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ABSTRACT

Accurate evaluation of a line source function,
S, requires that the frequency bandwidth be suffi-
ciently large to include properly transfer effects
in the line wings. The bandwidth required to achieve
a given level of accuracy in the evaluation of S can
be specified, in units of the Doppler width, in terms
of three parameters: the ratio of continuum to line
opacity, ro, the probability for collisional de-
excitation, e, and the Voigt wing parameter a.
Bandwidths required to give S to an accuracy of 2
percent are given for values of e and ro from 10"

2

to 10"8 and for values of a from 10"2 to 10"5.

Key words: line source function, bandwidth require-
ments .

I. INTRODUCTION

In computing a line source function, S, by
numerical techniques, it is generally necessary to
discretize the frequency variable and to limit the
frequency range to some finite band centered on the
line. The accuracy with which S can be evaluated
depends upon both the nesting of the frequency points
and the total bandwidth considered.

The bandwidth required to achieve a given level
of accuracy in S depends upon the extent of the line
wings and, in addition, upon departures from local
thermodynamic equilibrium, LTE. In LTE one frequency
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can be treated independently of any other frequency
and the required bandwidth reduces to zero. In non-
LTE S depends upon radiation transfer effects over a
band of frequencies that, for some lines, may be very
broad. Generally, if a line has negligible wings
the bandwidth can safely be restricted to the Doppler
core and the bandwidth is sufficiently narrow that it
presents no particular difficulties. When, however,
the line wings are strongly developed the problem of
properly treating the entire bandwidth of the line
with a set of discrete frequency points may lead to
serious difficulties. It is essential to know,
therefore, how far into the line wings the bandwidth
must extend in order to give an accurate evaluation
of S.

The strength and extent of line wings are de-
termined by two parameters: the Voigt parameter a.
and the ratio of continuum to line opacity, r o =
dT c/dT o. If we define the shape factor for the line
absorption coefficient to be <f>y, where y is a dimen-
sionless frequency measured in units of the Doppler
width, i.e., y = Av/AvD, we may approximate <J)y for a
Voigt profile by

(j) =
y

* -yy

e ^
2

2
+

y

a

<

,2
y > 1 (1)

An element of opacity at frequency y is then given by

dx = <f> dT + dxy y o c

+ r ) dxy o o

For constant r o, Xy(line) = x c for a value of y
such that cj)y = r o and Xy(line) = 10~"

n x c for <J>y =
10" n ro. One may reasonably argue that the effects
of the wings are adequately included if Xy(line) =
10~ 2 xc. Equation (1) gives for this case a limiting
y of

= 7.5 ( a / r Q )
1 / 2 (2)
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In extreme cases such as the H and K lines of Ca II
or Lyman-a in the solar spectrum (a/ro)*

/2 % 101*.
Hence, we find y1 fy 10

5.
To properly treat such large values of y is both

difficult and time consuming. Furthermore, it is
totally unnecessary in cases where the wings are
formed in LTE.

The purpose of the calculations presented here
is to evaluate the bandwidth requirements for a range
of the relevant parameters. We treat the simple case
of a two-level atom, which requires only one param-
eter in addition to a and rQ. The added parameter
is the ratio of collisional to radiative de-excita-
tion rates, which we define as e - C21/A21 where
the subscripts designate the upper and lower levels
respectively. For a given set of e, a_ and ro, we
evaluate the minimum value of y for which S is
accurate to 2 percent at each depth. The parameters
e, a and ro together with the temperature and Doppler
width are held constant with depth.

II. CALCULATIONS AND RESULTS

The line source function is computed using the
flux divergence method of Athay and Skumanich (1967).
In their formulation for a two-level atom with non-
coherent scattering, the frequency independent source
function is given by

S = B + 4 | -j-J— rr-Z dy , (2)
e+6 I 4> +r <3T

 1 '
Y

o

where B is the Planck function, H is the monochro-
matic net flux,

N = (2 J cj)y dy)
 2 % 77 1/2 , (3)

and

6 = 2,r'/-* rQ f j A - dy. (4)
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We note from the form of equation (3) that two
general conclusions can be stated about the required
bandwidth as follows:

(1) If 6 > e, y1 must be sufficiently large to
give an accurate value of

TF

This quantity would be independent of yx if
dHy/dxo were constant with y, which is true
in LTE but not in the general case. In
non-LTE the quantity dHy/dTo is relatively
large near line center and decreases to a
relatively small, constant value at some
point in the line wings. .

