
JFP 14 (3): 253–261, May 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005040 Printed in the United Kingdom

253

EDUCATIONAL PEARL

Escape from Zurg: an exercise
in logic programming

MARTIN ERWIG

School of EECS, Oregon State University, Corvallis, OR 97331, USA

(e-mail: erwig@cs.orst.edu)

Abstract

In this Pearl we illustrate with an example that modern functional programming languages

like Haskell can be used effectively for programming search problems, in contrast to the

widespread belief that Prolog is much better suited for tasks like these.

1 Introduction

It is a common belief that Prolog is the language of choice to solve search problems.

One strong point of Prolog is its built-in backtracking ability, which can save

considerable work in handling search problems. On the other hand, Haskell (Peyton-

Jones, 2003) provides a powerful type system, higher-order functions, and lazy

evaluation. We want to illustrate in this paper that these elements taken together

make it as easy in Haskell (and maybe even easier) to express and solve search

problems as it is in Prolog. For example, lazy evaluation facilitates the concise

description of the search space because the specification of an infinite data structure –

the search tree – can be written down without running into nontermination as long

as only a finite part of it is processed. This idea is not new; it has been described

by Wadler (1985) before. However, rewriting this encoding for every search problem

from scratch is tedious, error-prone, and can distract from the very search problem

that is to be implemented. In Haskell, the concept of type classes offers a clean

way to formulate the solution once and reuse it in different instances. Additionally,

Haskell data types allow (and enforce to some degree) formulation of the problem

in an adequate fashion.

An alternative approach is to embed a Prolog-like language into a functional lan-

guage. This has been demonstrated in Seres & Spivey (1999) and Classen & Ljunglö

(2000) for Haskell, and in Haynes (1987) for Scheme. However, our goal is to express

search problems functionally without resorting to a multi-paradigm approach.

The example that we want to consider is a homework problem that we have given

in a graduate level course on programming languages (Erwig, 2001). The problem

was one of several exercises to practice programming in Prolog. After observing

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

254 M. Erwig

that many students had problems manipulating term structures in Prolog (after

already having learned to use data types in Haskell) and spending a lot of time on

debugging, the question arose whether it would be as difficult to develop a solution

for this problem in Haskell. This programming exercise worked well, and we report

the result in this paper.

In the rest of this paper we will describe the requirements for teaching the

programming of search problems in Haskell in Section 2. The example problem

is described in Section 3. In Section 4 we show an example solution in Prolog.

Section 5 presents the Haskell solution to the problem. Conclusion given in Section

6 complete this paper.

2 Teaching search programming in Haskell

To teach search programming in Haskell as proposed here, students should already

have a solid understanding of essential functional programming concepts, such as,

recursion, lists, and higher-order functions. In addition, students have to understand

type classes, data types, and lazy evaluation, because these are used to create the

modular solution.

First, a type class is used to separate the generic description of search problems

from a particular problem instance. In particular, we make use of multi-parameter

type classes to parameterize a search problem by the type of states and the type

of moves. Multi-parameter type classes need not necessarily be known in advance.

In fact, the SearchProblem class can serve as a motivating example to introduce

multi-parameter type classes. The class itself can be developed in steps. Initially, a

single-parameter version can be defined that is parameterized only over the type of

search states. Then, recognizing that for some search problems, like the one discussed

here, the solution states are not as interesting as the moves that lead to them, a

generalization to two type parameters can be performed.

Second, data types are employed in the chosen example to create a model of the

application. Data types provide a higher-level means of modeling the application

than encoding all the information pieces by plain lists and tuples. Again, the encapsu-

lation of the general search process in a type class is helpful since it allows us to focus

completely on modeling the application because we do not have to deal with the

search. This situation is similar in Prolog where the search procedure is built into the

language. However, compared to Prolog terms, Haskell data types provide as a typed

representation immediate feedback about illegal combinations of moves and states,

which otherwise can cause a lot of debugging effort in untyped respresentations.

Third, knowledge of lazy evaluation is required to understand how the potentially

infinite state space can be described in Haskell. A simple breadth-first search is im-

plemented by creating a list of states through repeated appending of successor states.

Depending on the focus and available time for dealing with search programming

one might want to discuss this aspect in more depth. For example, it is relatively

easy to generalize the class by parameterizing the construction of the search space

by a search strategy. Again, since the search problem is isolated in a type class, this

discussion does not affect the modeling of applications.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

Educational pearl 255

The implementation of search problems is discussed only in a few ML or Haskell

textbooks. For example, Paulson (1996) describes the implementation of search

programming in ML in the context of a theorem prover. Rabhi & Lapalme (1999)

describe how to implement backtracking algorithms in Haskell. They employ an

explicitly defined depth-first search algorithm and do not use type classes to separate

the problem class from the applications. In particular, they do not distinguish a

separate type of moves, which makes the described approach inappropriate for the

example problem discussed here. Felleisen et al. (2001) describe in their book a

similar example, the problem of three missionaries and cannibals crossing a river.

