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A note on weight systems which
are quantum states

Carlo Collari

Abstract. A result of Corfield, Sati, and Schreiber asserts that gln-weight systems associated with the
defining representation are quantum states. In this short note, we extend this result to all gln-weight
systems corresponding to labeling by symmetric and exterior powers of the defining representation.

1 Introduction

Weight systems and chord diagrams are central objects in the study of finite-type
invariants, and Chern–Simons theory, in different contexts. Universal Vassiliev-type
invariants typically take values in a space of diagrams (e.g., Jacobi and chord) and
weight systems are used to recover specific invariants from the universal ones. General
references for these topics are, for instance, [2, 5, 8].

To study finite-type invariant for braids, rather than links, a relevant space of
diagrams is the space of horizontal chord diagrams. Recently, horizontal chord
diagrams appeared as natural objects in the study of a mathematical framework for
quantum physics of branes [3, 9]. Roughly speaking, an horizontal chord diagram
on N-strands is given by N lines oriented upward (strands or Wilson lines), and a
number (possibly none) of horizontal segments (chords) joining pairs of strands (cf.
Figure 1a). One advantage of horizontal chord diagrams with respect to multicircle
chord diagrams is that they can be endowed with a natural algebraic structure.
The algebra of horizontal chord diagrams A h is defined as the algebra generated
by (formal) complex linear combinations of horizontal chord diagrams, where the
multiplication is given by stacking two diagrams one on top of the other (cf. Figure 1b),
modulo the infinitesimal pure braid relations (see Figure 2). Furthermore, we have
an anti-linear involution ⋆ on A h which acts on each horizontal chord diagram by
reversing the direction of the strands, and reflecting the page along an horizontal axis.
This involution endows A h with the structure of complex ⋆-algebra (Definition 2.1).
In [9] (see also [3, Section 4]), the ⋆-algebra of horizontal chord diagrams A h was
interpreted as “higher observables” on certain brane moduli. This interpretation is
coherent with some expected effects in the quantum theory of branes.
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Figure 1: (a) An horizontal chord diagram on five strands, and (b) the vertical composition of
two horizontal chord diagrams with the same number of strands.

Figure 2: The pictorial representation of the generators of I ⊂ A h .

Given a ⋆-algebra of observables O , a quantum state (or, simply, state) is linear
map φ ∶ O → C such that φ(x ⋅ x⋆) ≥ 0, for all x ∈ O , and φ(1O) > 0. A weight system
on horizontal chord diagrams is, by definition, a (complex) linear function from A h

to C. Since horizontal chord diagrams can be interpreted as observables, it is natural
to ask the following question [3, Question 1.1].

Question Which weight systems on horizontal chord diagrams are quantum states?

Lie algebra weight systems are weight systems associated with a labeling of the
Wilson lines by (finite-dimensional) irreducible representations of a (fixed) Lie alge-
bra. These weight systems are used to recover quantum invariants of links, knots, and
braids form the Kontsevich integral. In [3], it was shown that the gln-weight systems
associated with the defining representation of gln , which are generators of sorts for
all weight systems on A h, are indeed quantum states. The proof of [3, Theorem 1.2] is
conceptually simple and exploits an interesting relation between these weight systems
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and certain distance kernels on Cayley graphs. The aim of this note is to extend the
main result of [3] to gln-weight systems associated with a more general labeling. Recall
that an irreducible gln-representation is identified by a Young diagram and a complex
number. In this paper, we are only concerned with the case when this complex number
is 1. We call these representations Young diagram representations.

Theorem 1.1 All gln-weight systems associated with labeling by symmetric and/or
exterior powers of the standard representation are quantum states.

It is well known that the symmetric powers of the standard representation are all
the irreducible Young diagram representations of gl2.

Corollary 1.2 All gl2-weight systems corresponding to irreducible Young diagram
representations are quantum states.

The fundamental representations of gln are the given by exterior powers of the
standard representation, which gives the next corollary.

Corollary 1.3 All gln-weight systems corresponding to any labeling given by funda-
mental representations are quantum states.

The paper is organised as follows: in Section 2, we recall some basic definitions
and properties of ⋆-algebras, horizontal chord diagrams, representations of gln , and
Young symmetrizers. In Section 3, we prove our main result.

2 Background material

In this section, we collect some background material concerning ⋆-algebras, repre-
sentation theory and Lie algebra weight systems.

2.1 The ⋆-algebra of horizontal chord diagrams

We start with a definition.

