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ABSTRACT

An overview of the potential of Generalized Linear Models as a means of
modelling the salient features of the claims process in the presence of rating factors
is presented. Specific attention is focused on the rich variety of modelling
distributions which can be implemented in this context.
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1. INTRODUCTION

The claims process in non-life insurance comprises two components, claim
frequency and claim serverity, in which the product of the underlying expected
claim rate and expected claim severity defines the pure or risk premium.
Specifically, considerable attention is given to the probabalistic modelling of
various aspects of a single batch of claims, often focusing on the aggregate claims
accruing in a time period of fixed duration, typically one year, under a variety of
assumptions imposed on the claim frequency and claim severity mechanisms.

In this paper, attention is refocused on the considerable potential of generalized
linear models (GLMs) as a comprehensive modelling tool for the study of the
claims process in the presence of covariates. Section 2 contains a brief summary of
the main features of GLMs which are of potential interest in modelling various
aspects of the claims process. Particular attention is drawn to the rich variety of
modelling distributions which are available and to the parameter estimation and
model fitting techniques based on the concepts of quasi-likelihood and extended
quasi-likelihood. Sections 3 and 4 focus respectively on the modelling of the claim
frequency and claim severity components of the process in the presence of
covariates. An overview of the potential of GLMs as a means of modelling these
two aspects of the claims process is discussed. Relevant published applications are
referenced, although an exhaustive search of the literature has not been conducted.
A number of the suggested modelling techniques are illustrated in Section 5.
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2. G L M S . QUASI-LIKELIHOOD. EXTENDED QUASI-LIKELIHOOD

Focus intially on independent response variables {Y,•.: i = 1, 2 , . . . , n} with either
density or point mass function, as the case may be, of the type

• fy, 0 , -6 (0 , )
(2.1) f(\ot) \±Ll!!

for specified functions a (.), b (.) and c (.), where 0, is the canonical parameter and
(pi the dispersion parameter. The cumulant function b(.) plays a central role in
characterising many of the properties of the distribution. It gives rise to the
cumulant generating function, K, of the random variable Y,, assuming it exits,
according to the equation

b{a{(pi)t + e.}-b{ei}
(2.2) Kr(t)= — .

(0)
Our immediate concern therefore is with distributions with at most two parame-
ters.

Let (xi = E(Yj) throughout. Comparison of the density or point mass function of a
standard distribution with expression (2.1) establishes membership or otherwise of
this class of distributions. It also determines the specific nature of the canonical
parameter 0, and function a(.) up to a constant, as well as the nature of the
dispersion parameter 0, and the other two functions b(.) and c(.). To uniquely
determine 0, and a (.) it is also necessary to compare the variance of the standard
distributions with the general expression (2.6) or, more specifically, expression (2.8)
for the variance of Y,.

For inference, the log-likelhood is

(2.3) /= X /,•= S
;=i i=\ I a ((pi)

The identity

(2.4) E {—1 = 0 => £(^) = ,̂. = A' (0,)
U0,J

where dash denotes differentiation. Thus, provided the function b' (.) has an inverse,
which is defined to be the case, the canonical parameter 0, = b'~i (,M,), a known
function of fi,•.

The identity

dd,

the product of two functions. Noting that b"'(.) is a function of the canonical
parameter 0, and hence of /u,•, the identity

(2.5)
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is established and hence the so-called variance function V(.) defined. Hence the
variance or second cumulant is

(2.6) Var (Y^ = K^] = V (/*,-) a (0,-).

The other function a (.) is commonly of the type

<P
(2.7) a(0,) = —

with constant scale parameter <p and prior weights co, so that

<t>V(fit)
(2.8) Var

CO:

This is assumed to be the case throughout. We remark that by setting <p=l,
\/a>i = (pj, the reciprocals of the weights may also be re-interpreted as non-constant
scale parameters (pt.

We shall also have occasion to examine the degree of skewness in the Yfs. Here
the identity

3 / l f a 2 / , di,) l / a / Y

{J[ d d f l {dOJ 38,

so that, in terms of the variance function V (.), on using equation (2.5), the third
cumulant of Yt is

< ' ) V { ( 0 ) } 2

Hence the coefficient of skewness

(2-9) _ ^ =

^ ° V 2
^ 0i)}

{^°}V2 dp,

The expressions for the second and third cumulants can also be derived from the
cumulant generating function (2.2).

