MASCHKE MODULES OVER DEDEKIND RINGS

IRVING REINER

1. Introduction. We use the following notation throughout:

- \mathfrak{o} = Dedekind ring (8; 12, p. 83).
- K = quotient field of \mathfrak{o} .
- A = finite-dimensional separable algebra over K, with identity element e (6, p. 115).
- $G = \mathfrak{o}$ -order in A (2, p. 69).
- $\mathfrak{p} = \text{prime ideal in } \mathfrak{o}.$
- $K_{\mathfrak{p}} = \mathfrak{p}$ -adic completion of K.
- $\mathfrak{o}_{\mathfrak{p}} = \mathfrak{p}$ -adic integers in $K_{\mathfrak{p}}$.
- $\mathfrak{p}^* = \pi \mathfrak{o}_{\mathfrak{p}} =$ unique prime ideal in $\mathfrak{o}_{\mathfrak{p}}$.

 $\bar{K} = \mathfrak{o}/\mathfrak{p} = \mathfrak{o}_{\mathfrak{p}}/\mathfrak{p}^* = \text{residue class field.}$

By a G-module we shall mean a left G-module R satisfying

- 1. R is a finitely generated torsion-free left \mathfrak{o} -module.
 - 2. For $x, y \in G, r, s \in R$:

$$(xy)r = x(yr), (x + y)r = xr + yr, x(r + s) = xr + xs, er = r.$$

Following Gaschütz and Ikeda (3; 5; see also 7; 10) we call a G-module R an M_u -G-module (unterer Maschke Modul) if, whenever R is an \mathfrak{o} -direct summand of a G-module S, R is a G-direct summand of S. Likewise, R is an $M_{\mathfrak{o}}$ -G-module (observed Modul) if, whenever S/R_1 is G-isomorphic to R where the G-module S contains the G-module R_1 as \mathfrak{o} -direct summand, R_1 is a G-direct summand of S.

If all modules considered happen to have \mathfrak{o} -bases (for example, when \mathfrak{o} is a principal ideal ring), then we may interpret these concepts in terms of matrix representations over \mathfrak{o} . Thus, a representation Γ of G in \mathfrak{o} is an $M_{\mathfrak{o}}$ -representation if for every reduced representation

$$\begin{pmatrix} \Gamma & \Lambda \\ 0 & \Delta \end{pmatrix}$$

of G in \mathfrak{o} , the binding system Λ is strongly-equivalent (13) to zero, that is, there exists a matrix T (over \mathfrak{o}) such that

$$\Lambda(x) = \Gamma(x)T - T\Delta(x) \qquad \text{for all } x \in G.$$

(Likewise we may define an M_u -representation of G in \mathfrak{o} .)

Received September 19, 1955; in revised form December 14, 1955. This work was supported in part by a contract with the National Science Foundation. The author wishes to thank Dr. P. Roquette for some helpful conversations during the preparation of this paper.

IRVING REINER

Starting with a prime ideal \mathfrak{p} of \mathfrak{o} , we may form $\overline{G} = G/\mathfrak{p}G$, an algebra over \overline{K} . If R is a G-module, then $\overline{R} = R/\mathfrak{p}R$ can be made into a \overline{G} -module in obvious fashion, and \overline{R} is then a vector space over \overline{K} . The main results of this note are as follows:

THEOREM 1. If for each \mathfrak{p} , \overline{R} is an M_u - \overline{G} -module (or $M_{\mathfrak{p}}$ - \overline{G} -module), then R is an M_u -G-module (or $M_{\mathfrak{p}}$ -G-module).

THEOREM 2. If G is a Frobenius algebra over \mathfrak{o} , and R is an M_u -G-module (or $M_{\mathfrak{o}}$ -G-module), then for each \mathfrak{p} , \overline{R} is an M_u - \overline{G} -module (or $M_{\mathfrak{o}}$ - \overline{G} -module).

The significance of Theorem 1 is that it reduces the problem of deciding whether an \mathfrak{o} -module R is an M_u -G-module to that of determining for each \mathfrak{p} whether the vector space \overline{R} over \overline{K} is an M_u - \overline{G} -module. Thus, we pass from a *ring* problem to a *field* problem, which is in general much simpler.

In the important case where $G = \mathfrak{o}(H)$ is the group ring of a finite group H, then \overline{G} is semi-simple whenever \mathfrak{p} does not divide the order of H, and for such \mathfrak{p} the module \overline{R} is automatically an M- \overline{G} -module. More generally, we may form the ideal I(G) of G defined by Higman (4); his results show that $I(G) \neq 0$ in this case. From (9) we deduce at once that \overline{G} is semi-simple whenever \mathfrak{p} does not divide I(G). Therefore:

COROLLARY 1. R is an M_u -G-module (or $M_{\mathfrak{g}}$ -G-module) if for each \mathfrak{p} dividing I(G), \overline{R} is an M_u - \overline{G} -module (or $M_{\mathfrak{g}}$ - \overline{G} -module). (Note that only finitely many \mathfrak{p} 's are involved.)

