MASCHKE MODULES OVER DEDEKIND RINGS

IRVING REINER

1. Introduction. We use the following notation throughout:
$\mathrm{o}=$ Dedekind ring (8; 12, p. 83).
$K=$ quotient field of \mathfrak{o}.
$A=$ finite-dimensional separable algebra over K, with identity element $e(6, \mathrm{p} .115)$.
$G=0$-order in A (2, p. 69).
$\mathfrak{p}=$ prime ideal in \mathfrak{o}.
$K_{\mathfrak{p}}=\mathfrak{p}$-adic completion of K.
$\mathfrak{o}_{\mathfrak{p}}=\mathfrak{p}$-adic integers in $K_{\mathfrak{p}}$.
$\mathfrak{p}^{*}=\pi \mathfrak{o}_{\mathfrak{p}}=$ unique prime ideal in $\mathfrak{o}_{\mathfrak{p}}$.
$\bar{K}=\mathfrak{o} / \mathfrak{p}=\mathfrak{o}_{\mathfrak{p}} / \mathfrak{p}^{*}=$ residue class field.
By a G-module we shall mean a left G-module R satisfying
2. R is a finitely generated torsion-free left o -module.
3. For $x, y \in G, r, s \in R$:

$$
(x y) r=x(y r), \quad(x+y) r=x r+y r, \quad x(r+s)=x r+x s, \quad e r=r
$$

Following Gaschütz and Ikeda (3; 5; see also 7; 10) we call a G-module R an M_{u} - G-module (unterer Maschke Modul) if, whenever R is an o-direct summand of a G-module S, R is a G-direct summand of S. Likewise, R is an $M_{\mathbb{D}^{-}} G$-module (oberer Maschke Modul) if, whenever S / R_{1} is G-isomorphic to R where the G-module S contains the G-module R_{1} as 0 -direct summand, R_{1} is a G-direct summand of S.

If all modules considered happen to have o -bases (for example, when o is a principal ideal ring), then we may interpret these concepts in terms of matrix representations over \mathfrak{o}. Thus, a representation Γ of G in \mathfrak{o} is an $M_{\mathfrak{D}^{-}}$ representation if for every reduced representation

$$
\left(\begin{array}{ll}
\Gamma & \Lambda \\
0 & \Delta
\end{array}\right)
$$

of G in $\mathfrak{0}$, the binding system Λ is strongly-equivalent (13) to zero, that is, there exists a matrix T (over \mathfrak{o}) such that

$$
\Lambda(x)=\Gamma(x) T-T \Delta(x) \quad \text { for all } x \in G
$$

(Likewise we may define an M_{u}-representation of G in o.)

[^0]Starting with a prime ideal \mathfrak{p} of \mathfrak{p}, we may form $\bar{G}=G / \mathfrak{p} G$, an algebra over \bar{K}. If R is a G-module, then $\bar{R}=R / p R$ can be made into a \bar{G}-module in obvious fashion, and \bar{R} is then a vector space over \bar{K}. The main results of this note are as follows:

Theorem 1. If for each \mathfrak{p}, \bar{R} is an $M_{u}-\bar{G}$-module (or $M_{\mathfrak{D}}$ - \bar{G}-module), then R is an $M_{u}-G$-module (or $M_{\mathfrak{D}}-G$-module).

Theorem 2. If G is a Frobenius algebra over 0 , and R is an M_{u} - G-module (or $M_{\mathfrak{0}}$ - G-module), then for each \mathfrak{p}, \bar{R} is an $M_{u}-\bar{G}$-module (or $M_{\mathfrak{D}}-\bar{G}$-module).

The significance of Theorem 1 is that it reduces the problem of deciding whether an \mathfrak{o}-module R is an $M_{u}-G$-module to that of determining for each \mathfrak{p} whether the vector space \bar{R} over \bar{K} is an $M_{u}-\bar{G}$-module. Thus, we pass from a ring problem to a field problem, which is in general much simpler.