Covariates may be either explanatory variables, or explanatory factors, or a
mixture of both. In all three cases, covariates enter through a linear predictor

with known covariate structure (xy) and unknown regression parameters /3j and are
linked to be mean, /Uj, of the modelling distribution through a monotonic,
differentiable (link) function g with inverse g~\ such that

= t]i or f*i = g-l(rii).
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To fit such a model structure, maximum likelihood estimates for the fys are
normally sought. These are obtained through the numerical solution of the
equations

^-i V; - Ui dli:

(2.10) y a), J~L = 0 \/j
3

derived by setting the partial derivatives

dl Y d/, Y *"' ^"' V ^' ^®> ^^>

d/3j t d/3j i d/A,j dPj , ae, d/ij dfij

of the log-likelihood with respect to the unknown parameters /?, to zero.
Equations (2.3), (2.4), (2.5) and (2.7) are needed in the evaluation of the first two
partial derivative terms on the right hand side. These estimates are sufficient in the
case of the canonical link function, defined by g-b'~\

To broaden the genesis of equations (2.10) by relaxing the constraints imposed
by the full log-likelhood assumption (2.3) and its associated distribution assump-
tion (2.1), define

(2.11) q = q(£-li)= X qt= £ <w( -*^-ds
.•=i .-=i J.V/ <pV(s)

to be the quasi-likelihood (strictly quasi-log-likelihood) function. Then by setting
the partial derivatives of q (rather than /) with respect to /?, to zero, equations (2.10)
are again reproduced. Equations (2.10) are called the Wedderburn quasi-likelihood
estimating equations. The resulting quasi-likelihood parameter estimates have
similar asymptotic properties to maximum likelihood parameters estimates and are
identical to maximum likelihood parameter estimates for the class of distributions
defined by equation (2.1). This latter class of distributions includes the binomial,
Poisson, gamma and inverse Gaussian distributions, all of which are of potential
interest in a claims context. The individual details are summarised in Table 2.1. The
overriding feature of both the quasi-likelihood expression (2.11) and the Wedder-
burn quasi-likelihood estimating equations (2.10) is that a knowledge of only the
first and second moments is required of the modelling distribution of the YjS.
Hence, by this means, it is possible to relax the full log-likelihood assumption (2.3)
and extend the range of distributions which can be readily linked to covariates in
practice with an attendant shift in emphasis from maximum likelihood estmation to
maximum quasi-likelihood estimation. This has important implications for the
claims process which are discussed in context later.

The goodness-of-fit of different hierarchical model predictor structures is moni-
tored, in the first instance, by comparing the differences in model deviances. To do
this, compare the current model structure, denoted by c, and whose fitted values are
denoted by /?,; with the full or saturated model structure, denoted by/, and which is
characterised by the fitted values fi, = y,, the perfect fit. Let 0, and 0, denote the
corresponding values of the canonical parameter, defined by 6, = // ~' (//,), the
inverse of b'. Since we are concerned here exclusively with changes to the structure
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TABLE 2.1

DETAILS OF SPECIFIC GLM DISTRIBUTIONS

d.f./p.m.f.

parameters

canonic par.

scale par.

weights

h(6)

c(y,0)

Poisson

<-v
v!

pi > 0

v - 0 1 2

0=1

<u= 1

exp(fl)

- l o g (v!)

exp(0)

f

binomial

("l)p"U

/)£((). 1)

v - 0 1 2

0=1

<u= 1

m log (1 + (

, , « • ; >

me"

l+e"

( *"

^ m

( P
,u\\ - -

* m

->-}

")

i —1
in

gamma

1 rYv'-'f-"*
r(v)U

v> 0

0--/1"1

* = v -

O ) = 1

- log ( - 0)

v l o g ( v ) + ( v - l ) l o g ( v )

-log {r(v))

1

2/,>2

inverse Gaussian

1 f - 1

^ 2 O T J - 3 2r/<2)

/i, r > 0

v > 0

1
0 - - - n~2

2

0 = r

£ 0 = 1

-(-20)"2

1 r

2

(-20)'"2

(v-^)2l

of the predictor, the scale parameter 0 remains the same throughout. Then
define

n

(2.12) d*(y;fi)= - 2 ( / ( r ) - / ( / ) ) = - 2 Y — {( y,^/ - ^(^,)) - ( ^ ^ • - b (&,))},

minus twice the log-likelihood ratio, of c relative t o / based on equations (2.3) and
(2.5), to be the scaled deviance and

(2.13) d(y_; (i) = (pd* (v_; /I)

to be the (unsealed) deviance of the current model c. Using the identity

f. v. - v re<
-ds= {yi-b'(t))dt

it follows from equations (2.12), (2.13) and (2.5) that the expression for the
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deviance can be written as

(2.14)

where q(y_\[i) is the quasi-likelihood function. Hence in common with the
construction of the quasi-likelihood and quasi-likelihood estimating equations, a
knowledge of only the first and second moments is required of the modelling
distribution of the Yts to construct the model deviance.