This example is given as an exercise in the context of programming with generative

recursion and accumulators, which are discussed in great depth as a means to retain

context information in recursive function definitions.

3 The example problem

The problem to be solved was called “Escape from Zurg” and reads as follows:

Buzz, Woody, Rex, and Hamm have to escape from Zurg.a They merely have

to cross one last bridge before they are free. However, the bridge is fragile and

can hold at most two of them at the same time. Moreover, to cross the bridge

a flashlight is needed to avoid traps and broken parts. The problem is that our

friends have only one flashlight with one battery that lasts for only 60 minutes

(this is not a typo: sixty). The toys need different times to cross the bridge (in

either direction):

Toy Time

Buzz 5 minutes

Woody 10 minutes

Rex 20 minutes

Hamm 25 minutes

Since there can be only two toys on the bridge at the same time, they cannot

cross the bridge all at once. Since they need the flashlight to cross the bridge,

whenever two have crossed the bridge, somebody has to go back and bring the

flashlight to those toys on the other side that still have to cross the bridge.

The problem now is: In which order can the four toys cross the bridge in time

(that is, in 60 minutes) to be saved from Zurg?

aThese are characters from the animation movie Toy Story 2.

Try to solve the problem in your favorite language.

4 A Prolog solution

Writing a Prolog program for solving the riddle is in principle a rather straight-

forward task – at least once it has been figured out how to represent the problem.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

256 M. Erwig

As it turned out, this last aspect seemed to have been the major reason that quite

a few students had problems with the assignment. The most difficult part for the

students was to find an appropriate term representation for the states of the search

problem, that is, the position of toys on either side of the bridge and the position

of the flashlight. In particular, the two prevailing mistakes were to use too complex

term structures or predicates and to use terms inconsistently, or even in a few cases

to confuse predicates and terms. Several programs did not terminate. The reference

solution is shown in Figure 1 to serve as a comparison with the Haskell solution to

be developed in the next section.

The idea of the Prolog program is to represent an intermediate state of a bridge

crossing by facts of the form st(P,L) where L is a list giving the toys that are

currently on the left side of the bridge and where P is a flag that indicates the position

(left or right side) of the flashlight.1 The predicate move/4 generates movements in

its third argument; a movement to the right is generated if the flashlight is on the

left side of the bridge and vice versa; move also relates the old state (first argument)

to the newly reached state (second argument). The last argument gives the time

required for the move. In the case of a movement to the right, the time is determined

by the additional predicate cost/2 that computes the maximum time needed by a

group of toys. Any such possible group of toys to move to the right is computed

by the predicate split/3, which computes lists of length 2, which are sorted to

avoid redundancy caused by representing groups of toys as lists. In a move to the

left it makes only sense to send back one toy. Therefore, the definition of move for

that case uses the predefined member/2 predicate and computes the time by simply

looking into the table time/2. Finally, the trans/4 predicate basically generates

all possible bridge crossings together with the required time whereas the cross/2

predicate formulates the search problem by giving the initial and final configuration

of the search space.

5 The Haskell solution

We give the Haskell solution in two steps. First, we extract the general structure

of the search problem and capture it in the definition of a type class. Second, we

present the program for solving the puzzle as an instance of that class.

The main elements in the problem are a state (to represent intermediate stages of

bridge crossings) and moves (to represent transitions between states, which are in

this case bridge crossings). Therefore, we have defined a type class SearchProblem

with two parameter types s and m. Next, we consider what member functions are

needed for the class SearchProblem.

To build the complete search space starting from some (initial) state s, a function

is needed that describes which new states can be reached from s. In general, it is

not only the final state that is of interest (in fact, we know this state already in the

1 In fact, more common among the students’ solutions was the approach to represent two groups of
toys on both sides of the bridge, but we found that although this redundancy might help to think
about the problem, keeping the invariant was a common source of errors.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

Educational pearl 257

time(buzz,5).

time(woody,10).

time(rex,20).

time(hamm,25).

toys([buzz,hamm,rex,woody]).

cost([],0) :- !.

cost([X|L],C) :-

time(X,S),

cost(L,D),

C is max(S,D).

split(L,[X,Y],M) :-

member(X,L),

member(Y,L),

compare(<,X,Y),

subtract(L,[X,Y],M).

move(st(l,L1),st(r,L2),r(M),D) :-

split(L1,M,L2),

cost(M,D).

move(st(r,L1),st(l,L2),l(X),D) :-

toys(T),

subtract(T,L1,R),

member(X,R),

merge_set([X],L1,L2),

time(X,D).

trans(st(r,[]),st(r,[]),[],0).

trans(S,U,L,D) :-

move(S,T,M,X),

trans(T,U,N,Y),

append([M],N,L),

D is X + Y.

cross(M,D) :-

toys(T),

trans(st(l,T),st(r,[]),M,D0),

D0=<D.

solution(M) :- cross(M,60).

