ON SEQUENCES $\left\{\xi t_{n}(\bmod 1)\right\}$

BY
E. STRZELECKI

J. Mycielski has conveyed to me the following problem by P. Erdös. Let $\left\{t_{n}\right\}$ be a sequence of natural numbers such that

$$
\frac{t_{n+1}}{t_{n}} \geq \alpha>1 \quad \text { for } n=1,2, \ldots,
$$

(a) Does there exist an irrational number η such that the sequence $\left\{t_{n} \eta(\bmod 1)\right\}$ is not dense in $[0,1)$?
(b) Does there exist a real number ξ such that 0 (and if possible also 1) are not limit points of the sequence $\left\{t_{n} \xi(\bmod 1)\right\}$?
P. Erdös and S. J. Taylor have proved in [1] that the set of numbers ρ such that $\left\{t_{n} \rho(\bmod 1)\right\}$ has not the equipartition property in the interval $[0,1]$ has Hausdorff dimension 1.
In this note we use the methods of [2] to give a partial answer to question (b). Namely we shall prove the following

Theorem. Let $\left\{t_{n}\right\}$ be a sequence of positive (not necessarily natural numbers) such that

$$
q_{n}=\frac{t_{n+1}}{t_{n}} \geq(5)^{1 / 3} \text { for } n=1,2, \ldots,
$$

Then there exist positive numbers ξ and β such that

$$
\begin{equation*}
t_{n} \xi(\bmod 1) \in[\beta, 1-\beta] \quad \text { for } n=1,2, \ldots, \tag{1}
\end{equation*}
$$

Let us note that it is sufficient to prove the theorem under an additional restriction that $q_{n} \leq 3$ for all natural n. In fact, if for some fixed $n, q_{n}=\left(t_{n+1} / t_{n}\right)>3$, then assuming that s is a natural number such that

$$
3^{s / 2} t_{n}<t_{n+1} \leq 3^{(s+1) / 2} t_{n}
$$

we shall insert between t_{n} and t_{n+1} new terms

$$
3^{1 / 2} t_{n}, 3 t_{n}, \ldots, 3^{(s-1) / 2} t_{n} .
$$

The new extended sequence $\left\{t_{n}^{\prime}\right\}$ will still satisfy (1) (since $\sqrt{ } 3>1$. 73) but we shall have $q_{n}^{\prime} \leq 3$ for all natural n. Obviously, if the assertion of the theorem holds for

[^0]some sequence $\left\{t_{n}^{\prime}\right\}$ it is also true for any subsequence $\left\{t_{n}\right\}$ of $\left\{t_{n}^{\prime}\right\}$. In other words, to prove the theorem it is sufficient to show that:
If $\left\{t_{n}\right\}$ is a sequence of positive numbers such that
\[

$$
\begin{equation*}
(5)^{1 / 3} \leq q_{n}=\frac{t_{n+1}}{t_{n}} \leq 3 \text { for } n=1,2, \ldots \tag{2}
\end{equation*}
$$

\]

then there exist positive numbers ξ and β such that

$$
t_{n} \xi(\bmod 1) \in[\beta, 1-\beta] \text { for } n=1,2, \ldots
$$

The proof of the theorem will be based on several lemmas. We shall refer often to the following conditions:

Given intervals $\Delta_{n}=\left[a_{n}, b_{n}\right]$ and $\Delta_{n+1}=\left[a_{n+1}, b_{n+1}\right]$, the interval Δ_{n+1} is said to satisfy condition $\left(A_{n+1}\right)$ if
(A_{n+1})

$$
q_{n} a_{n} \leq a_{n+1}<b_{n+1} \leq q_{n} b_{n} .
$$

An interval $\Delta=[x, y]$ satisfies condition (B) if

$$
\begin{equation*}
[x, y](\bmod 1) \subset[0,1] \tag{B}
\end{equation*}
$$

In other words an interval Δ satisfies B iff no integer is an interior point of Δ.
An interval $\Delta=[x, y]$ satisfies condition (C) if

$$
\begin{equation*}
d=y-x=1 \tag{C}
\end{equation*}
$$

Given a sequence $\left\{b_{n}\right\}$ we shall say that b_{k} satisfies condition $\left(D_{k, m}(\gamma)\right),(\gamma>0)$ if there exists a natural number $m(k)$ (depending on k) such that

$$
\left(D_{k, m}(\gamma)\right) \quad b_{k+m} \leq \frac{t_{k+m}}{t_{k}}\left(b_{k}-\gamma\right) .
$$