Definition 2.1 Given a commutative ring C endowed with a ring involution
⋅ ∶ C → C. A ⋆-algebra, or involutive algebra, over C is a unital associative C-algebra
O together with an involution ⋆ ∶ O → O , such that:
(A1) (1O)⋆ = 1O .
(A2) (z ⋅ a +w ⋅ b)⋆ = z ⋅ a⋆ +w ⋅ b⋆, for all z, w ∈ C and a, b ∈ O .
(A3) (ab)⋆ = b⋆a⋆, for all a, b ∈ O .

A morphism of⋆-algebras is a morphism of algebras which commutes with the
involution.

A first class of examples of ⋆-algebras is given by group rings.
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Example 2.1 Given a group G, the group ring C[G] has a natural structure of
⋆-algebra given by setting

(
k
∑
i=1

z i ⋅ g i)
⋆

=
k
∑
i=1

z i ⋅ g−1
i ,

for all z1 , . . . , zk ∈ C and g1 , . . . , gk ∈ G.

In the next example, we present a formal definition of the ⋆-algebra of horizontal
chord diagrams A h. While the reader can keep in mind the pictorial definition given
in the introduction, it is useful to have an explicit definition.

Example 2.2 An horizontal chord diagram on N strands is an element of the free
monoid (Dh

N , ○) generated by the pairs (i , j), with 1 ≤ i < j ≤ N , called chords, with
neutral element the chord-less diagram ↑N . We also consider the empty chord diagram
↑0= ∅, defined as the diagram with neither chords nor strands, and set Dh

0 = {↑0}.
This monoid has a natural involution ⋆ given by “reading the chord diagram back-
ward,” that is,

[(i1 , j1) ○ ⋯ ○ (ir , jr)]⋆ = (ir , jr) ○ ⋯ ○ (i1 , j1).

The algebra of horizontal chord diagrams on N strands is given by the quotient algebra

A h
N ∶= C[Dh

N]
I

,

where I ⊆ C[Dh
N] is the ideal generated by elements of the form

(i , j) ○ (k, l) − (k, l) ○ (i , j)(2T)

for i , j, k, l such that the two closed intervals [i , j], [k, l] ⊂ R are either disjoint or
one contains the other, and also elements of the form

(i , j) ○ (i , k) + (i , j) ○ ( j, k) − (i , k) ○ (i , j) − ( j, k) ○ (i , j), 1 ≤ i < j < k ≤ N
(4T)

(see Figure 2 for a pictorial representation). Finally, define the algebra of horizon-
tal chord diagrams as A h = ⊕N≥0 A h

N . Extending ⋆ by anti-linearity, since I⋆ =
I, the algebra of horizontal chord diagrams acquires the structure of complex ⋆-
algebra. This involution has actually a deeper and more abstract interpretation as
the antipode of an Hopf algebra associated with the homology of some loop spaces
(cf. [3, Section 4]).

For small values of N, we can explicitly identify A h
N ; we have the following

isomorphisms of ⋆-algebras: A h
1 ≅ A h

0 ≅ C and A h
2 ≅ C[x], where the involution

on the latter algebra is defined by setting x⋆ = x. For N ≥ 3, the algebra A h
N is

noncommutative. In fact, we have a natural embedding A h
N−1 ⊆ A h

N and A h
3 is

noncommutative; it is a direct product of the free algebra on two generators C⟨x , y⟩
and C[u] (see [2, Proposition 5.11.1]).
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2.2 Horizontal chord diagrams, permutations, and standard weight systems

To each horizontal chord diagram C = (ir , jr) ○ ⋯ ○ (i1 , j1) ∈ A h
N , there is a naturally

associated permutation:

σ(C) = τ ir , jr ○ ⋯ ○ τ i1 , j1 ∈SN ,(2.1)

where τ i , j denotes the transposition of i and j. Recall, from Example 2.1, that the
group ring C[SN] has a natural structure of ⋆-algebra. Indeed, we have the following
proposition.

Proposition 2.3 The map σ ∶ A h
N → C[SN] ∶ C ↦ σ(C) is a morphism of⋆-algebras.

Proof We have to prove that σ is a well-defined ring homomorphism. That is, we
have to show that the images of elements in equations (2T) and (4T) are trivial. This is
immediate for the elements in equation (2T). On the other hand, a direct computation
shows that

σ((i , j) ○ (i , k)) = σ(( j, k) ○ (i , j)) = ( j k i)
and that

σ((i , j) ○ ( j, k)) = σ((i , k) ○ (i , j)) = (i k j).