In the important case where $G=\mathfrak{o}(H)$ is the group ring of a finite group H, then \bar{G} is semi-simple whenever \mathfrak{p} does not divide the order of H, and for such \mathfrak{p} the module \bar{R} is automatically an M - \bar{G}-module. More generally, we may form the ideal $I(G)$ of G defined by Higman (4); his results show that $I(G) \neq 0$ in this case. From (9) we deduce at once that \bar{G} is semi-simple whenever \mathfrak{p} does not divide $I(G)$. Therefore:

Corollary 1. R is an $M_{u}-G$-module (or $M_{\mathfrak{D}}-G$-module) if for each \mathfrak{p} dividing $I(G), \bar{R}$ is an $M_{u^{-}} \bar{G}$-module (or $M_{\mathfrak{D}^{-}} \bar{G}$-module). (Note that only finitely many \mathfrak{p} 's are involved.)

Now let G be a Frobenius algebra over \mathfrak{o}, for example, $G=\mathfrak{o}(H)$. Then by (5) there is no distinction between $M_{\mathfrak{D}^{-}}$and M_{u}-modules, and Theorems 1 and 2 tell us that R is an M - G-module if and only if for each p, \bar{R} is an M - \bar{G}-module. Using the concept of genus introduced by Maranda in (9), we have:

Corollary 2. Let G be a Frobenius algebra over $\mathfrak{0}$, and let R, S be G-modules in the same genus. Then R is an $M-G$-module if and only if S is an $M-G$-module.
2. \mathfrak{p}-adic completion. Theorem 1 will follow at once from two lemmas, of which we prove the more difficult first. Let R be a G-module, and define

$$
G_{\mathfrak{p}}=G \otimes \mathfrak{o}_{\mathfrak{p}}, \quad R_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \otimes R,
$$

both products being taken over o .
Lemma 1. If for each $\mathfrak{p}, R_{\mathfrak{p}}$ is an $M_{u}-G_{\mathfrak{p}}$-module (or $M_{\mathfrak{D}}-G_{\mathfrak{p}}$-module), then R is an M_{u} - G-module (or $M_{\mathfrak{D}}$ - G-module).

Proof. (We give the proof only for M_{u}-modules.) Let R be an \mathfrak{o}-direct summand of a G-module S. We wish to show that R is a G-direct summand of S, that is, that there exists $f \in \operatorname{Hom}_{G}(S, R)$ such that $f \mid R=$ identity. Using
the Steinitz-Chevalley theory $(\mathbf{1} ; \mathbf{1 1})$ of the structure of finitely generated torsion-free modules over Dedekind rings, and taking into account the hypothesis that R is an \mathfrak{D}-direct summand of S, we may write

$$
S=\mathfrak{\Re}_{1} s_{1} \oplus \ldots \oplus \mathfrak{N}_{n} s_{n}, \quad R=\mathfrak{A}_{1} s_{1} \oplus \ldots \oplus \mathfrak{N}_{m} s_{m}
$$

with $m \leqslant n$, where each \mathfrak{A}_{i} is an $\mathfrak{0}$-ideal in K, and where s_{1}, \ldots, s_{n} are linearly independent over K. For the remainder of this proof, let the index i range from 1 to n, and j from 1 to m.

To prove the lemma, it suffices to exhibit $f \in \operatorname{Hom}_{A}(K S, K R)$ such that $f \mid K R=$ identity, and f maps S into R. (We use $K S$ to denote the K-module generated by S.) Let us set

$$
\begin{equation*}
f\left(s_{i}\right)=\sum a_{i j} s_{j}, \quad a_{i j} \in K \tag{1}
\end{equation*}
$$

thereby defining $f \in \operatorname{Hom}_{K}(K S, K R)$. Then f maps S into R if and only if for each $\alpha \in \mathfrak{A}_{i}$ we have $\alpha a_{i j} \in \mathfrak{A}_{j}$, that is, if and only if

$$
\begin{equation*}
a_{i j} \in\left(\mathfrak{H}_{j}: \mathfrak{A}_{i}\right) \quad \text { for all } i, j \tag{2}
\end{equation*}
$$