Definition. Given a sequence of intervals $\left\{\Delta_{n}\right\}, \Delta_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$, an interval Δ_{k+m} is said to be a proper m th successor of the interval Δ_{k} with $\gamma=\gamma_{0}$, ($\gamma_{0}>0$) if
(i) Δ_{k+p} satisfy conditions $\left(A_{n+p}\right)$ and (B) for $p=1,2, \ldots, m$,
(ii) $d_{k+m}=1$,
(iii) b_{k} satisfies $\left(D_{k, m}\left(\gamma_{0}\right)\right)$.

We now start proving the theorem. In the sequel, $\left\{t_{n}\right\}$ denotes a sequence of positive numbers satisfying condition (2).

Lemma 1. Assume that

$$
b_{k+m} \leq b_{k} \frac{t_{k+m}}{t_{k}}-10^{-4}
$$

then b_{k} satisfies $\left(D_{k, m}\left(3^{-m} \times 10^{-4}\right)\right)$.

Proof. Since $q_{n} \leq 3$ for all natural n, we obtain

$$
\begin{aligned}
b_{k+m} & \leq b_{k} \frac{t_{k+m}}{t_{k}}-10^{-4}=b_{k} q_{k} \cdots q_{k+m-1}-10^{-4} \\
& =\frac{t_{k+m}}{t_{k}}\left(b_{k}-\frac{10^{-4}}{q_{k} \cdots q_{k+m-1}}\right) \\
& \leq \frac{t_{k+m}}{t_{k}}\left(b_{k}-3^{-m} \times 10^{-4}\right)
\end{aligned}
$$

Lemma 2. Assume that $\Delta_{k}=\left[a_{k}, b_{k}\right]$ satisfies conditions (B) and (C) but there exists no proper first successor of Δ_{k} with $\gamma=3^{-1} \times 10^{-4}$, then there is an integer N_{1} (see Fig. 1; dots indicate integers) such that

$$
\begin{equation*}
N_{1}-1<a_{k} q_{k}<N_{1}<b_{k} q_{k}<N_{1}+1+10^{-4} \tag{i}
\end{equation*}
$$

2(ii)

$$
z_{k+1}-a_{k} q_{k}>q_{k}-10^{-4}
$$

where

$$
z_{k+1}=\min \left(b_{k} q_{k}, N_{1}+1\right)
$$

Fig. 1

Proof. Since $d_{k}=b_{k}-a_{k}=1$ and $q_{k} \geq(5)^{1 / 3}>1$, we have

$$
\begin{equation*}
b_{k} q_{k}-a_{k} q_{k}=q_{k}>1 \tag{3}
\end{equation*}
$$

and so, the interval $q_{k} \Delta_{k}=\left[a_{k} q_{k}, b_{k} q_{k}\right]$ contains at least one integer. Denote by N_{1} the smallest integer belonging to the interval $q_{k} \Delta_{k}$. Then we have

$$
N_{1}-1<a_{k} q_{k} \leq N_{1}<b_{k} q_{k}
$$

Assuming that $b_{k} q_{k} \geq N_{1}+1+10^{-4}$ we have

$$
\Delta_{k+1}=\left[N_{1}, N_{1}+1\right] \subset\left[a_{k} q_{k}, b_{k} q_{k}\right] .
$$