Since σ commutes with ⋆, this concludes the proof. ∎
Following [1, Section 2.2], the gln weight system associated with the defining

representation, here called standardgln weight system, is the map Wst ∶ A h → C

which assigns to each chord diagram C ∈ A h
N , the integer

Wst(C) = wst(σ(C)) ∶= nnumber of cycles in σ(C)(2.2)

extended by C-linearity. We remark that here the number of cycles in a permutation
also includes the trivial cycles (i.e., the fixed points).

2.3 Tensor splitting

Another important operation on A h is what we call tensor splitting. Intuitively, the
i-tensor splitting, with i = (i1 , . . . , iN) ∈ NN , is obtained by replacing the rth strand
with ir parallel strands, and replacing each chord with the sum of all possible “liftings”
of said chord in the new horizontal chord diagram. More formally, we have the
following definition.

Definition 2.2 ([1, Definition 2.2]) Let i = (i1 , . . . , iN) be an N-tuple of positive
integers. The i-tensor splitting is the ring homomorphism

Δi ∶ A h
N → A h

�N+1(i) ∶ ( j, k) ↦
� j+1(i)

∑
r=� j(i)+1

�k+1(i)

∑
s=�k(i)+1

(r, s),

where �1(i) = 0 and �r(i) = i1 +⋯+ ir−1, for 0 < r ≤ N + 1.

Let us see in an example the effect of the tensor splitting.
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Example 2.4 Denote C = (2, 3) ○ (1, 3) ∈ A h
3 , we explicitly compute some tensor

splittings in this case; for instance, we have that

Δ(1,2,1)(C) = (2, 4) ○ (1, 4) + (3, 4) ○ (1, 4) ∈ A h
4 ,

and also that

Δ(3,1,1)(C) = (4, 5) ○ (1, 5) + (4, 5) ○ (2, 5) + (4, 5) ○ (3, 5) ∈ A h
5 .

Note that Δ1, where 1 = (1, . . . , 1), is just the identity map. We conclude this
subsection with the following, useful, observation.

Remark 2.5 The tensor splitting Δi ∶ A h
N → A h

�N+1(i) is a morphism of ⋆-algebras.

2.4 Young symmetrizers

A partition of n ∈ N is a (nonempty) ordered collection of positive integers
λ = (n1 , . . . , nk), with n1 ≥ n2 ≥ ⋅ ⋅ ⋅ ≥ nk > 0, which add up to n. If λ is a partition
of n, we shall write λ ⊢ n or, if it is understood that λ is a partition, ∣λ∣ = n. The
(positive) integers n1 , . . . , nk are called parts, and the number of parts, which is k in
the case at hand, is called the length of the partition.

The Young diagram associated with a partition λ = (n1 , . . . , nk) is a finite collection
of boxes arranged in k (left-justified) rows of length (from top to bottom) n1 , . . . , nk ,
respectively. Conversely, to each Young diagram, we can associate a partition whose
parts are the length of its rows. We denote both a partition and its associated Young
diagram by the same symbol.

Example 2.6 The partition λ = (5, 3, 1, 1) is a partition of 10 whose length is 4. The
corresponding Young diagram λ is the following.

An essential tool for building irreducible representations of sln , and thus of gln ,
are Young symmetrizers (cf. [4, pp. 45–46]).

Definition 2.3 Given λ ⊢ n, a Young tableau of shapeλ is a filling of the Young
diagram λ with the numbers 1, . . . , n. A tableau is standard if the number (label) on
each box is strictly increasing along both rows and columns, and there are no repeated
labels.

Given a Young diagram of shape λ = (n1 , n2 , . . . , nk), there is a canonical (stan-
dard) Young tableau associated with it, which is the following tableau.
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n n-1 ⋯ n-n2+1 ⋯ n-n1+1

n-n1 n-n1-2 ⋯ n-n1

-n2+1

⋮ ⋮

nk ⋯ 1

To get hold of how the canonical tableau is defined, we give a concrete example.

Example 2.7 The canonical Young tableau of shape λ = (5, 3, 1, 1) is the following.