A trivial re-arrangement of equation (2.14) implies the the quasi-likelihood, q,
satisfies

q= ^ ^ -

To accommodate inference on any parameters, such as <p, which might be present
in the variance of the response variables Yt, define the extended quasi-likelihood
(strictly the extended-quasi-log-likelihood) q+ where

n j n

(2.15) - 2 < 7 + = X _' + X lo
i = 1 (j) i = l

Note that this expresssion is minus twice the log-likelihood for independent
normally distributed responses Yt ~ N{fit, a2), for which o2 -(p, V {/A.) - 1; but is
not an exact log-likelihood expression for any other case. The final term in the
brackets is constant for a given data set, and may be omitted.

Diagnostic checks, based on a thorough graphical analysis of residuals, are
conducted before the final adoption of a specific model structure. Deviance
residuals

where dt is /th component of the deviance defined in equation (2.14), are advocated.
A suitable estimate for the constant scale parameter <p, if required, is provided by
the moment estimator based on generalized Pearson residuals

I -r-, (y,-/2,)
(2.16) 0 = - S a>i ^ — ^

v / = i

where v denotes the number of degrees of freedom associated with the fit.
Implementation is possible using the GLIM software package, BAKER & NELDER

(1985) which is expressly designed to fit models of this type, while the reader is
referred to the text by MCCULLAGH & NELDER (1989) for further detail.

3 . CLAIM FREQUENCY

Claim frequency data are denoted throughout by (u, nu, eu), comprising the
observed number of claims, nu, accruing from exposures, eu, defined for a set of
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units {«}. Typically the units are of the type u = (/,, i2, i^,.•.), a cross-classified
grid of cells defined for preselected levels of appropriate covariates, often rating
factors. A number of different possible modelling scenarios can be implemented.

Focus first on targetting the underlying or expected claim rates, denoted by ku,
based on the Poisson modelling assumption Nu I ku ~ Poi (euku), with independence
over all cells or units u, and where nu denotes the realisation of the random variable
Nu. Here it is assumed that the claim rates, AH, are constant within cells. In the
notation of Section 2, the responses Yt = Nu with

mean pLu = E(NU) = euku, variance function V(fiu) =fiu, scale parameter 0 = 1

and log-likelihood
n

(3.1) /= YJ {-/*„ +MM log (,«„)} + constant.

Two link functions are of particular interest in this context, namely the log-link
and the parameterised power-link.

To implement the canonical log-link, for which

t]u = log (/iu) = log (eu) + log (A J = log (eu) + £ x-ufij
j

the vector of log (eu) terms is declared as an offset. Such terms from part of the
linear predictor and are characterised by a known regression coefficient with value
one. Thus the target, ku, is linked to covariates through the relationship

log(Aj = X *«,•# <=> K
j

giving rise, possibly, to a multiplicative model structure for rating factors.
A number of applications appear in the literature. Thus MCCULLAGH & NELDER

(1983 & 1989), using data provided by the Lloyd's Register of Shipping concerning
damage incidents caused to the forward section of cargo-carrying vessels, model the
reported number of damage incidents classified by the three factors- ship type, year
of construction, period of operation. To allow for possible inter-ship variability in
accident proneness, over-dispersion is introduced into the model through the
retention of the scale parameter which is then estimated as described in Section 2,
rather than setting its value to one. This modelling refinement has an impact on the
standard errors of the parameter estimates but not on the parameter estimates
themselves (the solutions to equations (2.10)). ANDRADE E SILVO (1989), BROCK-

MAN & WRIGHT (1992) and BOSKOV (1992) have each applied this same model to
motor claims data using a variety of potential rating factors in the predictor.
CENTENO & ANDRADE E SILVO (1991) discuss the case when there are certain fixed
linear relationships between covariates in the predictor. STROINSKI & CURRI (1989)
discuss the selection of rating factors in automobile claim frequency modelling.
RENSHAW & HABERMAN (1992) have modelled both sickness inception and sickness
recovery rates as well as death rates from sickness with the predictor reflecting both
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age at sickness inception and, where applicable, sickness duration. A feature of
some of this work involves the use of break-point predictor terms in which the
positions of the knots or hinges are determined by deviance profiles, constructred
by scanning the positional choices of the knots. RENSHAW (1991) has also
demonstrated the potential for this model in the graduation of the force of mortality
in the construction of life tables.