Thus putting $a_{k+1}=N_{1}, b_{k+1}=N_{1}+1$, we obtain an interval [a_{k+1}, b_{k+1}] satisfying (A_{k+1}), B and C, and since $b_{k+1}=N_{1}+1 \leq b_{k} q_{k}-10^{-4}$, by Lemma $1, b_{k}$ satisfies the condition $D_{k, 1}\left(3^{-1} \times 10^{-4}\right)$. This means that Δ_{k+1} is a proper first successor of Δ_{k} with $\gamma=3^{-1} \times 10^{-4}$, contrary to the assumptions of Lemma 2. Consequently,

$$
\begin{equation*}
b_{k} q_{k}<N_{1}+1+10^{-4} . \tag{4}
\end{equation*}
$$

Now if $a_{k} q_{k}=N_{1}$ then $b_{k} q_{k}-a_{k} q_{k}=b_{k} q_{k}-N_{1}<1+10^{-4}<q_{k}$, contrary to (3). Hence the inequality $2(\mathrm{i})$ is proved completely.

Now, if $b_{k} q_{k} \leq N_{1}+1$, then $z_{k+1}=b_{k} q_{k}$ and therefore, by (3)

$$
z_{k+1}-a_{k} q_{k}=q_{k}>q_{k}-10^{-4}
$$

If, on the other hand $b_{k} q_{k}>N_{1}+1$, then $z_{k+1}=N_{1}+1$ and, by (4) and (3), we obtain

$$
z_{k+1}-a_{k} q_{k}=N_{1}+1-a_{k} q_{k}>b_{k} q_{k}-a_{k} q_{k}-10^{-4}=q_{k}-10^{-4}
$$

as required in 2 (ii).
Lemma 3. Assume that in addition to the conditions of Lemma 2, Δ_{k} has also no proper second successor with $\gamma=3^{-2} \times 10^{-4}$, then there exists an integer N_{2} (see Fig. 2) such that

$$
\begin{gather*}
N_{2}-1<a_{k} q_{k} q_{k+1}<N_{2}<N_{1} q_{k+1}<N_{2}+1<z_{k+1} q_{k+1}<N_{2}+2+10^{-4}, \tag{i}\\
z_{k+2}-a_{k} q_{k} q_{k+1}>q_{k} q_{k+1}-4 \times 10^{-4}, \tag{ii}
\end{gather*}
$$

where

$$
z_{k+2}=\min \left(z_{k+1} q_{k+1}, N_{2}+2\right) .
$$

Proof. As in the proof of Lemma 2, denote by N_{2} the smallest integer such that $N_{2} \geq a_{k} q_{k} q_{k+1}$. The interval $\left[a_{k} q_{k} q_{k+1}, N_{1} q_{k+1}\right]$ cannot contain two integers since they would be the endpoints of a proper second successor of Δ_{k}. It is easy to show that the length of this interval is greater than 1 , and so N_{2} cannot coincide with any of its endpoints. So,

$$
N_{2}-1<a_{k} q_{k} q_{k+1}<N_{2}<N_{1} q_{k+1}<N_{2}+1
$$

Assuming that $z_{k+1} q_{k+1}<N_{2}+1$, we obtain

$$
z_{k+1} q_{k+1}-a_{k} q_{k} q_{k+1}<2,
$$

Fig. 2
but, by 2(ii) and (3), we have

$$
z_{k+1} q_{k+1}-a_{k} q_{k} q_{k+1}>\left(q_{k}-10^{-4}\right) q_{k+1}>2.8
$$

Again, as in Lemma 2, the inequality $z_{k+1} q_{k+1} \geq N_{2}+2+10^{-4}$ implies the existence of a second proper successor with $\gamma=3^{-2} \times 10^{-4}$. This remark concludes the proof of inequality 3 (i).