Now let G be a Frobenius algebra over \mathfrak{o} , for example, $G = \mathfrak{o}(H)$. Then by (5) there is no distinction between $M_{\mathfrak{o}}$ - and M_u -modules, and Theorems 1 and 2 tell us that R is an M-G-module if and only if for each \mathfrak{p} , \overline{R} is an M- \overline{G} -module. Using the concept of *genus* introduced by Maranda in (9), we have:

COROLLARY 2. Let G be a Frobenius algebra over \mathfrak{o} , and let R, S be G-modules in the same genus. Then R is an M-G-module if and only if S is an M-G-module.

2. \mathfrak{p} -adic completion. Theorem 1 will follow at once from two lemmas, of which we prove the more difficult first. Let *R* be a *G*-module, and define

$$G_{\mathfrak{p}} = G \otimes \mathfrak{o}_{\mathfrak{p}}, \quad R_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \otimes R,$$

both products being taken over o.

LEMMA 1. If for each \mathfrak{p} , $R_{\mathfrak{p}}$ is an M_u - $G_{\mathfrak{p}}$ -module (or $M_{\mathfrak{0}}$ - $G_{\mathfrak{p}}$ -module), then R is an M_u -G-module (or $M_{\mathfrak{0}}$ -G-module).

Proof. (We give the proof only for M_u -modules.) Let R be an \mathfrak{o} -direct summand of a G-module S. We wish to show that R is a G-direct summand of S, that is, that there exists $f \in \text{Hom}_G(S, R)$ such that f|R = identity. Using

the Steinitz-Chevalley theory (1; 11) of the structure of finitely generated torsion-free modules over Dedekind rings, and taking into account the hypothesis that R is an o-direct summand of S, we may write

$$S = \mathfrak{A}_1 s_1 \oplus \ldots \oplus \mathfrak{A}_n s_n, \quad R = \mathfrak{A}_1 s_1 \oplus \ldots \oplus \mathfrak{A}_m s_m,$$

with $m \leq n$, where each \mathfrak{A}_i is an \mathfrak{o} -ideal in K, and where s_1, \ldots, s_n are linearly independent over K. For the remainder of this proof, let the index i range from 1 to n, and j from 1 to m.

To prove the lemma, it suffices to exhibit $f \in \text{Hom}_A(KS, KR)$ such that f|KR = identity, and f maps S into R. (We use KS to denote the K-module generated by S.) Let us set

(1)
$$f(s_i) = \sum a_{ij} s_j, \quad a_{ij} \in K,$$

thereby defining $f \in \operatorname{Hom}_{\kappa}(KS, KR)$. Then f maps S into R if and only if for each $\alpha \in \mathfrak{A}_i$ we have $\alpha a_{ij} \in \mathfrak{A}_j$, that is, if and only if

(2)
$$a_{ij} \in (\mathfrak{A}_j; \mathfrak{A}_i)$$
 for all i, j

On the other hand, the map f defined by (1) will be an A-homomorphism with f|KR = identity, if and only if for all $x \in G$, $s \in S$, $r \in R$:

 $f(xs) = xf(s), \quad f(r) = r.$

Let us set

$$G = \mathfrak{o} x_1 + \ldots + \mathfrak{o} x_t.$$

This is possible since (2, p. 70) G is a finitely generated \mathfrak{o} -module. Then f is an A-homomorphism with f|KR = identity, if and only if

(3)
$$f(x_k s_i) = x_k f(s_i), \quad f(s_j) = s_j \quad \text{for all } i, j, k,$$

where the index k ranges from 1 to t. Equations (3) are a set of linear equations with coefficients in K, to be solved for unknowns $\{a_{ij}\}$ satisfying (2).

