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GENERALIZED SPECTRAL THEORY AND 
SECOND ORDER ORDINARY DIFFERENTIAL 

OPERATORS 

HECTOR J. SUSSMANN 

1. Introduction. This paper continues the study, begun in [7], of the spec­
tral theory of non-self-ad joint second order ordinary differential operators on 
a half-line. The case of a 'Very small" potential was studied in [4; 5; 6]. The 
case considered in [7], and in the present paper, is that where the potential 
is not so small. Precisely, the potential is assumed to be of the form 

(i) p(0 = 7 + s(0 

where a is a (not necessarily real) constant, and where q is "small". We shall 
consider the spectral properties of the operators defined in L2[l, oo ) by the 
formal differential operator 

(2) r = - £ + >(*) 
(we work in the half-line [1, GO ) because we are not interested in the problems 
arising from the singularity of a/t dit t = 0). 

One sees easily that, in order to obtain nontrivial spectral properties, it is 
necessary to impose one boundary condition (for the precise definitions con­
cerning differential operators and boundary conditions, cf. [3, Chapter XIII]) 
at the fixed endpoint. 

In [7], we showed that, in general, the operators obtained in this way are 
not spectral (in Dunford's sense, cf. [2] and [4]). The present study is con­
cerned with the applicability to these operators of generalized spectral theory. 
The basic idea of this theory is that, by analogy with L. Schwartz's theory of 
distributions, the notion of a "spectral measure" can be extended, to study 
more general entities called "spectral distributions". This makes it possible 
to consider "generalized scalar" operators (i.e. operators that can be written 
as the "integral" of a spectral distribution, in the same way as an operator 
of the scalar type is the integral of a spectral measure), and "generalized 
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GENERALIZED SPECTRAL THEORY 179 

spectral" operators (i.e. sums S + Q, where 5 is generalized scalar, Q is 
quasi-nilpotent, and SQ = QS). A detailed presentation of generalized spectral 
theory for bounded operators is given in [1]. Here, we shall need two extensions 
of the theory, namely: 

(a) the extension to the unbounded case, and 
(b) the study of "12-generalized scalar operators", where Œ is an arbitrary 

open subset of the complex plane (plus the point at infinity). 
Precisely, generalized scalar operators are operators that have an opera­

tional calculus for functions that are Cœ in a neighbourhood of the spectrum. 
We want to study operators that have an operational calculus for functions 
that are C°° in a neighbourhood of the spectrum, and analytic in a neighbour­
hood of a fixed closed subset K of the spectrum. If Q s the complement of K, 
such an operator will be called '^-generalized scalar". 

The relevant definitions are given in sections 2 and 3. In section 4 we study 
a particular situation in which the problem of ^-generalized scalarity can be 
reduced to the study of the growth of the resolvent near the spectrum. 

Section 5 deals with the application of the theory to the second order 
operator. The main result is contained in Theorem 1.3, which says that the 
operators studied here are ^-generalized scalar, where 0 is the complement of 
the origin (this result is the best possible, as will be shown elsewhere; cf. also 
section 6). 

Section 5 should be read together with [7]. The other sections rely heavily 
on the results and methods of [1], but are independent of [7]. (The following 
two misprints of [7] should be corrected: (a) In the statement of Lemma 2.3, 
the expression "as (/, M) ~~* (°° > °° ) " must be replaced by "as |//x| —> co ", and 
(b) in the second integral of formula (3.11), ug(t)" should be replaced by 

The author is grateful to Prof. J. Schwartz for his advice and encouragement. 

2. Preliminaries. All the operators considered here are assumed to be 
closed, densely defined operators on a Hilbert space H. The set of all bounded 
operators on H is denoted by £ê (H). We consider & (H) as a Banach algebra, 
with the norm 

(3) ||J3|| =sup{| |J3*| | : ||*|| = 1 } . 

The identity operator is denoted by / . 
The set of complex numbers is denoted by C, and the Riemann sphere 

(i.e. the one point compactification of C) by C*. Thus C* = C U { o o | . The 
Riemann sphere is, in a well-known way, a compact analytic manifold. 

If T is an operator, then the resolvent p(T) and the spectrum a(T) will be 
viewed as subsets of C*. By definition, p(T) is the set of all X G C such that 
\I — T is one-to-one and maps the domain &(T) of T onto H. In addition, 
we let oo G p ( r ) if and only if Tis bounded. If M G p(T) is finite then JJLI — T has an 
inverse, called the resolvent of T at ju, and denoted by R(n, T). If T is bounded, 
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we let R(co,T) = 0. With these definitions, it is clear that p(T) is an open 
subset of C*, and that the 3 (H) -valued function JU —> R(p,, T) is analytic in 
p(T). The spectrum a(T) is, by definition, the complement of p(T) in C*. 
Thus d(T) is always compact, and co £ a(T) if and only if T is unbounded. 
We shall only consider operators T that satisfy 

(n.r.) The set p(T) is nonempty. 