Now, if $z_{k+1} q_{k+1} \leq N_{2}+2$ then, $z_{k+2}=z_{k+1} q_{k+1}$ and thus, by 2(ii) and 2,

$$
\begin{equation*}
z_{k+2}-a_{k} q_{k} q_{k+1}=\left(z_{k+1}-a_{k} q_{k}\right) q_{k+1}>\left(q_{k}-10^{-4}\right) q_{k+1} \geq q_{k} q_{k+1}-3 \times 10^{-4} \tag{5}
\end{equation*}
$$

If on the other hand, $z_{k+1} q_{k+1}>N_{2}+2$, then $z_{k+2}=N_{2}+2$ and by (2), 2(ii), 3(i) and (5)
$z_{k+2}-a_{k} q_{k} q_{k+1}=N_{2}+2-a_{k} q_{k} q_{k+1}>z_{k+1} q_{k+1}-10^{-4}-a_{k} q_{k} q_{k+1}>q_{k} q_{k+1}-4 \times 10^{-4}$,

Lemma 4. Assume that Δ_{k} satisfies conditions of Lemma 3 and that at least one of the ratios q_{k}, q_{k+1}, q_{k+2} is not less than 1.73.

Fig. 3

Denote (see Figs. 2 and 3)

$$
\begin{aligned}
\Delta^{(1)} & =q_{k+2}\left[a_{k} q_{k} q_{k+1}, N_{2}\right], \\
\Delta^{(2)} & =q_{k+2}\left[N_{2}, N_{1} q_{k+1}\right], \\
\Delta^{(3)} & =q_{k+2}\left[N_{1} q_{k+1}, N_{2}+1\right], \\
\Delta^{(4)} & =q_{k+2}\left[N_{2}+1, z_{k+2}\right] .
\end{aligned}
$$

At least one of the intervals $\Delta^{(i)}(i=1,2,3,4)$ contains a proper third successor of Δ_{k} with $\gamma=3^{-3} \times 10^{-4}$.

Proof. Assume that the assertion of Lemma 4 is not true. By arguments similar to those used in the proof of Lemmas 2 and 3, we infer that (see fig. 3) the intervals $\Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}$ contain not more than one integer each. The interval $\Delta^{(4)}$ contains
not more than two integers, and in case $\Delta^{(4)}$ contains two integers and M is the larger of them, $z_{k+2} q_{k+2}<M-10^{-4}$. Consequently, the interval $\Delta=\left[a_{k} q_{k} q_{k+1} q_{k+2}\right.$, $\left.z_{k+2} q_{k+2}\right]$ contains not more than five integers. In case Δ contains four integers only, its length $l<5$. In the remaining case, the right endpoint of Δ exceeds the largest integer $M \in \Delta$ by less than 10^{-4}. So, in this case $l<5+10^{-4}$. In other words, the assumption that the assertion of Lemma 4 is incorrect implies that

$$
\begin{equation*}
l=z_{k+2} q_{k+2}-a_{k} q_{k} q_{k+1} q_{k+2}<5+10^{-4} \tag{6}
\end{equation*}
$$

On the other hand, by 3 (ii) and (2) we have

$$
\begin{align*}
l & =\left(z_{k+2}-a_{k} q_{k} q_{k+1}\right) q_{k+2}>\left(q_{k} q_{k+1}-4 \times 10^{-4}\right) q_{k+2} \\
& \geq q_{k} q_{k+1} q_{k+2}-1 \cdot 2 \times 10^{-3} . \tag{7}
\end{align*}
$$

Since $q_{n} \geq(5)^{1 / 3}$ for each natural n and, by assumption, at least one of q_{k}, q_{k+1}, q_{k+2} is not less than 1.73, we obtain

$$
q_{k} q_{k+1} q_{k+2} \geq(25)^{1 / 3} \times 1.73>5.01
$$

Thus (7) implies that

$$
l>5+10 \times 10^{-3}-1.2 \times 10^{-3}>5+10^{-4}
$$

which contradicts inequality (6). This concludes the proof of Lemma 4.
Lemma 5. Assume that Δ_{k} satisfies conditions of Lemma 3 and none of the intervals $q_{k} \Delta_{k}$ (see Fig. 1), $\left[N_{1} q_{k+1}, z_{k+1} q_{k+1}\right]$ (see Fig. 2), $\Delta^{(4)}$ (see Fig. 3) contains more than one integer. Then there is a third proper successor of Δ_{k} with $\gamma=3^{-3} \times 10^{-4}$.