On the other hand, the map f defined by (1) will be an A-homomorphism with $f \mid K R=$ identity, if and only if for all $x \in G, s \in S, r \in R$:

$$
f(x s)=x f(s), \quad f(r)=r
$$

Let us set

$$
G=\mathfrak{o} x_{1}+\ldots+\mathfrak{o} x_{i}
$$

This is possible since (2, p. 70) G is a finitely generated \mathfrak{o}-module. Then f is an A-homomorphism with $f \mid K R=$ identity, if and only if

$$
\begin{equation*}
f\left(x_{k} s_{i}\right)=x_{k} f\left(s_{i}\right), \quad f\left(s_{j}\right)=s_{j} \quad \text { for all } i, j, k \tag{3}
\end{equation*}
$$

where the index k ranges from 1 to t. Equations (3) are a set of linear equations with coefficients in K, to be solved for unknowns $\left\{a_{i j}\right\}$ satisfying (2).

From the hypotheses of the lemma we deduce that for each \mathfrak{p}, (3) has a solution $\left\{a_{i j}\right\}$ satisfying $a_{i j} \in\left(\mathfrak{A}_{j}: \mathfrak{A}_{i}\right) \mathfrak{o}_{\mathfrak{p}}$ for all i, j. Thus (3) is solvable over the extension field $K_{\mathfrak{p}}$ of K, and hence is also solvable over K. The general solution of (3) over K is given by

$$
\begin{equation*}
a_{i j}=e_{i j} / d_{i j}, e_{i j}=e_{i j}(\mathrm{t})=b_{i j}+\sum_{\nu=1}^{N} c_{i j}^{(\nu)} t_{\nu}, \tag{4}
\end{equation*}
$$

where the $b_{i j}, c_{i j}^{(\nu)}, d_{i j}$ are fixed elements of $\mathfrak{o}, d_{i j} \neq 0$, and where t ranges over all N-tuples in K^{N}. The general solution of (3) over $K_{\mathfrak{p}}$ is also given by (4) by letting t range over $K_{\mathfrak{p}}{ }^{N}$. Then for each \mathfrak{p}, we can find $\mathfrak{t}(\mathfrak{p})$ for which

$$
\begin{equation*}
e_{i j}(\mathrm{t}(\mathfrak{p})) \in \mathfrak{B}_{i j} \mathfrak{0}_{\mathfrak{p}} \quad \text { for all } i, j \tag{5}
\end{equation*}
$$

where $\mathfrak{B}_{i j}=\left(\mathfrak{H}_{j}: \mathfrak{A}_{i}\right) d_{i j}$.

For each \mathfrak{p}, let $b(\mathfrak{p})$ be the maximal exponent to which \mathfrak{p} occurs in the prime ideal factorizations of the ideals $\mathfrak{B}_{i j}$. Then $b(\mathfrak{p})=0$ except for a finite set of primes. Set $P=\{\mathfrak{p}: b(\mathfrak{p})>0\}$, and choose an N-tuple t with components in \mathfrak{o} such that (componentwise)

$$
\mathfrak{t} \equiv \mathfrak{t}(\mathfrak{p})\left(\bmod \mathfrak{p}^{b(p)}\right) \quad \text { for each } \mathfrak{p} \in P
$$

In that case, $e_{i j}(\mathrm{t}) \equiv e_{i j}(\mathrm{t}(\mathfrak{p}))\left(\bmod \mathfrak{p}^{b(\mathfrak{p})}\right)$ for each $\mathfrak{p} \in P$, and all i, j, whence by (5) we have