An operator T is said to have the single-valued extension property (hence­
forth abbreviated as s.v.e.p.) if 

(i)T satisfies condition (n. r.), and 
(ii) for every open set 12 of complex numbers, if / is an H-valued analytic 

function on 12 that satisfies 

(4) (XI - T)f(\) = 0 for all X G 12 

(i.e., for every X £ 12, /(X) belongs to S(T) and (4) holds) then, necessarily, 
/(X) = 0 for all X G 12. 

It is easy to see that every operator whose resolvent set is dense in C* has 
the s.v.e.p. The adjoint S* of the shift operator 5 in l2 is an example of an 
operator not having the s.v.e.p. (cf. [1, p. 10, Example 1.7]). 

If T has the s.v.e.p. then for every x Ç H there exists a unique pair (12,/ ) 
such that 

(a) 12 is an open subset of C*, 
(b) / is an analytic if-valued function defined in 12, 
(c) if X Ç 12, X ?* oo, then/(X) € S (T) and (XI - T)f(X) = x, and 
(d) if (12',/') is any other pair that satisfies (a), (b) and (c), 

then 12' C 12 a n d / ' is the restriction of/ to 12. If (12,/ ) satisfies (a), (b), (c) 
and (d) above, then the set 12 will be denoted by p r (x) , and the function 
/ by x. The complement of pT(x) in C* is denoted by aT(x). Clearly <rT(x) is 
compact and contained in <r(T). The following two lemmas are trivial. 

LEMMA 1. If T has the s.v.e.p. and if A G 3(H) commutes with T (i.e., 
A maps S(T) into S(T), and TAx = ATx for every x G S(T)) then 
<JT(AX) C o>(x). 

LEMMA 2. 

(i) If M G C, ju 9^ 0, and x 6 H, then aT(fix) = aT(x). 
(ii) If x, y Ç H, then aT(x + y) C o>(x) U o>(:y)-

(iii) orr(x) = 0 <=> x = 0. 

If r is an operator with the s.v.e.p. and if F is a compact subset of C*, 
then we will write x r ( ^ ) to denote the set of all x 6 H such that aT(x) C F. 
The following corollary is an immediate consequence of Lemmas 1 and 2. 

COROLLARY 3. 

(i) XT(F) is a linear subspace of H. 
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(ii) XT{F) is ultrainvariant for r(i.e., XT(F) is invariant under every 
bounded operator that commutes with T). 

The space XT(F) need not be closed (cf. [1, p. 25, Example 3.9]). However, 
we have the following result. 

PROPOSITION 4. If XT(F) is closed, then XT(F) satisfies 
(a) *(T\XT(F)) Cv{T)C\F,and 
(b) XT(F) is a spectral maximal space of T. 

Here the symbol | denotes restriction, and the definition of a spectral 
maximal space is as follows: a closed subspace K of H is a spectral maximal 
space of T if K is invariant under T and if, for every closed subspace L of N 
which is invariant under T, the inclusion a(T\L) C <r(T\K) implies that 
LCK. 

For a proof of Proposition 4 see [1, p. 23, Proposition 3.8] (the result is 
proved there for bounded J1, but the proof is valid as well in the unbounded 
case). 

If Q is an open subset of C*, we shall use ^(£2) to denote the set of all 
complex-valued functions/, defined on C*, with the property that 

(i) / is C°° on C*, and 
(ii) / is analytic on a neighbourhood of C*\£2 (the symbol " \ " denotes 

difference of sets). 
The set % (p) is clearly an algebra, and we shall always consider W (Q) 

as a topological algebra, with the topology such that a sequence {dn} con­
verges to 6 if and only if: 

(a) Bn —* 6 in the topology of C°°(C*) (i.e., 0n—> 6 uniformly, together with 
all the partial derivatives of all orders), and 

(b) there exists a fixed open neighbourhood U of C*\fi such that all the 
functions 6n are analytic in U. 

If 12 is the resolvent set p(T) of an operator T, then % (£l) is the set of all 
C°° functions on C* that are analytic in a neighbourhood of <r(T). Dunford's 
functional calculus gives a continuous homomorphism F —» F(T) from 
°U(p(T)) into £&{H). We will use DT to denote this homomorphism (for the 
definition and basic properties of DT, cf. Dunford and Schwartz [3]). The 
following proposition summarizes some properties of D T. 

PROPOSITION 5. 

(a) DT(1) = / (here UV denotes the constant function f(\) = 1). 
(bl) If T is bounded then DT(A) = T (here A is the function defined by 

A(X) = Xfor X 7̂  oo, cf. Remark below). 
(b2) If T is unbounded and if F G tyl(p(T)) vanishes at oo (so that 

AF e <%(j>(T)), then DT(F) maps H into 9(T) and DT(KF) = TDT(F). 
(c) If p. £ p(T) then DT((p- A)-1) = R(p, T) (here (p - A)"1 is the 

function X —> (p — X)-1, cf. Remark below). 
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(d) If supp 6 C P{T) then DT(6) = 0. 
(e) DT is completely characterized by conditions (a), (b) and (d). 