To implement the parameterised power-link function in this context, the
alternative form of the log-likelihood expression:

n r *i

/= X eu\ -1-u + — log(AB)[ + constant;

obtained by substituting fiu = euXu into expression (3.1), is exploited. This implies
the declaration of yu = nuleu as Poisson responses with prior weights eu, while the
predictor link is denoted

( V/y

*» = \L x«jPi
j

with link parameter y. The case y = 1 corresponds to the identity-link, while the
case y — 0 corresponds to the log-link. The optimum value of y for a specific
predictor structure is determined by constructing the deviance profile over the
viable range of values of y. Examples of this are to be found in RENSHAW &
HABERMAN (1992) and in RENSHAW (1990).

The Poisson model (with cp = 1) assumes that the claim rate, X „, is constant
within cells. Heterogeneity across risks as opposed to time heterogeneity discussed
by BERG & HABERMAN (1992) is historically introduced into the claim frequency
process by modelling Xu as a random variable. Focus on the weighted Poisson
responses Yu (= Nuleu) with Yu ~ Poi (Xu) so that

(3.2) E(YU) = E{E(YU\XU)}=E(XU),

Var (Yu) = E {Var (Yu \XU)} + Var {E(YU \XU)}

and hence

(3.3) Var (FJ = £(!„) +Var (AJ.

Note that when Xu is constant, E(XU) = Xu, Var(Aj = 0 and the within cell
homogeneous Poisson model is reproduced. For the heterogeneous case,
Var (Yu) > E(YU), that is, the model is over dispersed. There are a number of
feasible practical possibilities available:

1) Allow for heterogeneity through the introduction of a constant scale parameter
<p as described in some of the applications identified above.

2) Allow for heterogeneity through the introduction of non-constant scale parame-
ters <pu and generate their values through the introduction of a second stage
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GLM chosen to model identifiable patterns of heterogeneity across cells; a
technique known as joint modelling. An example, applied to life insurance, is to
be found in RENSHAW (1992).

3) Allow for heterogeneity by nominating a specific distribution for the claim rate
ku. Thus commonly in the claims context, Xu is given a gamma distribution
with mean E(XU) and variance

(3.4) Var(Aj = - {E(XU)}2 = - {E(Yu)f v>0,
v v

on using equation (3.2). Then, it is well known that Yu has the negative binomial
distribution, for which the

1
mean fiu = E(YU), variance function V(fiu) =fiu + —fiu, scale parameter <fr=\

v

on substituting expression (3.4) into equation (3.3). Note that as v —»°c, then for
finite fiu, the distribution reverts to the Poisson distribution. Another possibility,
BESSON & PARTRAT (1992), TREMBLAY (1992), is to assign an inverse Gaussian
distribution with mean E(XU) and scale parameter r. It then follows from the
relevant column of Table 2.1 that

3
 T > 0

so that Yu now has the Poisson-inverse Gaussian distribution with

mean fiu = E(YJ, variance function V(fiu) =ftu + t(i\, scale parameter 0 = 1.

This reverts to the Poisson distribution as r —»0. Neither of these cases are
members of the class of distributions defined by expression (2.1) so that their
implementation lead to quasi-likelihood estimators for the fijS in the predictor. If
these models are to be implemented, explicity expressions are needed for the
deviance components defined in equation (2.14). These are

for the negative binomial distribution, and

yu) yu, H + wl\ ! . -
— + — log + — sin

for the Poisson-inverse Gaussian distribution. Implementation also requires a
knowledge of the variance function parameters v and r. This is discussed in
Section 5.

Focus secondly on targetting the probability of a claim (or at least one claim),
denoted by pu, based on the binomial modelling assumption Nu \ pu ~ bin (eu, pu),
with independence over all cells or units u, where again nu denotes a realisation of
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the random variable Nu. In the notation of Section 2, the responses Y, = Nu with

mean //„ = E(NU) = eupu, variance function V(/uu)=/tu\ 1 - — I, scale parameter

0 = 1 and log-likelihood

1 = X 1"«lo§ I — I + (eu - nu) log I *" \\ + constant.

