ON SEQUENCES $\{\xi t_n \pmod{1}\}$

BY E. STRZELECKI

J. Mycielski has conveyed to me the following problem by P. Erdös. Let $\{t_n\}$ be a sequence of natural numbers such that

$$\frac{t_{n+1}}{t} \ge \alpha > 1$$
 for $n = 1, 2, ..., .$

(a) Does there exist an irrational number η such that the sequence $\{t_n\eta \pmod{1}\}$ is not dense in [0, 1)?

(b) Does there exist a real number ξ such that 0 (and if possible also 1) are not limit points of the sequence $\{t_n \xi \pmod{1}\}$?

P. Erdös and S. J. Taylor have proved in [1] that the set of numbers ρ such that $\{t_n \rho \pmod{1}\}\$ has not the equipartition property in the interval [0, 1] has Hausdorff dimension 1.

In this note we use the methods of [2] to give a partial answer to question (b). Namely we shall prove the following

THEOREM. Let $\{t_n\}$ be a sequence of positive (not necessarily natural numbers) such that

$$q_n = \frac{t_{n+1}}{t_n} \ge (5)^{1/3}$$
 for $n = 1, 2, ..., .$

Then there exist positive numbers ξ and β such that

(1)
$$t_n \xi \pmod{1} \in [\beta, 1-\beta] \text{ for } n = 1, 2, \dots, .$$

Let us note that it is sufficient to prove the theorem under an additional restriction that $q_n \leq 3$ for all natural *n*. In fact, if for some fixed $n, q_n = (t_{n+1}/t_n) > 3$, then assuming that s is a natural number such that

$$3^{s/2}t_n < t_{n+1} \le 3^{(s+1)/2}t_n,$$

we shall insert between t_n and t_{n+1} new terms

$$3^{1/2}t_n, 3t_n, \ldots, 3^{(s-1)/2}t_n.$$

The new extended sequence $\{t'_n\}$ will still satisfy (1) (since $\sqrt{3} > 1.73$) but we shall have $q'_n \leq 3$ for all natural *n*. Obviously, if the assertion of the theorem holds for

7

Received by the editors November 24, 1972.

This paper has been written during my visit at the Mathematics Department of the University of Alberta, Edmonton. 727

some sequence $\{t'_n\}$ it is also true for any subsequence $\{t_n\}$ of $\{t'_n\}$. In other words, to prove the theorem it is sufficient to show that:

If $\{t_n\}$ is a sequence of positive numbers such that

(2)
$$(5)^{1/3} \le q_n = \frac{t_{n+1}}{t_n} \le 3 \text{ for } n = 1, 2, \dots,$$

then there exist positive numbers ξ and β such that

$$t_n \xi \pmod{1} \in [\beta, 1-\beta] \text{ for } n = 1, 2, \dots$$

The proof of the theorem will be based on several lemmas. We shall refer often to the following conditions:

Given intervals $\Delta_n = [a_n, b_n]$ and $\Delta_{n+1} = [a_{n+1}, b_{n+1}]$, the interval Δ_{n+1} is said to satisfy condition (A_{n+1}) if

$$(A_{n+1}) q_n a_n \le a_{n+1} < b_{n+1} \le q_n b_n.$$

An interval $\Delta = [x, y]$ satisfies condition (B) if

(B)
$$[x, y] (mod 1) \subset [0, 1].$$

In other words an interval Δ satisfies B iff no integer is an interior point of Δ .

An interval $\Delta = [x, y]$ satisfies condition (C) if

$$(C) d = y - x = 1.$$

Given a sequence $\{b_n\}$ we shall say that b_k satisfies condition $(D_{k,m}(\gamma))$, $(\gamma>0)$ if there exists a natural number m(k) (depending on k) such that

$$(D_{k,m}(\gamma)) \qquad \qquad b_{k+m} \leq \frac{t_{k+m}}{t_k} (b_k - \gamma).$$

DEFINITION. Given a sequence of intervals $\{\Delta_n\}$, $\Delta_n = [a_n, b_n]$, $n=1, 2, \ldots$, an interval Δ_{k+m} is said to be a proper *m*th successor of the interval Δ_k with $\gamma = \gamma_0$, $(\gamma_0 > 0)$ if

(i) Δ_{k+p} satisfy conditions (A_{n+p}) and (B) for $p=1, 2, \ldots, m$,

- (ii) $d_{k+m} = 1$,
- (iii) b_k satisfies $(D_{k,m}(\gamma_0))$.