Proof, (a), (b), (c) and (d) are trivial. In addition, it is clear that (c) 
follows from (b). To prove (e), let D T

r be another continuous homomorphism 
from °U(p(T)) into 38(H) that satisfies (a), (b) and (d) (and therefore (c)). 
L e t / be analytic in a neighbourhood U of a(T), and let T be a curve contained 
in U that surrounds a(T). For each partition P = {£1, . . . , £m} of I \ let 

/p(M)=^-E/&)( lf^). 
(where £m+i = £1). Then fP is an analytic function on a neighbourhood of 
a(T), and 

#r(/p) = DT'UP) = 5-7 £ / & ) * & , T)fe+1 - &)• 

If {Pn\ is a sequence of partitions whose mesh goes to zero, then 

limn_>00/pn(/i) = /(/*) 

(by Cauchy's formula), uniformly with respect to y, for p, in some neighbour­
hood of v(T). Thus D Tf = / } / / , and the proof is complete. 

From the preceding proof it follows that 

Z7r£ «/ r 

If 12 is an open subset of C* such that p(T) C ^, we define an 12-spectral 
distribution for T (or an 12 — C°° operational calculus) to be a continuous 
homomorphism D from ^(12) into 38(H) whose restriction to °tt (p(T)) is DT. 

If an operator T has an 12 — C00 operational calculus, we will say that T 
is an ^-generalized scalar operator. If T is C*-generalized scalar, we will say 
that T is generalized scalar. 

Remark. If D : ^(12) -+3# (H) is an 12-spectral distribution, and if U C 12 
is an open set such that D(6) = 0 for every 6 £ ^(12) whose support is con­
tained in U, then D(\p) can be defined, in a "natural" way, for every function \j/ 
which is Cœ in some neighbourhood V of C*\£/, and analytic in some neigh­
bourhood of C*\12 (take 6 £ C°°(C*) such that 6 = 1 in a neighbourhood of 
C*\C7 and that supp 0 C V, and let D(^) = D(ty)). If T is bounded, we can 
take U to be a neighbourhood of oo ; thus D(A) makes sense, even though A 
is not C°° at oo. In a similar way, if T is bounded or unbounded, and if 
fj, G p(T), then D((p — A) -1) is also defined. 

3. Elementary properties of 12-generalized scalar operators. Let 
p(T) C 12, and let D be an 12-spectral distribution for T. We assume throughout 
that T has the s.v.e.p. 
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LEMMA 6. 

(a) D(6) = 0 for every 0 that vanishes in a neighbourhood of a(T). 
(b) D( l ) = 1. 
(c) If T is bounded, then D(A) = T. 
(d) If T is bounded or unbounded, and if 6 £ °ti (Œ) is such that Ad 6 ^ ( Q ) , 

then D{6) maps H into Q> {T) and D(AB) = TD(B). 
(e) If ne P(T), then D((ji - A)-*) = R(ji, T). 

Proof, (a), (b), (c) and (e) follow from the fact that the restriction of D to 
°U{p{T)) is DT. To prove (d), let /x Ç P{T). Then (M - A)"1 6 <2r(Q) and 
£>((/* - A)"1) = R(JM, T). It follows that D((ji - A)-1*?) equals R(ji, T)D(fi) 
and is, therefore, a mapping into &(T). Applying this with B replaced by 
A0, we conclude that D((n - A^AB) maps H into @(T). Also, Z>(MG* - A)"1^) 
maps if into ^ ( r ) . Subtracting, we get that D(6) maps H into «^ ( r ) . More­
over 

R(ji, T)fal - T)D{B) = D{B) = Ufo r)Z>((M - A)d) 

= Rb,T)faD(0) -D(AB)). 

Since R(n, T) is one-to-one, we conclude that TD(B) = D(A0), and the proof 
is complete. 

LEMMA 7.Ifx£H,6e <%$), then aT(D(B)(x)) C supp B. 

Proof. Let 0M(X) = (/x - X)~10(X). If A* € supp 0, then 0M is well denned and 
belongs to tf/{Çl). One sees easily that D(0M)(x) depends analytically on /*. 
The function A0M clearly belongs to ^ ( f i ) . Therefore JD(0M)(x) belongs to 
^ ( r ) , and Z>(A0M)(*) = TD(By)(x) (cf. Lemma 5). Since D^B^ix) = 
/J9(0M)(x), we conclude that 

G * / - T)D(e,)(x) =D(6)(x) 

for all /x in the complement of the support of 6. Thus C*\supp 0 C PT(%) and 
the desired conclusion follows. 