Proof. If $q_{k} \Delta_{k}$ contains one integer only, this means that $b_{k} q_{k}<N_{1}+1$ (see Fig. 1) and so $z_{k+1}=b_{k} q_{k}$. Similarly, conditions of Lemma 5 imply that

$$
\begin{equation*}
z_{k+2}=z_{k+1} q_{k+1}=b_{k} q_{k} q_{k+1} . \tag{8}
\end{equation*}
$$

Assume that Δ_{k} has no third proper successor. It has been shown in Lemma 4 that in this case if $\Delta^{(4)}$ contains one integer only then

$$
l=z_{k+2} q_{k+2}-a_{k} q_{k} q_{k+1} q_{k+2}<5
$$

In view of (8), we obtain

$$
\left(b_{k}-a_{k}\right) q_{k} q_{k+1} q_{k+2}<5
$$

But $b_{k}-a_{k}=1$, so

$$
q_{k} q_{k+1} q_{k+2}<5
$$

which is impossible because $q_{n} \geq(5)^{1 / 3}$ for all natural n. The contradiction proves Lemma 5.

Lemma 6. Assume that Δ_{k} satisfies conditions of Lemma 3 and there is no third proper successor of Δ_{k} with $\gamma=3^{-3} \times 10^{-4}$. Then each of the intervals $\Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}$ defined in Lemma 4 contains exactly one integer.

Proof. As we know already from the proof of Lemma 4, the conditions of Lemma 6 imply that each of the above intervals contains not more than one integer. Assuming that at least one of them does not contain an integer, we would obtain that

$$
l=z_{k+2} q_{k+2}-a_{k} q_{k} q_{k+1} q_{k+2}<4+10^{-4} .
$$

On the other hand, since $q_{n} \geq(5)^{1 / 3}$ for each natural n, by (7), we obtain

$$
l>q_{k} q_{k+1} q_{k+2}-1.2 \times 10^{-3} \geq 5-1.2 \times 10^{-3}>4+10^{-4}
$$

Lemma 7. Assume that Δ_{k} satisfies conditions of Lemma 6 and $q_{k+3}<1.73$. Then Δ_{k} contains a fourth proper successor with $\gamma=3^{-4} \times 10^{-4}$.

Proof. Denote by $z_{k+3}=\min \left(z_{k+2} q_{k+2}, N_{3}+3\right)$ (see Fig. 3). Let us note that according to Lemma 6 the endpoints of intervals $\Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}$ and the corresponding integers are distributed as shown on Fig. 3. Moreover $N_{3}+3<z_{k+3}$. Assume that none of the intervals $q_{k+3} \delta_{7}=q_{k+3}\left[\left(N_{2}+1\right) q_{k+2}, N_{3}+3\right]$ and $q_{k+3} \delta_{8}=q_{k+3}\left[N_{3}+3, z_{k+3}\right]$ contains a proper fourth successor of Δ_{k} (see Fig. 3 and 4).

In this case $\delta_{7} q_{k+3}$ contains at most one integer, $\delta_{8} q_{k+3}$ contains at most two integers. In case $\delta_{8} q_{k+3}$ contains two integers and M^{\prime} is the larger one, by Lemma 1,

$$
z_{k+3} q_{k+3}<M^{\prime}+10^{-4}
$$

Denote by N the largest integer satisfying the inequality

$$
\begin{equation*}
N<\left(N_{2}+1\right) q_{k+2} q_{k+3} . \tag{9}
\end{equation*}
$$