We now start proving the theorem. In the sequel, $\{t_n\}$ denotes a sequence of positive numbers satisfying condition (2).

LEMMA 1. Assume that

$$b_{k+m} \le b_k \frac{t_{k+m}}{t_k} - 10^{-4}$$
,

then b_k satisfies $(D_{k,m}(3^{-m} \times 10^{-4}))$.

Proof. Since $q_n \leq 3$ for all natural *n*, we obtain

$$b_{k+m} \le b_k \frac{t_{k+m}}{t_k} - 10^{-4} = b_k q_k \cdots q_{k+m-1} - 10^{-4}$$
$$= \frac{t_{k+m}}{t_k} \left(b_k - \frac{10^{-4}}{q_k \cdots q_{k+m-1}} \right)$$
$$\le \frac{t_{k+m}}{t_k} \left(b_k - 3^{-m} \times 10^{-4} \right).$$

LEMMA 2. Assume that $\Delta_k = [a_k, b_k]$ satisfies conditions (B) and (C) but there exists no proper first successor of Δ_k with $\gamma = 3^{-1} \times 10^{-4}$, then there is an integer N_1 (see Fig. 1; dots indicate integers) such that

2(i)
$$N_1 - 1 < a_k q_k < N_1 < b_k q_k < N_1 + 1 + 10^{-4}$$
,

2(ii)
$$z_{k+1} - a_k q_k > q_k - 10^{-4}$$

where
$$z_{k+1} = \min(b_k q_k, N_1 + 1).$$

https://doi.org/10.4153/CMB-1975-127-7 Published online by Cambridge University Press

E. STRZELECKI

Proof. Since $d_k = b_k - a_k = 1$ and $q_k \ge (5)^{1/3} > 1$, we have

$$b_k q_k - a_k q_k = q_k > 1$$

and so, the interval $q_k \Delta_k = [a_k q_k, b_k q_k]$ contains at least one integer. Denote by N_1 the smallest integer belonging to the interval $q_k \Delta_k$. Then we have

$$N_1 - 1 < a_k q_k \le N_1 < b_k q_k.$$

Assuming that $b_k q_k \ge N_1 + 1 + 10^{-4}$ we have

$$\Delta_{k+1} = [N_1, N_1+1] \subset [a_k q_k, b_k q_k].$$

Thus putting $a_{k+1}=N_1$, $b_{k+1}=N_1+1$, we obtain an interval $[a_{k+1}, b_{k+1}]$ satisfying (A_{k+1}) , B and C, and since $b_{k+1}=N_1+1\leq b_kq_k-10^{-4}$, by Lemma 1, b_k satisfies the condition $D_{k,1}(3^{-1}\times10^{-4})$. This means that Δ_{k+1} is a proper first successor of Δ_k with $\gamma=3^{-1}\times10^{-4}$, contrary to the assumptions of Lemma 2. Consequently,

(4)
$$b_k q_k < N_1 + 1 + 10^{-4}$$
.

Now if $a_kq_k = N_1$ then $b_kq_k - a_kq_k = b_kq_k - N_1 < 1 + 10^{-4} < q_k$, contrary to (3). Hence the inequality 2(i) is proved completely.

Now, if $b_k q_k \leq N_1 + 1$, then $z_{k+1} = b_k q_k$ and therefore, by (3)

$$z_{k+1} - a_k q_k = q_k > q_k - 10^{-4}.$$

If, on the other hand $b_k q_k > N_1 + 1$, then $z_{k+1} = N_1 + 1$ and, by (4) and (3), we obtain

$$z_{k+1} - a_k q_k = N_1 + 1 - a_k q_k > b_k q_k - a_k q_k - 10^{-4} = q_k - 10^{-4}$$

as required in 2(ii).