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}} e_{i j}(\mathrm{t}) \geqslant \operatorname{ord}_{\mathfrak{p}} \mathfrak{B}_{i j} \quad \text { for all } i, j \tag{6}
\end{equation*}
$$

for all $\mathfrak{p} \in P$. But for $\mathfrak{p} \notin P$, equation (6) is certainly valid because $e_{i j}(\mathrm{t}) \in \mathfrak{o}$, and $\operatorname{ord}_{\mathfrak{p}} \mathfrak{B}_{i j} \leqslant 0$. Hence we deduce that $e_{i j}(\mathrm{t}) \in \mathfrak{B}_{i j}=\left(\mathfrak{H}_{j}: \mathfrak{A}_{i}\right) d_{i j}$ for all i, j, whence (4) gives a solution of (3) for which (2) holds.

We may remark that this lemma is almost trivial when o is a principal ideal ring.
3. Modular representations. Now let $R_{\mathfrak{p}}$ be a $G_{\mathfrak{p}}$-module, and define $\bar{R}_{\mathfrak{p}}=R_{\mathfrak{p}} / \pi R_{\mathfrak{p}}, \bar{G}_{\mathfrak{p}}=G_{\mathfrak{p}} / \pi G_{\mathfrak{p}}$. To complete the proof of Theorem 1 , we need only show:

Lemma 2. If $\bar{R}_{\mathfrak{p}}$ is an $M_{u}-\bar{G}_{\mathfrak{p}}-$ module (or $M_{\mathfrak{D}^{-}} \bar{G}_{\mathfrak{p}}-$ module), then $R_{\mathfrak{p}}$ is an $M_{u}-G_{\mathfrak{p}}$ module (or $M_{\mathfrak{D}}-G_{\mathfrak{p}}$-module).

Proof. Since $\mathfrak{o}_{\mathfrak{p}}$ is a principal ideal ring, we may express the proof (given here only for $M_{\mathfrak{D}}$-modules) in terms of matrix representations. We must show that if Γ is a representation of $G_{\mathfrak{p}}$ in $\mathfrak{o}_{\mathfrak{p}}$ for which $\bar{\Gamma}$ (the induced modular representation of $\bar{G}_{\mathfrak{p}}$ in \bar{K}) is an M_{0}-representation, then in any reduced representation

$$
\left(\begin{array}{ll}
\Gamma & \Lambda \tag{7}\\
0 & \Delta
\end{array}\right)
$$

of $G_{\mathfrak{p}}$ in ${D_{\mathfrak{p}}}$, the binding system Λ is strongly-equivalent to zero.
We may write $G_{\mathfrak{p}}=\mathrm{o}_{\mathfrak{p}} y_{1} \oplus \ldots \oplus \mathfrak{o}_{\mathfrak{p}} y_{n}, \bar{G}_{\mathfrak{p}}=\bar{K} y_{1} \oplus \ldots \oplus \bar{K} y_{n}$. We shall show the existence of a matrix T over $\mathfrak{D}_{\mathfrak{p}}$ such that

$$
\begin{equation*}
\Lambda\left(y_{i}\right)=\Gamma\left(y_{i}\right) T-T \Delta\left(y_{i}\right) \quad \text { for each } i \tag{8}
\end{equation*}
$$

where in this proof the index i ranges from 1 to n. By taking residue classes $\bmod \mathfrak{p}^{*}$, the representation (7) gives a representation

$$
\left(\begin{array}{ll}
\bar{\Gamma} & \bar{\Lambda} \\
0 & \bar{\Delta}
\end{array}\right)
$$

of $\bar{G}_{\mathfrak{p}}$ in \bar{K}. Since Γ is by hypothesis an $M_{\mathfrak{D}}$-representation, the binding system $\bar{\Lambda}$ is strongly-equivalent to zero over \bar{K}. Therefore there exists V_{1} over $\mathfrak{o}_{\mathfrak{p}}$ such that

$$
\begin{equation*}
\Lambda\left(y_{i}\right)=\Gamma\left(y_{i}\right) V_{1}-V_{1} \Delta\left(y_{i}\right)+\pi \Lambda^{(1)}\left(y_{i}\right) \quad \text { for each } i \tag{9}
\end{equation*}
$$