Fig. 1. Prolog solution for the Zurg riddle.

given example, namely all toys on the other side). Rather, the sequence of moves

that lead to this state is needed, too. Therefore, we haved added a function to the

type class that computes for a state a list of possible moves and the new states to

which they lead:

trans :: s -> [(m,s)]

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

258 M. Erwig

type Space m s = [([m],s)]

class SearchProblem s m where

trans :: s -> [(m,s)]

isSolution :: ([m],s) -> Bool

space, solutions :: s -> Space m s

space s = step ++ expand step

where step = [([m],t) | (m,t) <- trans s]

expand ss = [(ms++ns,t) | (ms,s) <- ss,

(ns,t) <- space s]

solutions = filter isSolution . space

Fig. 2. The SearchProblem type class.

By repeatedly applying trans to the fringe of a search tree the complete search

space for a problem can be constructed. This search space is represented by an

element of type Space m s and is constructed by a function space that maps a

state to a list of all nodes of the search space. Each node (that is, state) is paired

with the list of moves that lead to it.

type Space m s = [([m],s)]

space :: s -> Space m s

Since the search space is completely represented by the initial state and the function

trans, the function space is a derived member function in the class SearchProblem.

The definition of space makes essential use of lazy evaluation: without a terminating

condition space refers (indirectly through expand) to itself; under strict evaluation

this definition would, in general, not terminate. For the present example this means

that it is enough to consider just two cases in the definition of trans (see Figure 3);

an additional definition

trans (R,[]) = []

is not needed, although such a condition was required in the Prolog program (cf.

the first clause for the predicate trans).

In general, the solutions to a search problem are given by a subset of its states.

The decision is made by a predicate on states and their generating moves:

isSolution :: ([m],s) -> Bool

With this predicate another class member solutions can be defined, which has

the same type as space and which simply yields the subset of states that are

considered solutions by the predicate isSolution. The definition of the type class

SearchProblem is summarized in Figure 2.

Having defined the solution schema, the Haskell program for solving the riddle

requires only the modeling of the problem. The most important design decisions

are the definitions of the types BridgePos and Move because they are related by

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

Educational pearl 259

data Toy = Buzz | Hamm | Rex | Woody deriving (Eq,Ord,Show)

data Pos = L | R deriving (Eq,Show)

type Group = [Toy]

type BridgePos = (Pos,Group)

type Move = Either Toy Group

toys :: [Toy]

toys = [Buzz,Hamm,Rex,Woody]

time :: Toy -> Int

time Buzz = 5

time Woody = 10

time Rex = 20

time Hamm = 25

duration :: [Move] -> Int

duration = sum . map (either time (maximum.map time))

backw :: Group -> [(Move,BridgePos)]

backw xs = [(Left x,(L,sort (x:(toys \\ xs)))) | x <- xs]

forw :: Group -> [(Move,BridgePos)]

forw xs = [(Right [x,y],(R,delete y ys)) |

x <- xs,let ys=delete x xs, y <- ys, x<y]

instance SearchProblem BridgePos Move where

trans (L,l) = forw l

trans (R,l) = backw (toys \\ l)

isSolution (ms,s) = s == (R,[]) && duration ms <= 60

solution = solutions (L,toys)

Fig. 3. Haskell solution for the Zurg riddle.

an instance definition for the class SearchProblem. In BridgePos we represent the

position of the flashlight by a constructor L or R and the toys that are on the left

side of the bridge by a list, just like in the Prolog implementation. A move is either

a move of a group of toys from left to right or a backward move from right to left

by just one toy. Both kinds of moves are captured by the type Move, which is defined

through an Either data type, which is predefined in Haskell and which contains

the constructors Left and Right to represent disjoint sum types.