LEMMA 3. Assume that in addition to the conditions of Lemma 2, Δ_k has also no proper second successor with $\gamma = 3^{-2} \times 10^{-4}$, then there exists an integer N_2 (see Fig. 2) such that

3(i)
$$N_2 - 1 < a_k q_k q_{k+1} < N_2 < N_1 q_{k+1} < N_2 + 1 < z_{k+1} q_{k+1} < N_2 + 2 + 10^{-4}$$

$$z_{k+2} - a_k q_k q_{k+1} > q_k q_{k+1} - 4 \times 10^{-4},$$

where

$$z_{k+2} = \min(z_{k+1}q_{k+1}, N_2+2).$$

Proof. As in the proof of Lemma 2, denote by N_2 the smallest integer such that $N_2 \ge a_k q_k q_{k+1}$. The interval $[a_k q_k q_{k+1}, N_1 q_{k+1}]$ cannot contain two integers since they would be the endpoints of a proper second successor of Δ_k . It is easy to show that the length of this interval is greater than 1, and so N_2 cannot coincide with any of its endpoints. So,

$$N_2 - 1 < a_k q_k q_{k+1} < N_2 < N_1 q_{k+1} < N_2 + 1.$$

Assuming that $z_{k+1}q_{k+1} < N_2 + 1$, we obtain

$$z_{k+1}q_{k+1} - a_k q_k q_{k+1} < 2,$$

[December

.

•
$$N_2 - 1$$

• $a_k q_k q_{k+1}$
• N_2
• $N_1 q_{k+1}$
• $N_2 + 1$
• $N_2 + 1$
• $z_{k+1} q_{k+1}$

but, by 2(ii) and (3), we have

$$z_{k+1}q_{k+1} - a_kq_kq_{k+1} > (q_k - 10^{-4})q_{k+1} > 2.8$$

Again, as in Lemma 2, the inequality $z_{k+1}q_{k+1} \ge N_2 + 2 + 10^{-4}$ implies the existence of a second proper successor with $\gamma = 3^{-2} \times 10^{-4}$. This remark concludes the proof of inequality 3(i).

Now, if $z_{k+1}q_{k+1} \le N_2 + 2$ then, $z_{k+2} = z_{k+1}q_{k+1}$ and thus, by 2(ii) and 2,

(5) $z_{k+2} - a_k q_k q_{k+1} = (z_{k+1} - a_k q_k) q_{k+1} > (q_k - 10^{-4}) q_{k+1} \ge q_k q_{k+1} - 3 \times 10^{-4}.$

If on the other hand, $z_{k+1}q_{k+1} > N_2 + 2$, then $z_{k+2} = N_2 + 2$ and by (2), 2(ii), 3(i) and (5)

$$z_{k+2} - a_k q_k q_{k+1} = N_2 + 2 - a_k q_k q_{k+1} > z_{k+1} q_{k+1} - 10^{-4} - a_k q_k q_{k+1} > q_k q_{k+1} - 4 \times 10^{-4},$$

LEMMA 4. Assume that Δ_k satisfies conditions of Lemma 3 and that at least one of the ratios q_k , q_{k+1} , q_{k+2} is not less than 1.73.

Denote (see Figs. 2 and 3)

$$\begin{split} \Delta^{(1)} &= q_{k+2}[a_k q_k q_{k+1}, N_2], \\ \Delta^{(2)} &= q_{k+2}[N_2, N_1 q_{k+1}], \\ \Delta^{(3)} &= q_{k+2}[N_1 q_{k+1}, N_2 + 1], \\ \Delta^{(4)} &= q_{k+2}[N_2 + 1, z_{k+2}]. \end{split}$$

At least one of the intervals $\Delta^{(i)}$ (i=1, 2, 3, 4) contains a proper third successor of Δ_k with $\gamma = 3^{-3} \times 10^{-4}$.