LEMMA 8. If p(T) C Œ' C Œ, J&ew T is Q,'-generalized scalar. If Q,' C ^ (^£ 
closure being taken in C*), ^e?z //ze distribution D has finite order on Œ', i.e. //ze 
restriction of D to Coœ(Œ') (/&£ ŝ >a££ 0/ C°° functions whose support is contained 
in Si') is continuous in the Com topology for some m ^ 0. (A sequence {6n} of 
functions in C0

œ (12' ) converges to 0 in the C0
W topology if: 

(i) Bn —* 0 uniformly as well as all the partial derivatives of order ^m, and 
(ii) there is a compact K C. &' such that supp Bn C K for every n.) 
We will not prove Lemma 8. The first statement is trivial. The second is 

proved in exactly the same way as the corresponding result for scalar distri­
butions. 

LEMMA 9. 

(a) If F is a compact subset of £2, then XT(F) is closed and the restriction of 
T to XT(F) is a generalized scalar operator. 

(b) If F is compact and C*\12 C F, then XT(F) is closed. 
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Proof. We show that, if F satisfies the conditions of (a) or (b) then x r ( ^ ) 
is the set of all x G H with the property that D (0) (x) = 0 for every 0 G Ôt (12) 
such that 0 = 0 in a neighbourhood of ^ This will clearly imply that XT(F) 
is the intersection of a family of closed subspaces, and hence closed. If 
# G XT(F), and if 0 £ ^(12) vanishes in a neighbourhood of T7, then aT(D(6)x) 
is contained in T7 (by Lemma 1) and in supp 0 (by Lemma 7). Therefore 
aT(D(d)x) = 0. By Lemma 2 (hi), D(6)(x) = 0. Conversely, let D(6)(x) = 0 
for all 0 G ^(12) that vanish in a neighbourhood of F, and let v d F. Then 
there exists 0 G % ($) such that 0 = 0 in a neighbourhood of F and 0 = 1 in 
a neighbourhood of fi. (Let i£ = C*\12. In case (a), take 0 G C°°(C*), 0 = 0 
near F, and 0 = 1 near K \J { JU} ; then 0 is analytic near K, and hence 0 G ^ (12). 
In case (b), if 0 = 0 near F, then 0 is analytic near K.) Then -D(0) (x) = 0 and 
D(l — B)(x) = x. It follows that o-r(x) is contained in the support of 1 — 0, 
and therefore //. (£ aT(x). 

It remains to be shown that, if F H K = 0, then the restriction T\XT(F) of 
T to XT(F) is generalized scalar. Let 0 = 1 on a neighbourhood of F, 0 = 0 
near i£. Define Dty) = D^6)\XT(F) for ^ G Cœ(C*). One shows easily that 
D is a C*-spectral distribution for T\XT(F). The proof is now complete. 

4. Operators whose spectrum is contained in a union of analytic arcs. 
We shall now study a situation in which the O-generalized scalarity of an 
operator can be characterized in terms of a growth property of the resolvent. 
We let T be an operator on H that has the s.v.e.p., and we assume that & is 
an open subset of C*, and that p(T) C Œ- Moreover, we assume that 12 C\ <T(T) 
is contained in a (not necessarily connected) one-dimensional closed immersed 
analytic submanifold M of 12 (here "immersed" means that M is a topological 
subspace of 12). 

We first assume that T is a bounded operator. We shall say that the growth 
condition (Gn) holds at X0(G12) if 

\\R(\, T)\\ = 0(d(\, M)~n) as X -> X0, X (? M. 
We have 

THEOREM 10. Let T, 12, M be as above, and assume that T is bounded. Then T 
is ^-generalized scalar if and only if a growth condition (Gn(\)) is satisfied at 
every X G 12 P\ cr(T). 

Proof. Assume that the growth condition is satisfied at X0 G <r(T). Clearly, 
there is a neighbourhood U of X0 such that U C\ <r(T) is contained in an 
analytic arc y. Precisely, there is an analytic mapping y defined on an interval 
(a, b) such that y'(t) ^ 0 for a < t < b, and that U C\ a{T) C 7 (a, b). We 
can assume that y is the restriction of a conformai mapping Y defined in the 
set S = {z : a < Re z < b, \lmz\ < e}, and that U is precisely T(S). We 
can also assume that the inequality 

P(x,r)| | ^ Cod(x,M)-

https://doi.org/10.4153/CJM-1973-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-016-6


GENERALIZED SPECTRAL THEORY 185 

holds for all X £ U\y(a, b). Here C0 > 0 is a constant, and n = n(\o). More­
over, it is not hard to show that the above inequality implies (after replacing 
U by a "smaller" strip) that 

\\R(T(t + is),T)\\ rg C\s\~n 

for a < t < b,0 < \s\ < e, and for some fixed C > 0. 
We let 

5_ = {z : a < Re z < 6, - e < Im s < 0} 

and 

5+ = {z : a < Re 2 < 6, 0 < Im z < e}. 

