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ON THE CONSTRUCTION OF BIBD WITH A = 1 

BY 

KENNETH F. N. SCOTT 

1. Introduction. In the past three decades the problem of generating (balanced 
incomplete block) designs by difference sets has received much attention. Bose [2] 
gave the two "fundamental theorems of the method of differences". Bose, Sprott 
[9], Lehmer [7], Chowla [4], Takeuchi [10] and others have given specific classes 
of difference sets. 

Bose used the existence of suitable difference sets (initial blocks) in an abelian 
group r to generate a design. The first fundamental theorem is proved under the 
assumption that the design admits T as a sharply point-transitive collineation 
group. For the second fundamental theorem it is assumed that T fixes one point 
and is a sharply point transitive collineation group on the remaining points. 

In this paper we generate designs with A=l , by assuming the design admits a 
(not necessarily abelian) collineation group which is sharply point transitive on a 
subset of the point set and which fixes the remaining points. This allows us to 
obtain a general expression for a block of the design in terms of its stabilizer in 
the group. It is shown that the designs with A=l , r<15 , Mr, r—1 do not admit 
such collineation groups. 

2. Designs with point transitive collineation groups. We denote by D(v, b, r, k, X) 
a balanced incomplete block design with v varieties, b blocks, r replications, k 
varieties in a block, and such that every distinct pair of varieties occurs X times. 
If the parameters are understood we refer to such a design by D. Otherwise we use 
the notation and terminology of Dembowski [5]. 

Let D=D(v, b, r, k, 1) be a design. Let A and B be disjoint subsets of the point 
set of D whose union is the whole point set. We assume that D admits a collineation 
group T which is sharply transitive on the points of A and which fixes each point 
o f£ . 

Since A=l the blocks of D are lines. T acts as a permutation group on the set of 
lines. 

Let/? be an arbitrary but fixed "base" point of the set A. We make an identifica­
tion between the elements of F and the points of A by the map 0P:A-+T where 
Qv{q)=x if and only if the image of p under x e T is q. This is a one-one map and 

8o|r|=i4=iH2>|. 
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The following cases are possible: 

(1) £ = 0 . 

In this case |F[=i? and T acts as a permutation group on the set of lines. 

(2) JB={œ}. 

Here "oo" represents one point. In this case |r|=i?—1. T acts as a permutation 
group on the set of lines. In doing so V partitions the set of lines into two sets; 
for any line on oo is mapped into another line on co and any line not on oo is 
mapped onto a line not on oo. 

(3) JB={OOX , OO2, — , oo j . 

If B contains two points, say co1 and oo2 then, because T is sharply point 
transitive on the points of A, B must contain all the points on the line oo-^oo^ say 
ool5 oo2 , . . . , oOfc. In this case \T\=v—k. The lines of the design are partitioned 
by T into k+2 classes. The first consists of all lines which contain no point of B. 
The second consists of the set B which is a pointwise fixed line under T. Each of 
the remaining k classes consists of all the lines, except the point-wise fixed line 
B, on one of the points oo^ \<i<k. 

(4) B contains 3 non collinear points. 

As in case (3) B then contains every point on each of the three lines determined 
by the three points. But then B contains all points on any line intersecting two or 
more of the three lines. This may in fact mean that B contains the whole design. 
In any case B is sufficiently large that we cannot determine the design by our 
methods. We do not consider this case further. 

We identify the elements of A with the elements of V and the elements of B, 
if any, with an appropriate number of symbols oo*. 

The lines of D are then subsets of A U B. The collineation a e T is represented 
by right multiplication by a where ooia=oo< for each oo,. e B. We call this the 
right regular representation of D induced by the base point p. If we change from 
base point p to base point p' the effect is to multiply the representation on the 
left by z where pfz=p. 