The canonical log-odds or logit link

= log <=> Pu =
Keu-nJ {l-pj l+e"'

with linear predictor

Vu = X xujPj
j

is likely to be of interest in a non-life claim frequency context, while its application
in this context would appear to be somewhat limited. An application of its use in
targetting the probability of at least one claim in the context of (Belgium) car
insurance claims is given by BEIRLANT et al. (1991). A number of researchers,
including COUTTS (1984), have used this predictor-link structure to target claim
proportions, over a network of cells but with estimation by weighted least squares.
The binomial modelling distribution assumption, used in conjunction with the logit
and other link functions, has wide application in the construction of life tables,
RENSHAW (1991).

4. CLAIM SEVERITY

Claim severity or loss distributions, defined on the positive real line, are invariably
positively skewed. There is an extensive literature, see for example, HOGG and
KLUGMAN (1984), documenting the modelling of homogeneous batches of empirical
claim amounts by specific parameterised distributions. These include the gamma,
Pareto, log-normal, log-gamma and Weibull distributions only the first of which is
of the type defined by expression (2.1). HABERMAN & RENSHAW (1989) have
indicated how certain loss distributions, not of the type defined by expression (2.1),
may be fitted in the absence of covariates by the adaption of the associated
likelihood function in a special way. Here we address the question: which loss
distributions are capable of sustaining covariates ?

Mean claim amounts are denoted throughout by xu, categorised over a set of
units {u}. Thus data summaries take the form (u, nu, xu) where xu denotes the claim
average in cell u based on nu claims. The independence of the number nu and the
claim average xu within each unit u is assumed. Again typically the units
u = (/,, i2, i3,...), a cross-classified grid of cells defined for preselected levels of
appropriate covariates, often rating factors. Denoting the underlying expected claim
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severity in cell u by pcu and assuming the independence of individual claim
amounts, the cells means Xu are modelled as the responses of a GLM with
E{Xu)=fiu and Var (Xu) = <pV(jxu)lnu. Covariates defined on {u} enter through a
linear predictor, linked to the mean [iu.

Focus first on the gamma distribution. Precedence for its use in this context is to
be found in MCCULLAGH and NELDER (1983 & 1989) in which a re-analysis of the
celebrated car insurance data of BAXTER, COUTTS and Ross (1979) is presented.
The data comprise (M, nu,xu) the number nu and average cost of claims xu,
cross-classified by policy holder's age, car group and vehicle age. Modelling is
based on independent gamma distributed individual claim amounts, for which the
mean responses, Xu, satisfy

mean fiu- E (Xu), variance function V(fiu)=jul, scale parameter <f> - v ~' > 0

with weights nu so that Var (Xu) = 4>prulnu. In the analysis, a linear predictor r]u,
composed of the additive main effects of the three factors only, is linked to fxu

through the canonical reciprocal link function. Factor interaction terms are found
not to be significant. Use of the reciprocal-link function, a member of the
parameterised family of power link function

(4.1) ^l = Vu

with y- - 1, is justified on the basis of the deviance profile constructed by
allowing for incremental changes in y. The model proposed by MACK (1991) for
rating automobile insurance makes identical distributional assumptions to these
(formulated in terms of cell sums rather than in terms of cell averages) but restricts
the modelling to the log-link, the limiting form of the power link as y tends to zero
in order to focus on a multiplicative structure. The detail is presented in terms of
two rating factors so that w = (/,_/) with model structure

log (fiij) = at + fy;

while the maximum likelihood parameter estimating equations discussed by MACK
(1991) are special cases of equations (2.10). Implementation is readily achieved
using the GLIM software package. MACK (1991) also goes on to apply the same
model structure in the claims reserving context. BROCKMAN & WRIGHT (1992) use
the identical model structure to MACK (1991) in their analysis of the severity of
motor claims data.

Focus next on the Pareto distribution with density

f(x\p,X) = —*-——, x>0
(X+xf+l

and parameters j3, X > 0. It follows that

E(X)= , Var(X) = i—
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provided /3 > 2. Introducing the reparameterisation

P-\ 0-2
a 1:1 mapping (j3,A.)>->(pi,(p) with domain R>2*R>o ar)d image set
R>oxR>l, implies that we can construct a GLM based on independent Pareto
distributed claim amounts for which the mean responses, Xu, satisfy

mean piu = E (Xu), variance function V (piu) = pi2, scale parameter <p > 1

and weights nu so that again Var (Xu) - <ppi2/nu. Apart from the mild extra
constraint on the scale parameter, these details are identical to those of the GLM
based on independent gamma responses, and the two different modelling assump-
tions lead to essentially identical GLMs. They differ only in respect of the nature of
the parameter estimation criterion, maximum likelihood in the case of the gamma
response model and maximum quasi-likelihood in the case of the Pareto response
model.