It follows (see Fig. 4) that

$$
\begin{equation*}
z_{k+3} q_{k+3}-N<3+10^{-4} \tag{10}
\end{equation*}
$$

By Lemma 4, $q_{k+2}<1.73$. By assumption of Lemma 7, $q_{k+3}<1.73$. Thus $q_{k+2} q_{k+3}<$ 3. Consequently,

$$
\begin{equation*}
\left(N_{2}+1\right) q_{k+2} q_{k+3}-N_{2} q_{k+2} q_{k+3}=q_{k+2} q_{k+3}<3 . \tag{11}
\end{equation*}
$$

Inequalities (9) and (11) imply that

$$
\begin{equation*}
N-3<N_{2} q_{k+2} q_{k+3} \tag{12}
\end{equation*}
$$

and from (10) we obtain

$$
\begin{equation*}
z_{k+3} q_{k+3}-(N-3)<6+10^{-4} . \tag{13}
\end{equation*}
$$

Assume now that each of the intervals $\delta_{1} q_{k+3}$ and $\delta_{2} q_{k+3}$ (see Fig. 4) contains not more than one integer. In view of (12), it follows that there is no more than one integer between $a_{k} q_{k} \cdots q_{k+3}$ and $N-3$. Thus

$$
\begin{equation*}
N-3-a_{k} q_{k} \cdots q_{k+3}<2 \tag{14}
\end{equation*}
$$

Fig. 4 (dots denote integers).

From (13) and (14) we obtain

$$
\begin{equation*}
z_{k+3} q_{k+3}-a_{k} q_{k} \cdots q_{k+3}<8+10^{-4} . \tag{15}
\end{equation*}
$$

Similarly as it has been done before we can prove that
(16) $\quad z_{k+3} q_{k+3}-a_{k} q_{k} \cdots q_{k+3}>q_{k} \cdots q_{k+3}-4 \times 10^{-3} \geq 5(5)^{1 / 3}-4 \times 10^{-3}>8.5$.

Since inequalities (15) and (16) are incompatible, at least one of the intervals $\delta_{1} q_{k+3}$ and $\delta_{2} q_{k+3}$ contains two integers, thus yielding a proper fourth successor for Δ_{k}.

This completes the proof of Lemma 7.

Lemma 8. Assume that Δ_{k} satisfies conditions of Lemma 6 and $q_{k+3} \geq 1.73$. If there is no 4th proper successor of Δ_{k} with $\gamma=3^{-4} \times 10^{-4}$ and 5th proper successor of Δ_{k} with $\gamma=3^{-5} \times 10^{-4}$ then there is a 6th proper successor of Δ_{k} with $\gamma=3^{-6} \times 10^{-4}$.

Proof. Since Δ_{k} has no first, second or third proper successors, by Lemma 5, at least one of the intervals $q_{k} \Delta_{k}$ (see Fig. 1), $\left[N_{1} q_{k+1}, z_{k+1} q_{k+1}\right]$ (see Fig. 2) or Δ_{k} (see Fig. 3) contains two integers. We shall assume that $\Delta^{(4)}$ contains two integers: $N_{3}+3$ and $N_{3}+4$ (see Fig. 3). Remaining cases can be considered in a similar manner. Put

$$
\begin{array}{lll}
a_{k+1}=N_{1}, & b_{k+1}=z_{k+1} & (\text { (Notations of Lemma 2 and Fig. 1), } \\
a_{k+2}=N_{2}+1, & b_{k+2}=z_{k+2} & \text { (Notations of Lemma 3 and Fig. 2), } \\
a_{k+3}=N_{3}+3, & b_{k+3}=N_{3}+4 & \text { (Notations of Lemma 4 and Fig. 3). }
\end{array}
$$