10 9 8 7 6

5 4 3

2

1

Let T λ be the set of all tableaux of shape λ = (n1 , . . . , nk). A permutation σ ∈S∣λ∣
acts on each tableau tλ ∈ T λ by permuting the labels, denote by σ .tλ the resulting
tableau. Fixed a tableau tλ , we can define two subgroups of S∣λ∣; that is, the row
stabilizer

Rtλ = { σ ∈S∣λ∣ ∣
the set of labels on corresponding
rows of σ .tλ and tλ are the same } ,

and the column stabilizer

Ctλ = { σ ∈S∣λ∣ ∣
the set of labels on corresponding

columns of σ .tλ and tλ are the same } .

Using these subgroups, we can associate with each tableau its Young symmetrizer.

Definition 2.4 The unnormalized Young symmetrizer c̃tλ ∈ C[S∣λ∣] associated with
the tableau tλ is defined as c̃tλ ∶= atλ btλ , where

atλ = ∑
σ∈Rtλ

σ btλ = ∑
σ∈Ctλ

sign(σ)σ .

The Young symmetrizer ctλ ∈ C[S∣λ∣] is a rescaling of c̃tλ by a positive rational number,
in such a way that ctλ ctλ = ctλ (cf. [4, Lemma 4.6]).

Notation 2.8 The Young symmetrizer associated with a partition λ, and not to a
tableau tλ , is the symmetrizer associated with the canonical tableau, and we write cλ
en lieu of ctλ .
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Remark 2.9 Note that if σ appears in aλ (or bλ) then also σ−1 does, and they
appear with the same (real) coefficients. The same does not hold for cλ (see the
example below). Nonetheless, if λ is either of the form (n) or (1, . . . , 1), then cλ = c⋆λ
as elements of C[S∣λ∣].

Example 2.10 Consider the partition λ ⊢ 3 given by (2, 1), the corresponding Young
diagram λ is the following.

Two examples of Young tableau of shape λ are the following.

tλ =
1 2

3
sλ(= (1, 3).tλ) =

3 2

1

Observe that sλ is standard (actually, it is the canonical tableau), whereas tλ is not. In
these cases, we have

Rtλ = {id, (1, 2)}, Ctλ = {id, (1, 3)}
and

Rsλ = {id, (2, 3)}, Csλ = {id, (1, 3)},

respectively. It follows that

c̃tλ = (id + (1, 2))(id − (1, 3)) = id + (1, 2) − (1, 3) − (1, 3, 2)
and

c̃sλ = (id + (2, 3))(id − (1, 3)) = id + (1, 2) − (1, 3) − (1, 2, 3).

The next subsection is dedicated to the description of irreducible gln-
representations in terms of partitions. Our main scope there is to set some notation,
for the general theory, the reader may refer to [4, Chapter 15].

2.5 Representations of gln

Denote by ρst the defining representation of gln , that is the natural action of
gln = End(Cn) on C

n , and denote by ρsl
st the defining representation of sln , which is

the restriction of ρst to sln .
It is well known that (finite-dimensional) irreducible representation of sln are

associated with a partition of length at most n [4, Section 15.3]. The representation
corresponding to a partition λ can be described explicitly. Consider the natural
action (by permutation of the tensor factors) of the symmetric group Sk on the
tensor product of k copies of C

n . This action commutes with the action of sln ,
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given by (ρsl
st)⊗k . In particular, we can consider the images of the action of a Young

symmetrizer ctλ ∈ C[Sk] (with ∣λ∣ = k) in C
n ⊗ ⋅ ⋅ ⋅ ⊗C

n .

Definition 2.5 Let λ ⊢ k, and n ≥ k. The image of the action of cλ on (Cn)⊗k is
called the Weyl module corresponding to λ, and is denoted by Sλ(Cn).

The restriction of (ρsl
st)⊗k to the Weyl module Sλ(Cn) associated with λ ⊢ k is

isomorphic to the irreducible representation of sln with highest weight wλ , denoted
by ρsl

λ . We can extend ρsl
λ to a representation of gln = sln ⊕C⟨IdC⟩ by making In act

trivially on Vλ . For z ∈ C, consider the representation ρz ∶ gln → End(C) defined by

ρz(g + kIdC)[x] = zkx , ∀g ∈ sln , k, x ∈ C .

Each irreducible representation of sln ⊕C⟨IdC⟩ = gln is isomorphic to a tensor
product of the form ρλ ⊗ ρz (see [4, Section 15.5]), where the tensor product of two
representations, say ρ and ρ′, is given by

(ρ ⊗ ρ′)(g)[v1 ⊗ v2] = ρ(g)[v1] ⊗ v2 + v1 ⊗ ρ′(g)[v2].