Focus next on the generalization of these distributional assumptions through the
introduction of the parameterised power variance function

(4.2) V (fi) = V (ft, 0 = ̂  •
The gamma and Pareto distributions are essentially identical special cases with

t, = 2. The characteristics of this family of distributions are discussed in detail by,
for example, JORGENSEN (1987). Simplifying the notation slightly by writing
equation (2.4) as

pi=pi(6) = b'(0) with inverse 0 = pi~] (pi),

it follows that the cumulant function b(.), corresponding to a specific variance
function V (.), is determined by solving the equations

db d , 1
— =pi(0), —pl-

l(pl) = .
dG dpi V(pi)

First, the solution of the second of these equations determines pi ~' (.). This is
then inverted to provide the expression for the right hand side of the first equation,
which is then solved in turn for b(.). For the power variance function defined by
equation (4.2), the special solution of these equation obtained by setting the
arbitrary constant of integration to zero is given by

f exp (0) £ = 1

a-\ ( 0
(4.3) b{6) = \

a \a- 1

l-log(-0)

where

£-2
(4.4) a =
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FIGURK 4.1. Graph of a against £.

Equation (4.3) characterises the properties of the distribution in question, while
equation (4.4) is reproduced graphically in Figure 4.1.

For £ > 2 (0 < a < 1), b (6) is the cumulant function of an extreme stable
distribution with index a, see EATON, MORRIS and RUBIN (1971). The cumulant
generating function and hence moment generating function is obtained by substitut-
ing expression (4.3) into equation (2.2). It generates GLMs with parameterised
power variance function, equation (4.2) with £ > 2; has positive support, and is
positive skewed. Equations (4.2), (2.7) and (2.9) determine the coefficient of
skewness

0 V'2

The family of distributions has therefore all the major characteristics of a loss
distribution. It includes the inverse Gaussian distribution (£ = 3) and has the gamma
distribution (£ = 2) as a limiting case. It represents a generalisation of these two
cases. COUTTS (1984) suggests the potential of the two specific cases in the claim
severity modelling context. For a given predictor-link structure, the optimum value
for £ > 2 is determined by scanning (minus twice) the extended-quasi-likelihood
profile, expression (2.15) namely

n A n

-2<?+ = I — + X log {<PV(yu)}
« = I <f> « = I
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for incremental changes in £,. To compute these values, (p is estimated by
expression (2.16) and (4.2), while evaluation of the integral in expression (2.14) for
the power variance function given by equation (4.2), yields the deviance compo-
nents

Implementation is possible using the GLIM software package. MCCULLAGH and
NELDER (1989) illustrate the extended-quasi-likelihood profile for the BAXTER et al.
(1980) car insurance data set, which is optimal in the vicinity of £ = 2.4. They also
demonstrate for these data how contour plots of the extended-quasi-likelihood
determine the joint optimum position for the parameters (y, £) when the parameter-
ised power link function (4.1) is used in combination with the parameterised power
variance function (4.2).

So far we have dealt with the cases £ a 2. The case 2 > £ > 1 (a < 0) is also of
considerable interest but in the slightly different context of aggregate claims. It is
discuss by RENSHAW (1993). Of the remaining cases, £ = 1 reproduces the Poisson
modelling distribution, 1 > £ > 0 (a > 2) does not generale GLMs with distribu-
tions of the type defined by equation (2.1), £ = 0 generates the normal model, while
finally 0 > £ ( l < a < 2 ) generates extreme stable distributions with support on the
whole of the real line which, for this and other reasons, are of no practical
consequence here.

Other claim severity modelling distributions capable of supporting covariates are
the log-normal and the log-gamma distributions.