Proof. Assume that the assertion of Lemma 4 is not true. By arguments similar to those used in the proof of Lemmas 2 and 3, we infer that (see fig. 3) the intervals $\Delta^{(1)}$, $\Delta^{(2)}$, $\Delta^{(3)}$ contain not more than one integer each. The interval $\Delta^{(4)}$ contains

not more than two integers, and in case $\Delta^{(4)}$ contains two integers and M is the larger of them, $z_{k+2}q_{k+2} < M - 10^{-4}$. Consequently, the interval $\Delta = [a_kq_kq_{k+1}q_{k+2}, z_{k+2}q_{k+2}]$ contains not more than five integers. In case Δ contains four integers only, its length l < 5. In the remaining case, the right endpoint of Δ exceeds the largest integer $M \in \Delta$ by less than 10^{-4} . So, in this case $l < 5 + 10^{-4}$. In other words, the assumption that the assertion of Lemma 4 is incorrect implies that

(6)
$$l = z_{k+2}q_{k+2} - a_kq_kq_{k+1}q_{k+2} < 5 + 10^{-4}.$$

On the other hand, by 3(ii) and (2) we have

(7)
$$l = (z_{k+2} - a_k q_k q_{k+1}) q_{k+2} > (q_k q_{k+1} - 4 \times 10^{-4}) q_{k+2}$$
$$\ge q_k q_{k+1} q_{k+2} - 1 \cdot 2 \times 10^{-3}.$$

Since $q_n \ge (5)^{1/3}$ for each natural *n* and, by assumption, at least one of q_k, q_{k+1}, q_{k+2} is not less than 1.73, we obtain

$$q_k q_{k+1} q_{k+2} \ge (25)^{1/3} \times 1.73 > 5.01.$$

Thus (7) implies that

$$l > 5 + 10 \times 10^{-3} - 1.2 \times 10^{-3} > 5 + 10^{-4},$$

which contradicts inequality (6). This concludes the proof of Lemma 4.

LEMMA 5. Assume that Δ_k satisfies conditions of Lemma 3 and none of the intervals $q_k \Delta_k$ (see Fig. 1), $[N_1q_{k+1}, z_{k+1}q_{k+1}]$ (see Fig. 2), $\Delta^{(4)}$ (see Fig. 3) contains more than one integer. Then there is a third proper successor of Δ_k with $\gamma = 3^{-3} \times 10^{-4}$.

Proof. If $q_k \Delta_k$ contains one integer only, this means that $b_k q_k < N_1 + 1$ (see Fig. 1) and so $z_{k+1} = b_k q_k$. Similarly, conditions of Lemma 5 imply that

(8)
$$z_{k+2} = z_{k+1}q_{k+1} = b_k q_k q_{k+1}.$$

Assume that Δ_k has no third proper successor. It has been shown in Lemma 4 that in this case if $\Delta^{(4)}$ contains one integer only then

$$l = z_{k+2}q_{k+2} - a_k q_k q_{k+1}q_{k+2} < 5.$$

In view of (8), we obtain

$$(b_k - a_k)q_k q_{k+1} q_{k+2} < 5.$$

But $b_k - a_k = 1$, so

$$q_k q_{k+1} q_{k+2} < 5$$

which is impossible because $q_n \ge (5)^{1/3}$ for all natural *n*. The contradiction proves Lemma 5.

LEMMA 6. Assume that Δ_k satisfies conditions of Lemma 3 and there is no third proper successor of Δ_k with $\gamma = 3^{-3} \times 10^{-4}$. Then each of the intervals $\Delta^{(1)}$, $\Delta^{(2)}$, $\Delta^{(3)}$ defined in Lemma 4 contains exactly one integer.

E. STRZELECKI

[December

Proof. As we know already from the proof of Lemma 4, the conditions of Lemma 6 imply that each of the above intervals contains not more than one integer. Assuming that at least one of them does not contain an integer, we would obtain that

$$l = z_{k+2}q_{k+2} - a_kq_kq_{k+1}q_{k+2} < 4 + 10^{-4}.$$

On the other hand, since $q_n \ge (5)^{1/3}$ for each natural *n*, by (7), we obtain

$$l > q_k q_{k+1} q_{k+2} - 1.2 \times 10^{-3} \ge 5 - 1.2 \times 10^{-3} > 4 + 10^{-4}$$

LEMMA 7. Assume that Δ_k satisfies conditions of Lemma 6 and $q_{k+3} < 1.73$. Then Δ_k contains a fourth proper successor with $\gamma = 3^{-4} \times 10^{-4}$.

