. 3). 

The intervals Ak+i=[ak+i, bk+i] satisfy conditions (Ak+i) / = 1 , 2 , 3, (B) and 
dk+z=bk+z—ak+z=l. Since the interval Ak+Z satisfies conditions (B) and (C) and 
^ 3 > 1 . 7 3 , it has either first or second proper successor or, by Lemma 4, Ak+Z has 
a third proper successor with y=3~ 3 x 10~4. Consider for example the case when 
Ak+Z has a third proper successor. This means there exist intervals Ajfc_h4, Ak+5 

satisfying (Ak+J, (Ak+5) and (B) and an interval Ak+e=[ak+6ibk+e] satisfying 
C4+e)> (B)9 (C) and (Dk+Zik+e(3~3 X 10~4)). The last condition means that 

^ + 6 < 7 ± - 6 ( & , + 3 - 3 - 3 x l 0 - 4 ) . 
'fc+3 

But V 3 < V 2 f e + 2 < W w 6 + 2 < W U 4 ) - So, we obtain 

h \ QkCIk+lClk+2' QkClk+lClk+2' 

^^(V-sexier4), h+6 t 

thus Ak+6 is a proper successor of Ak with y = 3~6x 10~4. 
We have exhausted all possibilities, so we may state the following 

COROLLARY I. If an interval Ak satisfies conditions (B) and (C), then there is a 
sequence Ak+l9. . . , Ak+m (m<6) of at most six intervals such that the last one is a 
proper successor ofAk with y= 3~~6 X 10~4. {We are using here the following property 
of condition (Dkim(y)): if0<y1<y2 and (Dk>m(y2)) holds then (D^iyJ) is also 
satisfied). 

Analogously to the condition (Dkm{y)) we may introduce condition (Lkm(y)) 
as follows: Given a sequence {an} we shall say that ak satisfies condition (Lkifn(y)) 
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(y>0) if there exists a natural number m(k) (depending on k) such that 

h 
Also similarly, we define a concept of a left proper successor: 

DEFINITION. Given a sequence of intervals {An}, an interval Ak+m is said to be a 
left proper successor of Ak with y=y0, (y0>0) if 

(i) Ak+P satisfy conditions (An+P) and (5) for/?=l, 2 , . . . , m, 

(iii) a* satisfies (Lktm(y0)). 

In a similar manner we may prove that given an interval Ak satisfying (B) and 
(C), we may construct a sequence of at most six intervals Ak+1,... , Ak+m (m<6) 
such that the last one is a left proper successor of Ak with y=3~6 x 10~~4. 

We are now in a position to prove the Theorem stated in the paper. 

Proof of Theorem. Take a±=l9 ^ = 2 . Construct intervals A 2 , . . . , Ak (k<7) 
such that Ak is a (right) proper successor of A1=[al9b1] with y0=3"~6xl0^4. 
Then choose intervals Ak+1, . . . , Ak+m (m<6) such that Ak+m is a left proper 
successor of A ,̂ with y=y0. Then we are getting intervals Afc+m+1,.. . , Ak+m+v, 
the last one being a (right) proper successor of Ak+m etc. 

Denote An=[an9bn] for «=1, 2 , . . . . The intervals satisfy condition (5) for 
all natural n, conditions (An) for n=2,. . . , . Moreover, it is easy to show that if 
Ak is a proper right (left) successor of Aj+m (k>j+m, m>0) with y=y0 then 
Afc is also a proper right (left) successor of A,- with y=3~~wy0- It follows that for 
each of w, there exist m and p (ra,/?<£17) such that conditions {Dn>m(p)) and 
(LnAPJ) a r e satisfied with j9=3-17 x 10~4. 

Consider the sequence of intervals {[ajtn, bjtn]}. Replacing in (An+1) qn by 
tn+iltn we obtain 

an - ^ < an+l < bn+1 < bn ~±9 

or since tn>0, 

^JL <* an+\ ^ bn+1 On 

Thus the sequence {[ajtn9 bjtn]} is a nested sequence of closed intervals. Con
sequently there exists a number | belonging to all intervals of this sequence. So, 

~ < ! < - fern = 1,2, . . . . 

Taking into account that for each n conditions (Lnv(f})) and (A*.m(/0) are satisfied, 
we obtain 

(an+P) — — < — < | < ^2±2 < — h*s (bn-P)9 
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o r 

an+P < Stn < bn-p. 
Since for each n, [an, bn] (mod 1) <= [0, 1] this means that 

Çtn(modl)e[p,l-P] 

as required in the Theorem. 
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