5. AN APPLICATION

The motor insurance claims experience for a recent calendar year, made available
by. a leading U.K. insurance company, is available for analysis. By way of
illustration, the data have been edited to read as follows:

(t u e(l) n(t) x(t))

where

t- claim type (1- insured vehicle, 2- third party property, 3- third party injury, 4- others)

u = (i,j, k, I, m) - units or cells based on 5 cross-classified rating factors

pa : / = 1, 2, 3, 4, 5 - polyholders age (levels arranged in increasing age bands)

vt: j = 1, 2, 3, 4, 5 - vehicle type (levels arranged in perceived order of increasing risk)

va : k = 1, 2, 3, 4, - vehicle age (levels arranged in increasing age bands)

rd: 1= 1, 2, 3, 4, 5-rating district (levels arranged in perceived order of increasing risk)

cd : m = 1, 2, 3, 4, - no claims discount (4 levels, arranged in order of increasing
discount)
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e\' - exposures

«£" - number of claims

x^ ' -mean claim severity.

The independence of the number and the claim average within each cell for each
claim type is assumed. The banding of the rating factors is deliberately left ill
defined, and only selective features of the ensuing analysis presented by way of
illustration. Other groupings of the rating factors are possible.

Residual histogram.
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I[-4.50,
K-4.00,
K-3.50,
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|(-2.00,
I1-1.50,
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|[ 0.00,
|[ 0.50,

00,
1.50,
2.00,
2.50,
3.00,
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4.00,

II 1

I ++++++++++++++++++++++

FIGURE 5.1. Deviance residual histograms. Poisson claim frequency (top),
gamma claim severity models.
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FIGURE 5.2. Contribution of the interactive factors pa * vt to the linear predictor. Claim severity model.
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FIGURE 5.3. Expected claim severity /1'J' plotted against expected claim rate !'„".
Classification by specific rating factor.
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The modelling of the claim frequency and claim severity patterns across units u,
for different claim types, provides estimates X^ and fi(j} of the expected claim rates
and expected claim severities respectively. The contribution, rpl'\ to the risk
premium for claim type t is then the product I'J'/iJ;'' and the risk premium, rpu,
determined by summation over all risk types t. Thus we have the sequences of
mappings:

(t, u, e^\ n(j\ x(
u
n) i-» (t, u, X^\ fi^) >-H> (t,u,rp(

u
l)) >-» (u,rpu)

where

rpl =X'l
)fi.J) and rPu

 = Lu rPu •
t

We focus attention on the first mapping which represents the modelling stage and
illustrate the application of various of the suggested modelling assumptions for
damage to insured vehicle claim types (t= 1).

Consider first the Poisson claim frequency and gamma claim severity models,
each with log-link functions and predictor structures composed of main effects and
paired interaction terms. The improvements in the quality of the fits, monitored by
the changes in deviance, as first main effects and then interaction effects are added
to the predictor structures are examined. One such sequence of fits is reproduced in
Table 5.1. An examination of such tables coupled with an examination of the
resulting parameter estimates and their standard errors for each fitted model
prompted the adoption of the predictor structure (expressed in GLIM notation)

pa * (vt + rd + cd) + va

comprising all five main effects and three second order interactions, all involving
policyholders age pa, for the claim frequency model structure; and

pa * vt + va + rd + cd

comprising all five main effects and just one second order interaction term for the
claim severity model structure. The various deviance residual plots are also highly
supportive of the two fits. By way of illustration, only the deviance residual
histograms are reproduced in Figure 5.1. The impact of the single interaction term
on the claim severity model structure with parametric representation

pa * vt + va + rd + cd: t]ijklm = p. + a,, + £,- + (a/?),-,- + yk + d, + em

is illustrated in Figure 5.2 in which the estimated values of fx + a{ + /?, + (a/3),-, are
plotted against each level i of pa for each level j of vt. Without the interaction terms
(a/3)ij a series of parallel 'lines' would result as the structure is then additive in
these factors on the log scale. For this model the expected claim severities are
determined by nijklm = exp (t]ijklm). It can be informative to plot the resulting
estimated claim frequencies 1'J* against their corresponding estimated claim
severities fi{

u
i}. One such scatter plot is illustrated in Figure 5.3. In addition the

contours displayed represent those of constant risk premium levels, X^fll1^ = con-
stant. Here also the impact of the different levels of a rating factor are highlighted
by the use of a different symbol to represent each level of this factor. The clustering
of the different symbols is informative.
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TABLE 5.1

EXAMINATION OF MAIN EFFECTS AND TWO FACTOR INTERACTIONS ON THE DEVIANCES

1

+ vt

+ pa

+ va

+ rd

+ cd

+ vt • pa

+ vt • va

+ vt • rd

+ vt-cd

+ pa • va

+ pa • rd

+ pa • cd

+ va • rd

+ va • cd

+ rd- cd

claim

dev.