Proof. Denote by $z_{k+3} = \min(z_{k+2}q_{k+2}, N_3 + 3)$ (see Fig. 3). Let us note that according to Lemma 6 the endpoints of intervals $\Delta^{(1)}$, $\Delta^{(2)}$, $\Delta^{(3)}$ and the corresponding integers are distributed as shown on Fig. 3. Moreover $N_3 + 3 < z_{k+3}$. Assume that none of the intervals $q_{k+3}\delta_7 = q_{k+3}[(N_2+1)q_{k+2}, N_3+3]$ and $q_{k+3}\delta_8 = q_{k+3}[N_3+3, z_{k+3}]$ contains a proper fourth successor of Δ_k (see Fig. 3 and 4).

In this case $\delta_7 q_{k+3}$ contains at most one integer, $\delta_8 q_{k+3}$ contains at most two integers. In case $\delta_8 q_{k+3}$ contains two integers and M' is the larger one, by Lemma 1,

$$z_{k+3}q_{k+3} < M' + 10^{-4}.$$

Denote by N the largest integer satisfying the inequality

(9) $N < (N_2 + 1)q_{k+2}q_{k+3}.$

It follows (see Fig. 4) that

(10)
$$z_{k+3}q_{k+3} - N < 3 + 10^{-4}.$$

By Lemma 4, $q_{k+2} < 1.73$. By assumption of Lemma 7, $q_{k+3} < 1.73$. Thus $q_{k+2}q_{k+3} < 3$. Consequently,

(11)
$$(N_2+1)q_{k+2}q_{k+3} - N_2q_{k+2}q_{k+3} = q_{k+2}q_{k+3} < 3.$$

Inequalities (9) and (11) imply that

 $(12) N-3 < N_2 q_{k+2} q_{k+3},$

and from (10) we obtain

(13)
$$z_{k+3}q_{k+3} - (N-3) < 6 + 10^{-4}$$

Assume now that each of the intervals $\delta_1 q_{k+3}$ and $\delta_2 q_{k+3}$ (see Fig. 4) contains not more than one integer. In view of (12), it follows that there is no more than one integer between $a_k q_k \cdots q_{k+3}$ and N-3. Thus

(14)
$$N-3-a_kq_k\cdots q_{k+3} < 2.$$

Fig. 4 (dots denote integers).

From (13) and (14) we obtain

(15) $z_{k+3}q_{k+3} - a_kq_k \cdots q_{k+3} < 8 + 10^{-4}.$

Similarly as it has been done before we can prove that

(16) $z_{k+3}q_{k+3} - a_kq_k \cdots q_{k+3} > q_k \cdots q_{k+3} - 4 \times 10^{-3} \ge 5(5)^{1/3} - 4 \times 10^{-3} > 8.5.$

Since inequalities (15) and (16) are incompatible, at least one of the intervals $\delta_1 q_{k+3}$ and $\delta_2 q_{k+3}$ contains two integers, thus yielding a proper fourth successor for Δ_k .

This completes the proof of Lemma 7.

[December

LEMMA 8. Assume that Δ_k satisfies conditions of Lemma 6 and $q_{k+3} \ge 1.73$. If there is no 4th proper successor of Δ_k with $\gamma = 3^{-4} \times 10^{-4}$ and 5th proper successor of Δ_k with $\gamma = 3^{-5} \times 10^{-4}$ then there is a 6th proper successor of Δ_k with $\gamma = 3^{-6} \times 10^{-4}$.