where $\Lambda^{(1)}$ is also over $\mathfrak{o}_{\mathfrak{p}}$. But then (7) with Λ replaced by $\Lambda^{(1)}$ gives another $\mathfrak{o}_{\mathfrak{p}}$-representation of $G_{\mathfrak{p}}$, whence the same argument shows

$$
\Lambda^{(1)}\left(y_{i}\right)=\Gamma\left(y_{i}\right) V_{2}-V_{2} \Delta\left(y_{i}\right)+\pi \Lambda^{(2)}\left(y_{i}\right) \quad \text { for all } i,
$$

where V_{2} and $\Lambda^{(2)}$ are over $\mathfrak{o}_{\mathfrak{p}}$. Continuing in this way, we obtain a solution of (8) given by $T=V_{1}+\pi V_{2}+\pi^{2} V_{3}+\ldots$.

This proof could also have been stated in terms of cohomology groups.
4. Frobenius algebra. Suppose in this section that G is a Frobenius algebra over o , that is, there exist o -bases $\left\{u_{i}\right\},\left\{v_{i}\right\}$ of G (called dual bases) such that the right regular representation of G with respect to $\left\{v_{i}\right\}$ coincides with the left regular representation with respect to $\left\{u_{i}\right\}$. Assume that G has an \mathfrak{D}-basis containing e. Ikeda showed (5) that $M_{0^{-}}$and M_{u}-modules were the same, and that a G-module R is an M - G-module if and only if there exists an D-endomorphism ϕ of R such that

$$
\begin{equation*}
\sum u_{i} \phi v_{i}=\text { identity endomorphism of } R . \tag{10}
\end{equation*}
$$

Gaschütz (3) had shown this for the case where $G=\mathfrak{o}(H), H=$ finite group, with (10) replaced by:

$$
\begin{equation*}
\sum_{h \in H} h \phi h^{-1}=\text { identity endomorphism of } R . \tag{11}
\end{equation*}
$$

We may use Ikeda's result to obtain an immediate proof of Theorem 2. By hypothesis, R is an $M-G$-module, whence (10) holds for some 0 -endomorphism ϕ. But then clearly ϕ induces a \bar{K}-endomorphism $\bar{\phi}$ of \bar{R}, and $\sum u_{i} \phi v_{i}=$ identity endomorphism of \bar{R}, so that \bar{R} is an $M-\bar{G}$-module.

References

1. C. Chevalley, L'arithmétique dans les algèbres de matrices, Act. Sci. et Ind. 222 (1935).
2. M. Deuring, Algebren (Berlin, 1949).
3. W. Gaschütz, Ueber den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Z., 56 (1952), 376-387.
4. D. G. Higman, On orders in separable algebras, Can. J. Math., 7 (1955), 509-515.
5. M. Ikeda, On a theorem of Gaschütz, Osaka Math. J., 5 (1953), 53-58.
6. N. Jacobson, The Theory of Rings (New York, 1943).
7. F. Kasch, Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann., 127 (1954), 453-474.
8. I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), 327-340.
9. J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Can. J. Math., 7 (1955), 516-526.
10. H. Nagao and T. Nakayama, On the structure of $\left(M_{\mathfrak{D}}\right)$ - and $\left(M_{u}\right)$-modules, Math. Z., 59 (1953), 164-170.
11. E. Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlkörpern, Math. Ann. I, 71 (1911), 328-354; II, 72 (1912), 297-345.
12. B. L. van der Waerden, Modern Algebra, II (New York, 1950).
13. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Hamb. Abh., 12 (1938), 276-288.

Institute for Advanced Study and University of Illinois

[^0]: Received September 19, 1955; in revised form December 14, 1955. This work was supported in part by a contract with the National Science Foundation. The author wishes to thank Dr. P. Roquette for some helpful conversations during the preparation of this paper.