We refer to the Young diagram representation ρλ ⊗ ρ1 simply as λ. The symmetric and
exterior power of the defining representation are associated with the partitions of the
form (k) and (1, . . . , 1), respectively.

2.6 General Lie algebra weight systems

In this subsection, we recall the general construction of Lie algebra weight system, and
then we specialize this construction to the case at hand (see [1, Section 2], [2, Chapter
6], [5, Chapter 14], and the references therein for a comprehensive overview).

The main ingredients in the definitions of Lie algebra weight system on A h
N are:

(1) a (finite-dimensional complex) Lie algebra g;
(2) an ad-invariant nondegenerate bi-linear form ⟨⋅, ⋅⟩ on g; and
(3) an ordered collection of finite-dimensional g-representations ρ = (ρ1 , . . . , ρN),

called labeling where ρ i ∶ g→ End(Vi) for each i = 1, . . . , N .
The basic idea is to associate with each horizontal chord diagram C ∈ A h

N an element
in End(V1 ⊗⋯⊗ VN), and then take the trace to obtain a complex number.

First, fix an orthonormal basis (with respect to ⟨⋅, ⋅⟩) for g, say e1 , . . . , ed . This
choice, and the fact that ⟨⋅, ⋅⟩ is nondegenerate, allow us to identify the aforementioned
bilinear form with the element

dim(g)

∑
i=1

e i ⊗ e i ∈ g⊗ g.

We can decompose, by creating a unique minima on each chord, each horizontal
chord diagram in local pieces like the ones shown in Figure 3, which correspond
to the illustrated maps. Interpreting horizontal juxtaposition as tensor product, and
vertical composition as the usual composition, we obtain the desired map. (Crossings
between chords and Wilson lines have no meaning.) More explicitly, to each chord
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Figure 3: Dictionary between graphical and abstract construction of Lie algebra weight systems.

CN
i , j = [(i , j)] ∈ A h

N , we are associating the element

W̃ρ(CN
i , j) =

dim(g)

∑
r=1

IdV1 ⊗⋯⊗
ith pos.
ρ i(er) ⊗⋯⊗

jth pos.
ρ j(er) ⊗⋯⊗ IdVN .

It can be shown that W̃ρ induces a well-defined morphism of ⋆-algebras between A h
N

and End(V⊗N) (cf. [1, Section 2.1], [5, Sections 14.2 and 14.3]). We can now give the
definition of Lie algebra weight system.

Definition 2.6 Given a metrized Lie algebra (g, ⟨⋅, ⋅⟩) and an ordered collection
ρ = (ρ1 , . . . , ρN) of g-representations, the corresponding Lie algebra weight system is
given by

Wρ(C) = Tr(W̃ρ(C)),

for each C ∈ A h
N .

Remark 2.11 For each g-weight system Wρ(↑N) = Tr(IdV1⊗⋯⊗VN ) =
∏i dim(Vi) > 0.

The gln-weight system Wst, associated with the bilinear form ⟨A, B⟩ = Tr(AB) and
to the defining representation, admits a simple combinatorial description in terms of
permutations, as recalled in equation (2.2) (cf. [1]). There exists a similar description
for more general gln-weight system—compare with [6].

Definition 2.7 Let i0 ∈ {1, . . . , N}, 0 ≤ k ≤ N − i0, and λ be a partition of k. The
small Young symmetrizer c(N , i0 ,λ) ∈ C[SN] is the image of the Young symmetrizer
cλ ∈ C[Sk] via the inclusion

C[Sk]
≅#→ C[S{i0+1, . . . , i0+k}] ⊂ C[SN] .
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Given a vector of gln-representations ρ = (λ1 , . . . , λN), we can define the Young
symmetrizer associated withρ as the product

cρ ∶=
n
∏
i+1

c(N ,λ i ,∑ j<i ∣λ j ∣) ∈ R[S∣ρ∣] ⊂ C[S∣ρ∣].

The weight system Wρ can be also defined as the following composition:

A h
N

Δ(∣λ
1 ∣, . . . ,∣λN ∣)

#→ A h
∣ρ∣

σ#→ C[S∣ρ∣]
cρ
#→ C[S∣ρ∣]

wst#→ C

where ∣ρ∣ ∶= ∑ j≤N ∣λ j ∣—cf. [6, 7]. Roughly speaking, we are writing each λ i as the

composition of the representation ρ⊗∣λ
i ∣

st —encoded by Δ(∣λ
1 ∣, . . . ,∣λN ∣), cf. [1, Definition

2.2]—and the projection onto Sλ(C)—encoded by the multiplication by cρ—and
taking the trace by applying wst.