15371

12076

7716.8

7389.5

5350.3

3178.1

3082.5

3055.8

3038.0

2967.1

2875.3

2805.8

2348.4

2323.6

2295.4

2252.8

frequency

diff.

3295

4359

327.3

2039

2172

95.57

26.67

17.85

70.88

91.83

69.45

457.4

24.79

28.16

42.63

dev.

12111

6842.5

6589.3

5816.1

5623.3

5050.9

4695.2

4675.9

4640.1

4598.8

4567.3

4497.1

4462.0

4443.4

4420.8

4390.9

claim severity

diff.

5268

253.2

773.2

192.8

572.3

355.7

19.3

35.8

41.3

31.5

70.15

35.1

18.6

22.6

29.9

d.f.

4

4

3

4

3

16

12

16

12

12

16

12

12

9

12

Reverting next to the power-link in combination with the same predictor
structures as above, the resulting deviance profiles, constructed over a range of
values of the power index, are reproduced in Figure 5.4. For the Poisson claim
frequency model, the optimum power is at y = - 0.17, which is sufficiently close to
zero to lend support to the log-link. Indeed if the one remaining paired interaction
term involving the rating factor pa (and va) is added to the predictor structure, then
the optimum value of the power is essentially at zero. For the gamma claim severity
model the optimum value of the power in the link is at y = -0 .31 , somewhat
intermediate between the canonical reciprocal-link and the log-link. If the one
interaction term is omitted from the model structure, the optimum power value
shifts much closer to be reciprocal-link, a similar conclusion to that reported in
MCCULLAGH and NELDER (1989) in their reanalysis of the BAXTER et al. (1979)
data set involving a main effects structure.

https://doi.org/10.2143/AST.24.2.2005070 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.2.2005070


MODELLING THE CLAIMS PROCESS IN THE PRESENCE OF COVARIATES 283

-1.05 -0.95 -O.eS -0.75 -0.65 -0.55 -0 45 -0.35 -0.25 -0.15 4.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.65 0.95
EXPONENT »

-1.05 -0.95 -0.85 -0.75 -0.65 -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
EXPONENT *

FIGURE 5.4. Deviance profiles, power links. Poisson claim frequency (top),
gamma claim severity models.

For the claim severity model with power variance function and exponent C — 2,
in combination with the log-link and the above predictor structure, the deviance
profile over £ > 2 has a similar f/-shape to Figure 5.4 with a minimum at £ = 2.63.
Thus the optimum positions of both the exponents in the power link and in the
power variance function have so-far been chosen separately by allowing for
variation in just one of the exponents while keeping the other exponent fixed. The
joint optimum positions of the two exponents (y, £) when the power link function
(4.1) is used in combination with the power variance function (4.2) is determined by

https://doi.org/10.2143/AST.24.2.2005070 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.2.2005070


284 ARTHUR E. RENSHAW

-0.64

CM

CM

-0.82

88
CM

CM 94

-1

FIGURE 5.5. Extended quasi deviance profile, power link and variance function.
Link exponent y, variance function exponent £.

scanning the extended quasi-deviance profile defined by equation (2.15), part of
which is reproduced in Figure 5.5 showing an optimum at (-0.75, 2.54).

We revert finally to the introduction of heterogeneity into the claim frequency
model through the use of either the Poisson-gamma or Poisson-inverse Gaussian
distributions as described in Section 3. Each of the choices involves an unknown
parameter, denoted respectively by v or r, in the corresponding variance function.
One possible strategy for setting the value of the unknown parameter might be to
optimise the extended quasi-likelihood but further work is needed in this respect.

6. SUMMARY

Discussion has focused on providing an overview of the variety of response
variables available for modelling both the claim frequency and claim severity
components of the claims process in general insurance in the presence of rating
factors. Working within the rich class of GLMs it is necessary to specify only the
first two moments of the associated response variables rather than the full likelihood
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in order to effect implementation. By this means, it is indicated how suitably
selected parameterised variance functions can be used to model heterogeniety in the
claim frequency process and to provide a parameterised family of claim response
variables which include the gamma response variable as a limiting case. Additional
modelling flexibility is achieved through the introduction of the parameterised
power link function which includes the log-link as a special case. The salient
characteristics in the implementation of these features are illustrated.
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