Let F (z) = R(T(z),T), for 2 ^ _ U 5+. Then F is an analytic ^ ( i f ) -
valued function on 5_ U 5+. Let i^ be an analytic function on 5_ W 5+ 
whose &th derivative is F. One shows easily that Fn+i is bounded on 51 U 5 + . 
Therefore 7^+2 (s) has limits as z approaches (a, b) from below and from 
above. Let these limits be denoted by Fn+2~(t) and Fn+2+(t), respectively. 

Let d e C0
œ(U). We let 

J«(0) = 9^7 f 0(\)R(\,T)d\, 
Z Kl J y 

where 75 is the arc t —> T(t + i<5). Clearly, 7«(0) exists for 0 < |ô| < e, and 

I*(0) = 7T~- f #( r(* + ià))F(t + *ô)r'(* + iô)dt. 
2iviJa 

Using integration by parts, we can rewrite this as 

h(e) = tz^î f-^ (o(v(t + iô))Y'(t + iô))Fk(t + iô)dt. 

It follows that the limits 

r(p) = lim h{0) 
S-»0, S<0 

and 
i+(0) = lim 7,(0) 

8->0,5>0 

exist, and are given by 

/ -I \ n + 2 •»& / l n + 2 

We define 
2?(tf) = I~(0) - /+((?). 

Clearly, D is a continuous linear mapping from Co^iU) into Së{H.~). More­
over, D has the following important property, which will be used later: 

(A) If D(6) (*) = 0 for all 6 <E C<T(.U), then U C p r (* ) . 
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To prove (A), assume that D(0)(x) = 0 for all 6 G C0
œ(U). Then clearly, 

J | H + 2 (<p(t))[Fn+2-(t) - Fn+2
+(t))(x)dt = 0 

for every <p 6 Co°°(a, b). It is not hard to show that [Fn+2~(t) — Fn+2
+(t)](x) 

must be a polynomial Pit) of degree not greater than n + 1, with coefficients 
in H. Redefine Fn+2(z)(x) by subtracting P(z) on 5_ (this does not change 
the 2 + ?zth derivative of Fn+2(x)). Now Fn+2{z){x) is an analytic function of 
z on 5_ U S+, and is continuous on S. Therefore Fn+2(z) (x) is analytic on S, 
and so are all its derivatives. In particular, the function z—>R(T(z)y T)(x) 
is analytic on S. Thus R(\, T)(x) is an analytic function of X on U, and 
U C PT(%)> This completes the proof of (A). 

We also observe that D{6) depends only on the restriction of 6 to y {a, b). 
If <p Ç C0°°(ikf) is such that supp ^ C T ^ J ) , we can define D*(<p) = 22(0), 
where 0 is any function in Coœ(U) whose restriction to y (a, b) is <p. 

We now show that D : Coœ(U) -+ &(H) is a homomorphism. Clearly, 
this is equivalent to showing that D* is a homomorphism. Notice that D* is 
defined for all d Ç Con+2(M) whose support is contained in y (a, 6), and that 
D* is continuous in the C0

W+2 topology. To prove that D* is a homomorphism, 
we first observe that it is sufficient to show that D*(61d2) = D*(di)D*(02) 
when, for j = 1, 2, 63• is of the form 

0,(X) = 0 for X e M, X g 7 ^ , 6 J , 

0 ; ( T ( O ) = / i ( 7 ( 0 ) f o r a , ^ / ^ bj9 

where fj is an analytic function of X in U which has a zero of order n + 2 at 
7 (a,) and at y(bj) (to see this, notice that every 6 £ C0

n+2(M) whose support 
is contained in 7 (a, b) can be approximated in the Con+2 topology by functions 
of the above type). We can also assume that a2 < a± < b± < b2. Let G, C2 be 
contours as in figure 1. 
Then, clearly: 

Z>*(0,) = r i f /,(X)2?(X, r)dX forj = 1, 2. 

Therefore 

D*(0I)£*(02) = - ^ 2 [ J /i(x)ie(x, r)dx][ J /2(M)^(M, r)dM 

From the resolvent equation 

i?(x, T)R(», T) = (M - x)-1(i^(x, r ) - i?(M, r)) 
we get 

i^*(0l)^*(02) = 

" 4 ^ £ / l ( X H £ 2 °* " X)"^(M)(^(X, T) - Rfa, T))dyL d\. 
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FIGURE 1 

Now, the integral of (/* — X)_1/2(M)^M along C2 is 2irif2(\), for X Ç Ci. Also, 
the integral of / I (X)(M — X)-1dX along Ci is 0, for /z Ç C2. Therefore we get 

B*(0i)D*(0*) = Ô^7 f fiMM\)R(\ T)dX = Z>*(0!02). 