The intervals $\Delta_{k+i}=\left[a_{k+i}, b_{k+i}\right]$ satisfy conditions $\left(A_{k+i}\right) i=1,2,3,(B)$ and $d_{k+3}=b_{k+3}-a_{k+3}=1$. Since the interval Δ_{k+3} satisfies conditions (B) and (C) and $q_{k+3} \geq 1.73$, it has either first or second proper successor or, by Lemma $4, \Delta_{k+3}$ has a third proper successor with $\gamma=3^{-3} \times 10^{-4}$. Consider for example the case when Δ_{k+3} has a third proper successor. This means there exist intervals $\Delta_{k+4}, \Delta_{k+5}$ satisfying $\left(A_{k+4}\right),\left(A_{k+5}\right)$ and (B) and an interval $A_{k+6}=\left[a_{k+6}, b_{k+6}\right]$ satisfying $\left(A_{k+6}\right),(B),(C)$ and $\left(D_{k+3, k+6}\left(3^{-3} \times 10^{-4}\right)\right)$. The last condition means that

$$
b_{k+6} \leq \frac{t_{k+6}}{t_{k+3}}\left(b_{k+3}-3^{-3} \times 10^{-4}\right)
$$

But $b_{k+3} \leq b_{k+2} q_{k+2} \leq b_{k+1} q_{k+1} q_{k+2} \leq b_{k}\left(t_{k+3} / t_{k}\right)$. So, we obtain

$$
\begin{aligned}
b_{k+6} & \leq \frac{t_{k+6}}{t_{k+3}}\left(\frac{t_{k+3}}{t_{k}} b_{k}-3^{-3} \times 10^{-4}\right) \\
& =\frac{t_{k+6}}{t_{k}}\left(b_{k}-\frac{3^{-3} \times 10^{-4}}{q_{k} q_{k+1} q_{k+2}}\right) \\
& \leq \frac{t_{k+6}}{t_{k}}\left(b_{k}-3^{-6} \times 10^{-4}\right),
\end{aligned}
$$

thus Δ_{k+6} is a proper successor of Δ_{k} with $\gamma=3^{-6} \times 10^{-4}$.
We have exhausted all possibilities, so we may state the following
Corollary 1. If an interval Δ_{k} satisfies conditions (B) and (C), then there is a sequence $\Delta_{k+1}, \ldots, \Delta_{k+m}(m \leq 6)$ of at most six intervals such that the last one is a proper successor of Δ_{k} with $\gamma=3^{-6} \times 10^{-4}$. (We are using here the following property of condition $\left(D_{k, m}(\gamma)\right)$: if $0<\gamma_{1}<\gamma_{2}$ and $\left(D_{k, m}\left(\gamma_{2}\right)\right)$ holds then $\left(D_{k, m}\left(\gamma_{1}\right)\right)$ is also satisfied).

Analogously to the condition $\left(D_{k, m}(\gamma)\right)$ we may introduce condition ($L_{k, m}(\gamma)$) as follows: Given a sequence $\left\{a_{n}\right\}$ we shall say that a_{k} satisfies condition ($L_{k, m}(\gamma)$)
$(\gamma>0)$ if there exists a natural number $m(k)$ (depending on k) such that

$$
\left(L_{k, m}(\gamma)\right)
$$

$$
a_{k+m} \geq \frac{t_{k+m}}{t_{k}}\left(a_{k}+\gamma\right)
$$

Also similarly, we define a concept of a left proper successor:
Definition. Given a sequence of intervals $\left\{\Delta_{n}\right\}$, an interval Δ_{k+m} is said to be a left proper successor of Δ_{k} with $\gamma=\gamma_{0},\left(\gamma_{0}>0\right)$ if
(i) Δ_{k+p} satisfy conditions $\left(A_{n+p}\right)$ and (B) for $p=1,2, \ldots, m$,
(ii) $d_{k+m}=1$,
(iii) a_{k} satisfies $\left(L_{k, m}\left(\gamma_{0}\right)\right)$.

In a similar manner we may prove that given an interval Δ_{k} satisfying (B) and (C), we may construct a sequence of at most six intervals $\Delta_{k+1}, \ldots, \Delta_{k+m}(m \leq 6)$ such that the last one is a left proper successor of Δ_{k} with $\gamma=3^{-6} \times 10^{-4}$.