At the surface T = 0, S/B « 6l/2.
Thus, if we considered that only 6 depen-
ded upon y1 we would require 4 percent
accuracy in 6 to attain 2 percent accuracy
in S.

Also, we note that in the case,
6 >> e, the required bandwidth is indepen-
dent Of £ .

(2) If £ >> 6, the bandwidth will depend upon
£. For large e, the non-LTE effects will
be limited to the Doppler core and y = 3
will suffice. For small £, the required
bandwidth will extend into the wings, but
not so far as in case 1 for a value of 6
equal to the £ of case 2.

It is clear from case 1 that an extreme limit
on yx for 2 percent accuracy in S is given by the
condition that 6 be accurate to 4 percent. Thus, if
we write

6 = 2TT" I / 2 r [ i dy

r
0 1 + °- y2

2 T T ~ 3 A (a r Q ) l / 2 t a n " 1
 Y l ( / F r Q / a ) l / 2

(5)
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= T T I A (a r ) l / 2= 7T1/l* (a r Q ) 1 / z
 Y l =

the 4 percent criterion for 6 gives

1 = 11.5 ( a / r Q )
l / 2 , (6)

which is about a factor 1.5 greater than the value
given by equation (2). The limit on y1 set by equa-
tion (2) corresponds to approximately 6 percent
accuracy in (S, or 3 percent accuracy in S if 6 >> e.

To evaluate y2 more explicitly for a given com-
bination of e, r o and a., we solve equation (3) for
a set of values of yx. We increase ylf step-wise,
until an increase in y : by a factor of ten changes
S by less than 2 percent at each optical depth
point. We assume that S has converged to a correct
solution when this condition is#met.

The values of yx tested are 3, 4 10
k, 3 x io k,

and 1 0 k + 1 for k > 1. The spacings of the y points
for y < 10 are as follows:

0 < y < 3 3 £ y £ 4 4 £ y £ 10

0.25 0.5 3

For y >_ 10k, k >_ 1, four points in y are used per
decade. These are spaced at 1.5 x 10k, 3 x 10k,
6.5 x iok and 10k+1. As an example, if y. = 103

the number of points used is:

0 £ y £ 3 3 <_ y <_ 4 4 £ y £ l O

13 2 2

10 <̂  y £ 100 100 < y < 1000

4 4
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After Yi is carried far enough to show conver-
gence a minimum value of y2 is determined that gives
S accurate to 2 percent. These minimum values are
obtained by interpolation between the tested values
of y1# They should be accurate to at least a factor
of two.

It is possible, of course, that our convergence
criterion is not strict enough. When both e and ro

are small and when a_ is large the convergence is very
slow. For example, with e = ro = 10"

8 and a = 10"2

the 2 percent criterion gives y: % 2 x 10
4 whereas a

10 percent criterion gives yi ^ 500. We note, how-
ever, that y1 = 2 x 10

 4 is about a factor of two
greater than the value given by equation (6). Hence,
we conclude that our convergence test is valid in
this case, which is the case of slowest convergence
treated here. In all other cases, yx is less than
or equal to the value given by equation (2) and the
convergence is reasonably fast.

The greatest likelihood of error in determining
y by the method described is in underestimating y1.
Thus, it is more likely that the value of y1 given
for a particular set of values of e, ro and a. is too
low, rather than too high.

The convergence of S to its correct solution as
y increases occurs differently in different parts
or" the atmosphere and for different values of the
various parameters. The most notable effects are
related to the wing parameter a_. For T O << a"

1, the
convergence is from below, i.e., if yx is too small
S is too small. For xo >> a"

1, however, the con-
vergence is from above. Also, if (e + ro) < a < 10
(e + ro) the convergence of S is much more rapid for
T O >> a"1. These two effects are illustrated in
Figure 1.

Values of yx for the 2 percent criterion are
shown in Figure 2 for different sombinations of
values of ro and e between 10"

2 and 10"8 and for
values of a between 10"2 and 10"5. Computations were
made each two decades in e and ro (10~2, 10"h

 r 10"
6

and 10"8) and each decade in a (10"2, 10"3, 10"^ and
10" 5). The curves shown, therefore, are drawn
through four points in each case. We emphasize again
thatT the absolute errors in y x may be as large as a
factor of two. On the other hand, the curves drawn
through the points show a large measure of continuity
from one curve to another. Thus, the errors do not
appear to be so large as to obscure the nature of the
curves.