From the hypotheses of the lemma we deduce that for each \mathfrak{p} , (3) has a solution $\{a_{ij}\}$ satisfying $a_{ij} \in (\mathfrak{A}_j; \mathfrak{A}_i)\mathfrak{o}_{\mathfrak{p}}$ for all i, j. Thus (3) is solvable over the extension field $K_{\mathfrak{p}}$ of K, and hence is also solvable over K. The general solution of (3) over K is given by

(4)
$$a_{ij} = e_{ij}/d_{ij}, \ e_{ij} = e_{ij}(t) = b_{ij} + \sum_{\nu=1}^{N} c_{ij}^{(\nu)} t_{\nu},$$

where the b_{ij} , $c_{ij}^{(\nu)}$, d_{ij} are fixed elements of \mathfrak{o} , $d_{ij} \neq 0$, and where t ranges over all *N*-tuples in K^N . The general solution of (3) over $K_{\mathfrak{p}}$ is also given by (4) by letting t range over $K_{\mathfrak{p}}^N$. Then for each \mathfrak{p} , we can find $\mathfrak{t}(\mathfrak{p})$ for which

(5)
$$e_{ij}(\mathbf{t}(\mathbf{p})) \in \mathfrak{B}_{ij}\mathfrak{o}_{\mathbf{p}}$$
 for all i, j ,

where $\mathfrak{B}_{ij} = (\mathfrak{A}_j; \mathfrak{A}_i)d_{ij}$.

IRVING REINER

For each \mathfrak{p} , let $b(\mathfrak{p})$ be the maximal exponent to which \mathfrak{p} occurs in the prime ideal factorizations of the ideals \mathfrak{B}_{ij} . Then $b(\mathfrak{p}) = 0$ except for a finite set of primes. Set $P = {\mathfrak{p}: b(\mathfrak{p}) > 0}$, and choose an N-tuple t with components in \mathfrak{o} such that (componentwise)

$$\mathfrak{t} \equiv \mathfrak{t}(\mathfrak{p}) \pmod{\mathfrak{p}^{b(\mathfrak{p})}}$$
 for each $\mathfrak{p} \in P$.

In that case, $e_{ij}(\mathfrak{t}) \equiv e_{ij}(\mathfrak{t}(\mathfrak{p})) \pmod{\mathfrak{p}^{b(\mathfrak{p})}}$ for each $\mathfrak{p} \in P$, and all i, j, whence by (5) we have

(6)
$$\operatorname{ord}_{\mathfrak{p}} e_{ij}(\mathfrak{t}) \geqslant \operatorname{ord}_{\mathfrak{p}} \mathfrak{B}_{ij}$$
 for all i, j ,

for all $\mathfrak{p} \in P$. But for $\mathfrak{p} \notin P$, equation (6) is certainly valid because $e_{ij}(t) \in \mathfrak{0}$, and $\operatorname{ord}_{\mathfrak{p}}\mathfrak{B}_{ij} \leq 0$. Hence we deduce that $e_{ij}(t) \in \mathfrak{B}_{ij} = (\mathfrak{A}_j: \mathfrak{A}_i)d_{ij}$ for all i, j, whence (4) gives a solution of (3) for which (2) holds.

We may remark that this lemma is almost trivial when o is a principal ideal ring.

3. Modular representations. Now let $R_{\mathfrak{p}}$ be a $G_{\mathfrak{p}}$ -module, and define $\bar{R}_{\mathfrak{p}} = R_{\mathfrak{p}}/\pi R_{\mathfrak{p}}$, $\bar{G}_{\mathfrak{p}} = G_{\mathfrak{p}}/\pi G_{\mathfrak{p}}$. To complete the proof of Theorem 1, we need only show:

LEMMA 2. If $\bar{R}_{\mathfrak{p}}$ is an M_u - $\bar{G}_{\mathfrak{p}}$ -module (or $M_{\mathfrak{p}}$ - $\bar{G}_{\mathfrak{p}}$ -module), then $R_{\mathfrak{p}}$ is an M_u - $G_{\mathfrak{p}}$ -module (or $M_{\mathfrak{p}}$ - $G_{\mathfrak{p}}$ -module).

Proof. Since $\mathfrak{o}_{\mathfrak{p}}$ is a principal ideal ring, we may express the proof (given here only for $M_{\mathfrak{0}}$ -modules) in terms of matrix representations. We must show that if Γ is a representation of $G_{\mathfrak{p}}$ in $\mathfrak{o}_{\mathfrak{p}}$ for which $\overline{\Gamma}$ (the induced modular representation of $\overline{G}_{\mathfrak{p}}$ in \overline{K}) is an $M_{\mathfrak{0}}$ -representation, then in any reduced representation

(7)
$$\begin{pmatrix} \Gamma & \Lambda \\ 0 & \Delta \end{pmatrix}$$

of $G_{\mathfrak{p}}$ in $\mathfrak{o}_{\mathfrak{p}}$, the binding system Λ is strongly-equivalent to zero.