Proof. Since Δ_k has no first, second or third proper successors, by Lemma 5, at least one of the intervals $q_k \Delta_k$ (see Fig. 1), $[N_1q_{k+1}, z_{k+1}q_{k+1}]$ (see Fig. 2) or Δ_k (see Fig. 3) contains two integers. We shall assume that $\Delta^{(4)}$ contains two integers: N_3 +3 and N_3 +4 (see Fig. 3). Remaining cases can be considered in a similar manner. Put

$$a_{k+1} = N_1$$
, $b_{k+1} = z_{k+1}$ (Notations of Lemma 2 and Fig. 1),
 $a_{k+2} = N_2 + 1$, $b_{k+2} = z_{k+2}$ (Notations of Lemma 3 and Fig. 2),
 $a_{k+3} = N_3 + 3$, $b_{k+3} = N_3 + 4$ (Notations of Lemma 4 and Fig. 3).

The intervals $\Delta_{k+i} = [a_{k+i}, b_{k+i}]$ satisfy conditions (A_{k+i}) i=1, 2, 3, (B) and $d_{k+3} = b_{k+3} - a_{k+3} = 1$. Since the interval Δ_{k+3} satisfies conditions (B) and (C) and $q_{k+3} \ge 1.73$, it has either first or second proper successor or, by Lemma 4, Δ_{k+3} has a third proper successor with $\gamma = 3^{-3} \times 10^{-4}$. Consider for example the case when Δ_{k+3} has a third proper successor. This means there exist intervals Δ_{k+4} , Δ_{k+5} satisfying (A_{k+4}) , (A_{k+5}) and (B) and an interval $A_{k+6} = [a_{k+6}, b_{k+6}]$ satisfying (A_{k+6}) , (B), (C) and $(D_{k+3,k+6}(3^{-3} \times 10^{-4}))$. The last condition means that

$$b_{k+6} \leq \frac{t_{k+6}}{t_{k+3}} (b_{k+3} - 3^{-3} \times 10^{-4}).$$

But $b_{k+3} \le b_{k+2}q_{k+2} \le b_{k+1}q_{k+1}q_{k+2} \le b_k(t_{k+3}/t_k)$. So, we obtain

$$\begin{split} b_{k+6} &\leq \frac{t_{k+6}}{t_{k+3}} \left(\frac{t_{k+3}}{t_k} b_k - 3^{-3} \times 10^{-4} \right) \\ &= \frac{t_{k+6}}{t_k} \left(b_k - \frac{3^{-3} \times 10^{-4}}{q_k q_{k+1} q_{k+2}} \right) \\ &\leq \frac{t_{k+6}}{t_k} \left(b_k - 3^{-6} \times 10^{-4} \right), \end{split}$$

thus Δ_{k+6} is a proper successor of Δ_k with $\gamma = 3^{-6} \times 10^{-4}$.

We have exhausted all possibilities, so we may state the following

COROLLARY 1. If an interval Δ_k satisfies conditions (B) and (C), then there is a sequence $\Delta_{k+1}, \ldots, \Delta_{k+m}$ ($m \leq 6$) of at most six intervals such that the last one is a proper successor of Δ_k with $\gamma = 3^{-6} \times 10^{-4}$. (We are using here the following property of condition $(D_{k,m}(\gamma))$: if $0 < \gamma_1 < \gamma_2$ and $(D_{k,m}(\gamma_2))$ holds then $(D_{k,m}(\gamma_1))$ is also satisfied).

Analogously to the condition $(D_{k,m}(\gamma))$ we may introduce condition $(L_{k,m}(\gamma))$ as follows: Given a sequence $\{a_n\}$ we shall say that a_k satisfies condition $(L_{k,m}(\gamma))$

736

 $(\gamma > 0)$ if there exists a natural number m(k) (depending on k) such that

$$(L_{k,m}(\gamma)) \qquad \qquad a_{k+m} \geq \frac{t_{k+m}}{t_k} \ (a_k + \gamma).$$

Also similarly, we define a concept of a left proper successor:

DEFINITION. Given a sequence of intervals $\{\Delta_n\}$, an interval Δ_{k+m} is said to be a left proper successor of Δ_k with $\gamma = \gamma_0$, $(\gamma_0 > 0)$ if

- (i) Δ_{k+p} satisfy conditions (A_{n+p}) and (B) for $p=1, 2, \ldots, m$,
- (ii) $d_{k+m} = 1$,

1975]

(iii) a_k satisfies $(L_{k,m}(\gamma_0))$.