So far, -D has been defined and shown to be a homomorphism "locally", 
i.e. for functions 0 G C oœ(U) whose support is "small" enough. Notice, 
however, that if Xo and Xi are two points of M, and if Do and Dx are the corres­
ponding homomorphisms, then D0 and D\ coincide in the intersection of their 
domains of definition. This enables us to define D : C<T(U) —>£$ (H) (using 
partitions of unity), and D is clearly a continuous homomorphism. We now 
define D : C0°°(^) -* 38 (H) by letting D{6) = D*(fi*), where 0* is the restric­
tion of 0 to M. Then D is a continuous homomorphism. 

Our aim is to extend D to the algebra °tt (12). In order to define this extension, 
ŵ e shall use the following two facts: 

(I) if 0 e C0
œ(^), and x G H, then aT(D(d)(x)) C supp 0 and 

(II) if F C Œ is an open set, and if x G H is such that D(0)(x) = 0 for 
every 0 G C0°°(F), then aT(x) H F = 0. 

The proof of (I) offers no difficulty. One can show, using the definition of D, 
that D(A0) = 7X>(0) for every 0 G C0°°(î2). From this it follows that, if 
M g supp 0, and if 0„(X) = 0(X)(/x - X)"1, then (ju/ - T)D{6lx){x) = D(6)(x). 
This gives the desired analytic extension of i?(/x, T)D(6) (x) to the complement 
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of supp 0, and completes the proof of (I). Assertion (II) is a trivial consequence 
of statement (A), which was proved before. 

Using (I) and (II), we shall define D on <%(Q). L e t / G <%($). L e t / be 
analytic on a neighbourhood U of C*\fi. Take x £ H. Let 6 G C0°°(^) be such 
that 6 = 1 on a neighbourhood V of the complement of U. 

Let y = x - D(0)(x). If ^ £ C0
œ(F), then ^0 = ^, and D($)(y) = 

Dty)(x) - D(f)(x) = 0. By (II), we conclude that aT(y) C\ V = 0. Thus 
(TT(y) is contained in U, and / is analytic in U. We can therefore define 
D(f)(y) by a formula similar to that of Dunford's functional calculus: Let 
A be a contour that surrounds aT(y) and is contained in U, and take 

D(f)(y)=±-.fj(\)y(\)d\. 
Finally, define 

D(f)(x) = D(f)(y) + D(fd)(x). 

It is easily checked that the above definition of D ( / ) is in fact independent 
of the choice of 0, and that D is an 12-spectral distribution for T. 

The proof of the converse, namely, that if T is ^-generalized scalar then 
the growth condition is satisfied, will be briefly sketched. Assume that T is 
12-generalized scalar. Take X0 G Œ, and let F be a compact neighbourhood of 
Xo, contained in 12, and such that F C\ <r(T) is an analytic arc y ([a, b]). By 
Lemma 9, the subspace XT(F) is closed, and the restriction T' of T to this 
subspace is a generalized scalar operator. Let D be an 12-spectral distribution 
for T, and 6 a C°° function which is equal to 1 in a neighbourhood U of X0 and 
vanishes outside of F. Then 

R(ji, T) = Rfa, T)D{6) + Rfa, T)D(1 - 6). 

Since <rT(D(l — 6) (x)) Pi U = 0 for every x G H, it follows that the function 
I*—* R(IJL, T)D{\ — B)(x) is analytic, and hence bounded, in a neighbourhood 
of X0. By the uniform boundedness theorem, \\R(n, T)D(1 — 0)|| is bounded 
near Xo. Now, clearly, 

||*(„, T)D(e)\\ è ||J2G*, n i l IP(*)I|. 
This shows that it is sufficient to prove that the growth condition holds for Tf. 
In other words, we can assume that T is generalized scalar, and that <r(T) 
is contained in an analytic arc. The proof for this case is, with some obvious 
modifications, identical to the proof of Theorem 4.5 of Colojoara and Foias 
[1, P, 160]. 

Remark. From our proof of Theorem 10, and from a detailed analysis of the 
proof of the above mentioned theorem in Colojoara and Foias [1], it follows 
that T is ^-generalized scalar of finite order if and only if there is an n, inde­
pendent of X, such that (Gn) holds at every X G 0. Moreover, if this is the case, 
then the particular fi-spectral distribution D constructed in the proof of 
Theorem 10 has finite order in fi. 
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We now want to derive a similar result for the unbounded case. The 
following lemma is trivial. 

LEMMA 11. Let T be an operator, and let fx £ p(T). Let F be the function 
F(\) = (M - X)-1, so that F(p(T)) = p(R(p,, T)). Let Û be open in C*, and 
let p(T) C Œ. Then T is ^-generalized scalar if and only if Rin, T) is F(Sl)-
generalized scalar. 