3 Proof of the main result

In [3], it was proven that the standard gln-weight system is a quantum state. The proof
goes as follows: first, one observes that Wst factors as

A h
N C

C[SN]
σ

Wst

wst

where σ is the morphism of ⋆-algebras defined in Section 2.2. The key observation
made in [3] is that wst is the kernel of the Cayley distance function, which is a class
functions (i.e., it is constant on conjugacy classes). Eigenvalues and eigenvectors of
class functions on the symmetric group are known— cf. [3, Section 3] and references
therein. So one concludes by observing that these eigenvalues are nonnegative for all
possible n. This proves that wst is a quantum state, and the main result of [3] is now
a consequence of the following easy lemma.

Lemma 3.1 Let O and O ′ be ⋆-algebras. If ϕ ∶ O ′ → C is a state, and f ∶ O → O ′ is
a morphism of ⋆-algebras, then ϕ ○ f is a state.

We want to use a similar reasoning to prove our main result. We know that Wρ
factors as the following composition:

A h
N

Δ∣ρ∣
#→ A h

∣ρ∣
σ#→ C[S∣ρ∣]

cρ
#→ C[S∣ρ∣]

wst#→ C .

While the map σ ○ Δ∣ρ∣ is a morphism of ⋆-algebras, the map cρ is not—for any choice
of ρ which is not st. Therefore, we cannot conclude using Lemma 3.1. Nonetheless,
we can show that the composition wst ○ cρ is a state for suitable choices of ρ, proving
our main result.
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Definition 3.1 Let O be a ⋆-algebra, and x ∈ O . A linear function ϕ ∶ O → C is class-
like with respect to x if ϕ(x y) = ϕ(yx), for each y ∈ O .

Linear functions arising from class functions are class-like functions

Example 3.2 If f ∶Sm → C is a class function (i.e., it is constant in each conjugacy
class), then

ϕ(∑
i

z i σi) ∶= ∑
i

z i f (σi)

is class-like for all c. In fact, given c = ∑ j x jη j and x = ∑i z i σi , we have

ϕ (cx) = ∑
i , j

x jz i f (η jσi) = ∑
i , j

z i x j f (σi η j) = ϕ (xc) .

States which are class-like with respect to special elements can be used to produce
new states, as shown in the following lemma.

Lemma 3.3 Let c ∈ O be such that c2 = αc, α ∈ R>0, and c⋆ = c. If a state ϕ ∶ O → C

is class-like with respect to c, then ψ = ϕ ○ (c⋅) is also a state.

Proof Let a ∈ O , then

ψ(aa⋆) = 1
α ϕ(c2aa⋆) = 1

α ϕ(caa⋆c) = 1
α ϕ(caa⋆c⋆) = 1

α ϕ(ca(ca)⋆) ≥ 0. ∎

We remark that the hypothesis c = c⋆ plays a key role in the above lemma. Now,
we are ready to prove the main theorem.

Proof of Theorem 1.1 Let ρ = (λ1 , . . . , λN) be a labeling such that each λ i is either
a symmetric or an exterior power of the standard representation. Since Wρ(↑N) > 0
(see Remark 2.5), we only have to prove that Wρ(CC⋆) ≥ 0, for each C ∈ A h

N . We
recall that the following triangle

A h
N C

C[S∣ρ∣]
σ○Δ(∣λ

1 ∣, . . . ,∣λN ∣)

Wst

wst○(cρ ⋅)

is commutative. From Proposition 2.3, it follows that σ ○ Δρ is a morphism of ⋆-
algebras. Thence, by Lemma 3.1, in order to show that Wρ is a state it is sufficient
to prove that wst ○ (cρ ⋅) is a state. Note that cρ is idempotent since small Young
symmetrizers are idempotent and their actions commute (as they have disjoint
support). Furthermore, since each λ i is either a symmetric or exterior power of
the defining representation, the commutativity of the small Young symmetrizer and
Remark 2.9, ensure that cρ = c⋆ρ . Since wst is state-like with respect to cρ (cf. Example
3.2), the statement follows directly from Lemma 3.3. ∎
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