We are now in a position to prove the Theorem stated in the paper.
Proof of Theorem. Take $a_{1}=1, b_{1}=2$. Construct intervals $\Delta_{2}, \ldots, \Delta_{k}(k \leq 7)$ such that Δ_{k} is a (right) proper successor of $\Delta_{1}=\left[a_{1}, b_{1}\right]$ with $\gamma_{0}=3^{-6} \times 10^{-4}$. Then choose intervals $\Delta_{k+1}, \ldots, \Delta_{k+m}(m \leq 6)$ such that Δ_{k+m} is a left proper successor of Δ_{k}, with $\gamma=\gamma_{0}$. Then we are getting intervals $\Delta_{k+m+1}, \ldots, \Delta_{k+m+p}$, the last one being a (right) proper successor of Δ_{k+m} etc.

Denote $\Delta_{n}=\left[a_{n}, b_{n}\right]$ for $n=1,2, \ldots$ The intervals satisfy condition (B) for all natural n, conditions $\left(A_{n}\right)$ for $n=2, \ldots$, Moreover, it is easy to show that if Δ_{k} is a proper right (left) successor of $\Delta_{j+m}(k>j+m, m>0)$ with $\gamma=\gamma_{0}$ then Δ_{k} is also a proper right (left) successor of Δ_{j} with $\gamma=3^{-m} \gamma_{0}$. It follows that for each of n, there exist m and $p(m, p \leq 17)$ such that conditions $\left(D_{n, m}(\beta)\right)$ and $\left(L_{n, p}(\beta)\right)$ are satisfied with $\beta=3^{-17} \times 10^{-4}$.

Consider the sequence of intervals $\left\{\left[a_{n}\left|t_{n}, b_{n}\right| t_{n}\right]\right\}$. Replacing in $\left(A_{n+1}\right) q_{n}$ by t_{n+1} / t_{n} we obtain

$$
a_{n} \frac{t_{n+1}}{t_{n}} \leq a_{n+1}<b_{n+1} \leq b_{n} \frac{t_{n+1}}{t_{n}}
$$

or since $t_{n}>0$,

$$
\frac{a_{n}}{t_{n}} \leq \frac{a_{n+1}}{t_{n+1}}<\frac{b_{n+1}}{t_{n+1}} \leq \frac{b_{n}}{t_{n}}
$$

Thus the sequence $\left\{\left[a_{n} / t_{n}, b_{n} / t_{n}\right]\right\}$ is a nested sequence of closed intervals. Consequently there exists a number ξ belonging to all intervals of this sequence. So,

$$
\frac{a_{n}}{t_{n}} \leq \xi \leq \frac{b_{n}}{t_{n}} \text { for } n=1,2, \ldots
$$

Taking into account that for each n conditions $\left(L_{n, p}(\beta)\right)$ and $\left(D_{n, m}(\beta)\right)$ are satisfied, we obtain

$$
\left(a_{n}+\beta\right) \frac{t_{n+p}}{t_{n}} \frac{1}{t_{n+p}} \leq \frac{a_{n+p}}{t_{n+m}} \leq \xi \leq \frac{b_{n+m}}{t_{n+m}} \leq \frac{1}{t_{n+m}} \frac{t_{n+m}}{t_{n}}\left(b_{n}-\beta\right)
$$

or

$$
a_{n}+\beta \leq \xi t_{n} \leq b_{n}-\beta
$$

Since for each $n,\left[a_{n}, b_{n}\right](\bmod 1) \subset[0,1]$ this means that

$$
\xi t_{n}(\bmod 1) \in[\beta, 1-\beta]
$$

as required in the Theorem.

References

1. P. Erdös and S. J. Taylor, On the set of points on convergence of a lucunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc. (3) 7 (1957), 598-615.
2. E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloquium Mathematicum 11 (1963), 91-99.

University of Alberta,
Alberta, Canada

Department of Mathematics, Monash University, Clayton, Victoria 3168 Australia

[^0]: Received by the editors November 24, 1972.
 This paper has been written during my visit at the Mathematics Department of the University of Alberta, Edmonton.