Using Lemma 11, we can extend Theorem 10 to the unbounded case. For 
simplicity, we shall only consider the following situation: we assume that 
p(T) contains a real number ju, and that the intersection of <r(T) with the set 
{X : |X| > C] is contained in the real axis (plus the point at infinity), for some 
C > 0. If 12 does not contain the point at oo, then Theorem 10 holds without 
any modification. If, on the other hand, oo Ç S2, we seek a condition that will 
replace the growth condition (Gn). Clearly, what we need is that the resolvent 
R(fi, T) satisfy a growth condition at F(co) (where F is the function of 
Lemma 11). We have 

R(\,R(n, T)) = \-HnI - T)R(n - X-1, T). 

Now F(co) = 0. Therefore, the growth condition (Gn) for R(n, T) at X0 = 0 
becomes 

IK/*/ - T)R(JJL - X"1, D | | = 0(|X| -|ImX|-w) asX-~>0, Im X ̂  0. 

Letting X = (/x — f )_ 1 , we get 

| | (M / - T)R(t, T)\\ = O d f l M I m f | ^ ) as f -> oo, Im f ^ 0. 

Since TR(Ç, T) = fi?(f, T) — / , the previous formula is equivalent (if 
n ^ 2) to 

(Gn°°) p ( f , r ) | | = 0(|f |2W~2| Im f |-«), as f -> oo, Im f ^ 0. 

Summarizing, we have 

THEOREM 12. Let T be an operator with the s.v.e.p., and let U be open in C*, 
p(T) C &• Assume that ÇlH\a(T) is contained in a one-dimensional closed 
immersed analytic submanifold M of 12, and that the intersection of p(T) with the 
real axis is nonempty. Assume, moreover, that the intersection of <r(T) with the 
set {X : |X| > C\ is contained in the real axis for a sufficiently large C. Then T 
is $1-generalized scalar if and only if a growth condition (Gn) is satisfied near 
every finite X0 G M and if, in addition, the condition (Gn

œ) holds for some n when 
oo G 0. 

5. The second order differential operator. We shall now apply the theory 
of the preceding sections to the operator T of [7]. We recall that T is the 
(unbounded) operator defined in Z2[l, oo ) by the formal differential operator 

(5) T = _ | + ? + ç ( i ) 
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with the boundary condition 

(6) ^ 1 / ( l ) + ^ 2 / / ( l ) = 0 . 

Precisely, the domain of T is the set of all functions/ G L2[l, co ) such that 
rf exists and belongs to L2[l, oo ), and such t h a t / satisfies (6). The constant a 
is not required to be real. The boundary condition (6) is assumed to be non-
trivial, i.e., (ki, k2) 9^ (0, 0). As for the function q, we assume that it satisfies, 
for some r > 1, the condition Hr of [7, p. 820]. 

It was proved in [7] that the spectrum of T consists of the halfline [0, oo], 
plus a set of eigenvalues which is a discrete subset of the complement of {0} 
in C. Moreover, T is not a spectral operator if a 9e 0. Here we shall prove: 

THEOREM 13. The operator T is C*\{0j - generalized scalar. 

Proof. We shall use Theorem 12. From the estimate of Lemma 3.5 of [7], 
and from (ii) of Corollary 2.4 of [7], it follows that T satisfies a growth con­
dition (Gn) near every X0 such that 0 < X0 < oo. If X0 is an eigenvalue of T 
such that X0 G [0, oo ), then it is also true that T satisfies a growth condition 
near Xo. Indeed, formula (3.7) of [7] implies that R(\, T) has a pole at X = X0. 

It remains to be shown that the growth condition (Gn
œ) is satisfied for some n. 

It is easy to see that the proof of Lemma 2.5 of [7] actually yields an estimate 
which is slightly stronger than formula (2.17) of [7]. Precisely, the exponent 
Re n(t + l ) / 2 of [7, (2.17)] can be replaced by Re p(t - l ) / 2 . From this it 
follows that the estimate (3.4) of [7, Lemma 3.2] is also valid if K(IL) is 
replaced by K*(n), where 

(7) K*fa) = <pfa)H(-Rea/», i Re M ) * - * * " . 

Let V(rj) be the region defined in the statement of Lemma 3.5 of [7], and let 

V'M = {X: |X| >n\ \ i V(v)}. 

Let /x(X) be defined as in the first formula of [7, p. 827], Under the mapping 
X—>/x(X), the regions V(rj) and V(rj) correspond to 

W(ri) = {fi: |/x| > 2r?, 0 < Re M < 2}, 
and 

W'{i{) = {M: |M| > 2̂ 7, Re M ^ 2} 

respectively. 
If rj is large enough, the inequality 

\Rea/n\ < 1 

will be valid for all /x G W'(ri). From the definition of <?(/*) (cf. [7, Lemma 2.5]), 
it follows that 

(I) <p(p) is bounded for \x G W'Çri), rj sufficiently large. Also 
(II) H( — Rea/fjL, \ Re ju) is bounded for ix G W(r)), rj sufficiently large 

(here H is defined as in formula (3.6) of [7]). 
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We conclude from formula (7) that 
(III) K*(fi) is bounded by a constant times ^-Re^/2, for y, g W(v), 77 suffi­

ciently large. 
We now use the modified version of [7, (3.4)], in which K is replaced by K*. 