We may write $G_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} y_1 \oplus \ldots \oplus \mathfrak{o}_{\mathfrak{p}} y_n$, $\bar{G}_{\mathfrak{p}} = \bar{K} y_1 \oplus \ldots \oplus \bar{K} y_n$. We shall show the existence of a matrix T over $\mathfrak{o}_{\mathfrak{p}}$ such that

(8)
$$\Lambda(y_i) = \Gamma(y_i)T - T\Delta(y_i) \qquad \text{for each } i,$$

where in this proof the index *i* ranges from 1 to *n*. By taking residue classes mod \mathfrak{p}^* , the representation (7) gives a representation

$$\begin{pmatrix} \tilde{\Gamma} & \tilde{\Lambda} \\ 0 & \tilde{\Delta} \end{pmatrix}$$

of $\bar{G}_{\mathfrak{p}}$ in \bar{K} . Since Γ is by hypothesis an $M_{\mathfrak{g}}$ -representation, the binding system $\bar{\Lambda}$ is strongly-equivalent to zero over \bar{K} . Therefore there exists V_1 over $\mathfrak{o}_{\mathfrak{p}}$ such that

(9)
$$\Lambda(y_i) = \Gamma(y_i) V_1 - V_1 \Delta(y_i) + \pi \Lambda^{(1)}(y_i) \qquad \text{for each } i,$$

where $\Lambda^{(1)}$ is also over $\mathfrak{o}_{\mathfrak{p}}$. But then (7) with Λ replaced by $\Lambda^{(1)}$ gives another $\mathfrak{o}_{\mathfrak{p}}$ -representation of $G_{\mathfrak{p}}$, whence the same argument shows

$$\Lambda^{(1)}(y_i) = \Gamma(y_i) \ V_2 - V_2 \Delta(y_i) + \pi \Lambda^{(2)}(y_i) \qquad \text{for all } i,$$

where V_2 and $\Lambda^{(2)}$ are over \mathfrak{o}_p . Continuing in this way, we obtain a solution of (8) given by $T = V_1 + \pi V_2 + \pi^2 V_3 + \dots$

This proof could also have been stated in terms of cohomology groups.

4. Frobenius algebra. Suppose in this section that G is a Frobenius algebra over \mathfrak{o} , that is, there exist \mathfrak{o} -bases $\{u_i\}$, $\{v_i\}$ of G (called *dual* bases) such that the right regular representation of G with respect to $\{v_i\}$ coincides with the left regular representation with respect to $\{u_i\}$. Assume that G has an \mathfrak{o} -basis containing e. Ikeda showed (5) that $M_{\mathfrak{o}}$ - and M_u -modules were the same, and that a G-module R is an M-G-module if and only if there exists an \mathfrak{o} -endomorphism ϕ of R such that

(10)
$$\sum u_i \phi v_i = \text{identity endomorphism of } R.$$

Gaschütz (3) had shown this for the case where $G = \mathfrak{o}(H)$, H = finite group, with (10) replaced by:

(11)
$$\sum_{h \in H} h \phi h^{-1} = \text{identity endomorphism of } R.$$

We may use Ikeda's result to obtain an immediate proof of Theorem 2. By hypothesis, R is an *M*-*G*-module, whence (10) holds for some \mathfrak{o} -endomorphism ϕ . But then clearly ϕ induces a \bar{K} -endomorphism $\bar{\phi}$ of \bar{R} , and $\sum u_i \phi v_i =$ identity endomorphism of \bar{R} , so that \bar{R} is an *M*- \bar{G} -module.

References

- 1. C. Chevalley, L'arithmétique dans les algèbres de matrices, Act. Sci. et Ind. 229 (1935).
- 2. M. Deuring, Algebren (Berlin, 1949).
- 3. W. Gaschütz, Ueber den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Z., 56 (1952), 376–387.
- 4. D. G. Higman, On orders in separable algebras, Can. J. Math., 7 (1955), 509-515.
- 5. M. Ikeda, On a theorem of Gaschütz, Osaka Math. J., 5 (1953), 53-58.
- 6. N. Jacobson, The Theory of Rings (New York, 1943).
- 7. F. Kasch, Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann., 127 (1954), 453-474.
- I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), 327-340.
- 9. J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Can. J. Math., 7 (1955), 516-526.
- 10. H. Nagao and T. Nakayama, On the structure of (M₀)- and (M_u)-modules, Math. Z., 59 (1953), 164–170.

IRVING REINER

- 11. E. Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlkörpern, Math. Ann. I, 71 (1911), 328-354; II, 72 (1912), 297-345.
- 12. B. L. van der Waerden, Modern Algebra, II (New York, 1950).
- H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Hamb. Abh., 12 (1938), 276–288.

Institute for Advanced Study and University of Illinois

 $\mathbf{334}$