There are threshold effects around y1 = 3 for
a <_ 10"3 and yl = 15 for a = 10"

2 that strongly
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Figure 1. Illustration of approach to proper so-
lution as yj_ is increased for two cases a = 10""3 and
a = 10-2

influence the shapes of the curves for small values
of y1# However, certain systematic effects are
evident in the curves whenever yx is large or when
either e or ro is small.

In the plot of log y: versus log 6 in Figure 2,
^ x— 1it is evident that for 6 >> e

range o.

Equation (5) Ihows that, for this case,. 6 « r
Thus, we find a region where y1 * r(

Within the
6 and a where this is evident, viz.,
and a > 10"3 line wings are well developed.

l

x / 2 og y1 o as predicted
by equations (2) and (6). The plots of log yx versus
log ro exhibit the r Q-

1 / 2 dependence for ro = 10"
6

and 10"8. Also, when 6 << e the results in Figure 2
show yx to be independent of 6- The same effect is
again evident in the plot of log y: versus log ro
for e - 10-2.
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Similarly, in the plot of log yx versus log a.
we find that when a < 10"3 and yi is well away from
its threshold values yi a a.1 /2 as expected. There
is a tendency in all four curves of log ya versus
log a to have more nearly yx « a. for a > 10"3. To
preserve the a 1 / 2 dependence it would be necessary
to reduce all of the yx values for a = 10"

2 by about
a factor of two. While this is permissable for in-
dividual points it seems unlikely that all of the
values of yx for a = 10"2 would be overestimated by
the same amount.

On the plots of log yx versus log e in Figure
2 the plus signs indicate the points e = 6 and the
open circles indicate the points e = ro. It is clear
that the dependence of yx on e weakens at about the
point e = 6 and that yx becomes essentially indepen-
dent of e for e < 10 6. For e > 6 and y2 well
away from its threshold values (i.e., on the curves
r o = 10"

8) it appears that y1 <* e - 1.
To an accuracy of about a factor of two and for

y: > 10, the results in Figure 2 may be approximated
by:

4

a l / 2

Yi % — r - , e >> 6

(7)

and

Yl % 10(a/r o)
1 / 2 ^ 13 | , 6 >> e .

The first of these limits on yx corresponds to
iy % e2 x , or to Ty = 1 at xo = e"

2, the thermali-
zation length for the pure dispersion case.

It should be remembered that the above values
of y2 are valid for the 2 percent criterion on the
accuracy of S. When line wings are well developed
and when 6 >> e the required values of yx for a
given accuracy in 6 can be estimated from equation
(5). For 20 percent accuracy in 6, equation (5)
gives values of yx a factor of five below those re-
quired for 4 percent accuracy and for 2 percent
accuracy in 6 a factor of two increase in y2 is re-
quired. However, accuracy in 6 is not the only
criterion for accuracy in S.
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Estimates of yx for 10 percent accuracy in S
were made along with the estimates for 2 percent
accuracy. A few checks were made on y1 for 1
percent accuracy in S. In almost all cases where
6 >> e the changes in yx indicated in the preceding
paragraph give an accuracy in S equal to twice the
accuracy in 6, i.e., 20 percent accuracy in 6 corre-
sponds to 10 percent accuracy in S. In a few cases
much larger changes in y1 are indicated. For ex-
ample, with a = 10"2 and e = ro = 10"

8 the esti-
mated values of y: are 500, 2 x 10^ and > 10

5 for
accuracies in S of 10, 2 and 1 percent, respectively.

In the case of e >> 6, 10 percent accuracy in
S requires values of yx about a factor of five be-
low those given in Figure 2 and 1 percent accuracy
in S requires values of y1 about a factor of two
larger than those given in Figure 2.

A few additional calculations were made in which
both B and AvD varied with depth. The depth vari-
ation of B mimicked the solar atmosphere and Av^ was
equated to the thermal Doppler width. This did not
produce any substantial change in yi. However, rapid
depth variations in any one of the parameters influ-
encing S, viz., B, Avp, e, rQ and a. may very well
lead to significant changes in y1. It is perhaps
wise in using the results in Figure 2 and equation
(7) to use the minimum values of e and ro and maximum
values of a_ for a particular problem.

Although calculations have not been made for
multilevel atoms, I see no particular reason why the
inclusion of added levels should increase the values
of y r However, if the added levels increase the
effective value of e the required values of y1 may be
substantially reduced. It would seem entirely safe,
therefore, to use the results found here for multi-
level problems.

r
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DISCUSSION

Have you investigated what happens
if you encounter a neighbouring line in your neces-
sary bandwidth yx (100 Doppler-widths) for the fre-
quency integration?

Athay: No, I don't know what happens to yi in
that case.
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