Apart from defining types for representing the objects in the program, the main

part is the instance definition of the SearchProblem type class, which means to

give a definition for trans and isSolution. To this end, we have defined three

auxiliary functions: forw and backw for computing toy moves and duration for

computing the total time of a crossing, that is, for a sequence of moves. Note that the

function (\\) computes the difference of two lists. The definition of the isSolution

predicate is obvious. The complete Haskell solution is shown in Figure 3.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

260 M. Erwig

type Space m s = [([m],s)]

type Strategy m s = Space m s -> Space m s -> Space m s

class SearchProblem s m where

trans :: s -> [(m,s)]

isSolution :: ([m],s) -> Bool

space, solutions :: Strategy m s -> s -> Space m s

space f s = expand f (step ([],s))

where expand f [] = []

expand f (s:ss) = s:expand f (f (step s) ss)

step (ms,s) = [(ms++[m],t) | (m,t) <- trans s]

solutions f = filter isSolution . space f

dfs = (++)

bfs = flip dfs

Fig. 4. Generalized SearchProblem type class.

We have already mentioned that the SearchProblem type class from Figure 2

implements a simple breadth-first search. A generalization can be obtained by

abstracting from the append operation that is used to add newly generated states

to the list of states, that is, we introduce a function parameter into the definition

of space and solutions that controls the addition of new states to the space. A

possible implementation is shown in Figure 4.

To use this generalized type class for the example problem, we only have to pass

a corresponding search strategy to the solutions function, for instance:

solution = solutions bfs (L,toys)

For the example problem, the search strategy does not affect the solution, but for

other search problems, termination is generally more likely under bfs than under

dfs.

6 Conclusions

Let us first summarize our experience with the shown programming exercise. Most

students seemed to like the puzzle style of the assignment, although quite a few

students had problems during the development of their solution and had to spend a

considerable amount of time debugging their programs. A particular problem was to

spot illegal uses of Prolog terms that showed up in the interpreter just through the

answer No. Another mistake was to confuse terms and predicates. To some degree,

the completely different lexical conventions in Haskell and Prolog are probably

responsible for this confusion: Variables start with an uppercase letter in Prolog,

and with a lowercase letter in Haskell, whereas term constructors start with a with

a lowercase letter in Prolog, and with an uppercase letter in Haskell.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

Educational pearl 261

Some students tried to work around their problems by coding knowledge about

the solution into their programs, for example, fixing the number of forward and

backward moves in the problem representation. Some of the solutions handed in by

students were similar to the one shown in Figure 1, differing mainly in the chosen

term representation and in how the transition predicate was defined. An incorrect

term representation was the main problem for those program that did not run at all

or that were computing incorrect results.

To obtain feedback about the Haskell approach, a couple of graduate students

were asked to solve the problem also in Haskell. All they were given was the

definition of the SearchProblem type class. Those students who already got the

Prolog solution correct reported that it was as easy in Haskell to come up with a

solution as in Prolog. Others who had non-perfect Prolog solutions felt it was easier

to write the Haskell program than the Prolog program. They also reported that the

type system was helpful in designing the solution and in debugging the program.

From our experience with solving the example problem with both languages, we

believe that Haskell’s type system makes it eventually easier to implement search

problems in Haskell than in Prolog. The most important feature of Haskell that

supports this impression is the availability of multi-parameter type classes, because

we can abstract the general solution schema in a type class and reuse it for other

problems.

Acknowledgments

The author thanks Matthias Felleisen for his valuable hints and remarks that helped

to improve this paper. Many thanks also go to the students of the programming

languages class who provided a lot of feedback about their experience with Haskell,

Prolog, types, etc.

References

Claessen, K. and Ljunglö, P. (2000) Typed logical variables in Haskell. Haskell Workshop.

Electrical Notes in Theoretical Computer Science, 41(1).

Erwig, M. (2001) CS 581: Programming Languages. Graduate Course, Department of Computer

Science, Oregon State University. http://www.cs.orst.edu/∼erwig/old/cs581.f01.

Felleisen, M. Findler, R. B., Flatt, M. and Krishnamurthi, S. (2001) How to Design Programs –

An Introduction to Programming and Computing. MIT Press.

Haynes, C. T. (1987) Logic continuations. J. Logic Program. 4, 157–176.

Paulson, L. C. (1996) ML for the Working Programmer (2nd ed.). Cambridge University Press.

Peyton-Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

Rabhi, F. and Lapalme, G. (1999) Algorithms: A Functional Programming Approach. Addison-

Wesley.

Seres, S. and Spivey, M. (1999) Embedding Prolog in Haskell. Haskell Workshop. Technical

Report UU-CS-1999-28, Universiteit Utrecht.

Wadler, P. (1985) How to replace failure by a list of successes. Proc. Conf. on Functional

Programming and Computer Architecture. Lecture Notes in Computer Science 201, pp. 113–

128. Springer-Verlag.

https://doi.org/10.1017/S0956796804005040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005040