In a similar manner we may prove that given an interval Δ_k satisfying (B) and (C), we may construct a sequence of at most six intervals $\Delta_{k+1}, \ldots, \Delta_{k+m}$ ($m \le 6$) such that the last one is a left proper successor of Δ_k with $\gamma = 3^{-6} \times 10^{-4}$.

We are now in a position to prove the Theorem stated in the paper.

Proof of Theorem. Take $a_1=1$, $b_1=2$. Construct intervals $\Delta_2, \ldots, \Delta_k$ $(k \le 7)$ such that Δ_k is a (right) proper successor of $\Delta_1 = [a_1, b_1]$ with $\gamma_0 = 3^{-6} \times 10^{-4}$. Then choose intervals $\Delta_{k+1}, \ldots, \Delta_{k+m}$ $(m \le 6)$ such that Δ_{k+m} is a left proper successor of Δ_k , with $\gamma = \gamma_0$. Then we are getting intervals $\Delta_{k+m+1}, \ldots, \Delta_{k+m+p}$, the last one being a (right) proper successor of Δ_{k+m} etc.

Denote $\Delta_n = [a_n, b_n]$ for $n=1, 2, \ldots$. The intervals satisfy condition (B) for all natural *n*, conditions (A_n) for $n=2, \ldots$. Moreover, it is easy to show that if Δ_k is a proper right (left) successor of Δ_{j+m} (k>j+m, m>0) with $\gamma = \gamma_0$ then Δ_k is also a proper right (left) successor of Δ_j with $\gamma = 3^{-m}\gamma_0$. It follows that for each of *n*, there exist *m* and p $(m, p \le 17)$ such that conditions $(D_{n,m}(\beta))$ and $(L_{n,p}(\beta))$ are satisfied with $\beta = 3^{-17} \times 10^{-4}$.

Consider the sequence of intervals $\{[a_n/t_n, b_n/t_n]\}$. Replacing in $(A_{n+1}) q_n$ by t_{n+1}/t_n we obtain

$$a_n \frac{t_{n+1}}{t_n} \le a_{n+1} < b_{n+1} \le b_n \frac{t_{n+1}}{t_n},$$

or since $t_n > 0$,

$$\frac{a_n}{t_n} \le \frac{a_{n+1}}{t_{n+1}} < \frac{b_{n+1}}{t_{n+1}} \le \frac{b_n}{t_n}$$

Thus the sequence $\{[a_n/t_n, b_n/t_n]\}$ is a nested sequence of closed intervals. Consequently there exists a number ξ belonging to all intervals of this sequence. So,

$$\frac{a_n}{t_n} \le \xi \le \frac{b_n}{t_n} \quad \text{for } n = 1, 2, \dots$$

Taking into account that for each *n* conditions $(L_{n,p}(\beta))$ and $(D_{n,m}(\beta))$ are satisfied, we obtain

$$(a_{n}+\beta)\frac{t_{n+p}}{t_{n}}\frac{1}{t_{n+p}} \le \frac{a_{n+p}}{t_{n+m}} \le \xi \le \frac{b_{n+m}}{t_{n+m}} \le \frac{1}{t_{n+m}}\frac{t_{n+m}}{t_{n}}(b_{n}-\beta),$$

or

$$a_n + \beta \le \xi t_n \le b_n - \beta.$$

Since for each n, $[a_n, b_n] \pmod{1} \subset [0, 1]$ this means that

 $\xi t_n \pmod{1} \in [\beta, 1-\beta]$

as required in the Theorem.

References

1. P. Erdös and S. J. Taylor, On the set of points on convergence of a lucunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc. (3) 7 (1957), 598-615.

2. E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloquium Mathematicum 11 (1963), 91-99.

UNIVERSITY OF ALBERTA, ALBERTA, CANADA DEPARTMENT OF MATHEMATICS, Monash University, Clayton, Victoria 3168 Australia