Since Re n > 2 for fi £ W'(r]), we have 
(IV) ||G(/i)|| < a-R e" / 2 for M E W W , v sufficiently large, and C a positive 

constant. From the formulas that describe the asymptotic behaviour of 
A(\) [7, Corollary 2.4 (iii)] and from formula (3.7) of [7], we conclude that 

(V) If 77 is sufficiently large, then ||i£(X, T)\\ is uniformly bounded for 
X e V'(V). 

We now want a similar result for the region V(rj). We shall use [7, Lemma 3]. 
If 77 is sufficiently large, then: (1) <5(X) < 1 for all X G V(ri), and (2) 7 < 2 
(for the definition of ô(X) and of 7, cf. the statement of Lemma 3.5 of [7]). If, 
in addition, we take 77 > 1, then the inequality 

(8) |Im Xl-1-5^ S |X| |Im X|~2 

is valid for all X € V(r]). 
Moreover 

(9) 1 + I Re VX|Y ^ 2|X| for all X G 7(77). 

Finally, the formulas of [7, Corollary 2.4 (iii)], show that A (X) is bounded 
away from zero in V(rj), provided 77 is large enough. Therefore, the estimate 
(3.12) of [7] implies that 

(VI) If 77 is large enough, then \\R(\ T)\\ is bounded by a constant times 
|X|2|Im X|-2 for all X £ V(rj). 

In view of (V), it is clear that (VI) is also valid in V'(T)). Thus, we have 
shown that 

p ( X f r ) | | = 0 ( | X | * | I m X | - * ) 

as X —> 00 , X Ç P(T). But this says that the growth condition (G2
œ) is satisfied. 

The desired conclusion now follows from Theorem 12, and the proof of 
Theorem 13 is therefore complete. 

Theorem 13 implies that the operator T has an operational calculus for 
functions that are C°° in a neighbourhood of the spectrum of T, and analytic 
near the origin. A spectral distribution for T is given by the construction of 
the proof of Theorem 10. We shall write 6(T) to denote the operator corres­
ponding to 6 under this distribution. Thus, we have, in particular 

LEMMA 14. Let d be a C°° function of compact support in the complex plane. 
Assume that the intersection of the support of 6 with the resolvent set of T is a 
subset of the open half-line (0, 00 ) (i.e. 8 vanishes near 0 and also near every 
eigenvalue of T which does not belong to [0, 00 )). If f and g belong to L2[l, 00 ), 
then 

(10) (d(T)f, g)=7T-: Km r d ( \ ) ( ( R ( \ -ie)-R(X + U))f, g)d\. 
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If the support of 6 does not contain any of the zeroes of ^4+(X) or ^4~(X) 
(cf. [7, Corollary 2.4 (iv)]), and if the functions/ and g belong to L2°[l, oo ) 
(the set of all square-integrable functions in [1, oo ) that vanish in the comple­
ment of a bounded interval), then we can use Corollary 3.4 of [7] (cf. also 
section 5 of the present paper). We get 

(ID »™g) = ^f/(
x

x;ffx)/(x)i6ô^ 
where, for each h (E L2°[l, oo ), we define 

(12) h(X) = J «(*, \)h(t)dt. 

Clearly, formula (12) defines an analogue of the Fourier transform, and 
formula (11) resembles the definition of the operational calculus for self-
adjoint operators. 

6. Conclusion. It has been shown that the theory of operators that are 
generalized scalar in an open subset of C* makes it possible to define an opera­
tional calculus for second order ordinary differential operators whose potential 
behaves like t~l times a complex constant. This shows that this theory is 
adequate for a large class of operators for which Dunford's theory of spectral 
operators fails. We conjecture that the situation described here is in fact very 
general. If "reasonable" assumptions are made on the behaviour of the 
coefficients, it should be possible to extend Theorem 13 to nth order operators 
in arbitrary intervals, and to show that such operators are 12-generalized 
scalar for some set 12 whose complement is finite (or, perhaps, countable). 

A second question of interest is that of finding conditions under which it is 
possible to guarantee that the operator is generalized scalar, i.e. to take 
12 = C*. It will be shown in a forthcoming paper that, in general, it is not 
possible to "remove the singularities". Precisely, it will be proved that the 
"singularity at 0" of the operator T described in section 5 is "essential" (i.e. 
T is not generalized scalar), if the constant a has a nonzero imaginary part. 
Thus, the operational calculus that was defined here for C°° functions that are 
analytic near 0 cannot be extended to arbitrary C°° functions. 
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