Let L be a line of the design. We are concerned with the following sets: 

(a) 0R(L)={Lx | x G r>, the right orbit of L. 
(b) DR(L)={ab-1 \ a, b e T n L, a^b}, the difference set of L. 
(c) SM(L)={x e T | Lx=L}, the right stabilizer of L. 

L is not a distinguished element of 0B(L) in the sense that any two lines are in 
the same orbit if and only if there is a collineation mapping one line into the 
other. Every point of D is on the same number of lines of 0R(L). Because of this 

https://doi.org/10.4153/CMB-1973-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-053-1


1973] ON THE CONSTRUCTION OF BIBD WITH X = 1 331 

symmetry, it is sufficient to determine the lines on any one point of D. All re­
maining lines are obtained by right multiplication in T. The identity of F, e, 
(corresponding to the arbitrarily chosen base point) is a convenient point to consider. 

The condition / l=l allows one to show easily that if the difference sets of two 
lines are not disjoint then they are identical and the two lines are in the same orbit. 
Conversely if two lines are in the same orbit their difference sets coincide. It is 
convenient in this sense to talk of the difference set of an orbit. The element x e Y 
occurs in the difference set of the line on e and x. From these comments we 
conclude : 

THEOREM 1. The difference sets of the orbits of D partition the set Y—{e}. 

If we choose L to lie on e and not on any point of B, then an easy consequence 
of the condition A=l is that SR(L) c L. It is for this reason that we shall usually 
choose L to lie on e. The fundamental theorem of permutation group theory is 
that \0R{L)\ = \F\j\SR(L)\. Again using the fact that À=1 it is easy to see that 
SR(L)={e} if and only if \DR(L)\=k(k-l). 

The above remarks for the case SR(L)={e} are well known. We now consider 
the more general case. 

DEFINITION. A pair (L, S) of subsets of F is said to satisfy condition K if S is 
the subgroup of Y generated by all subgroups of Y in L and L= (ja eK a^, 

where K={ax,. . . , a J is a set of elements satisfying: 

(1) at $ ajS if a^cij 

(2) for^., aj9 an,ameS 

( UiSaJ1 if a,- = aj = an = am 

{e} if at = aj9 an = am, a{ ^ an 

0 otherwise. 

Now we can show. 

THEOREM 2. Let e e L where L is a line ofD. Then (L, SR(L)) satisfies condition K. 

Proof. We note that if SR(L) = {e} the theorem reduces to the previous remarks. 
Let SL=SR(L). 

1. Let S be a subgroup of Y in L. If S={e} then S Ç SL. If S^{e} let xeS, 
xj^e. Then x=ex and e=x~1x are both in Lx. But then L=Lx so that x G SL. We 
have already noted that SL ç L. 

2 
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2. If SL=L then trivially (L, SL) satisfies condition K. If SLj*L let a e L—SL. 
Then since L=Lx for each x e SL, ax e Lx=L for each x e $L. It follows that we 
can choose K={a1, . . . ^ J ç L s o that L= \JaiEK ai$L where K has the prop­
erty that a{ $ ajSL if a^a^ 

3. Let H=aiSLaJ1 n amSLa^- for some ^ , a;-, an, ame K. 
(a) if ai=aj=an=am then H=aiSLaJ1 a subgroup of T conjugate to S^. 
(b) if a~aj9 an=am, a^an, then # , being the intersection of two subgroups 

of I \ is a subgroup of Tand hence {e} Ç HAfH^{e}, then | # | > 2 . ButH Ç LtfT1 

and i f ç z,^"1 which means IL071 OLa~ 1 |>2 . Therefore La^1=La~1 whence 
a"1^- G S ,̂ or ût. e anSL. But this contradicts the definition of K in 2 above. There­
fore H={e}. 

(c) The remaining possibilities can be considered in three steps : 

(i) an=am, a^an, aij^ai 

Let xeH. Then there are y, zeSL such that x=aiyaj1=anza~1=anza~1. If 
x=e we have a—a^ G tf^ which is a contradiction. If x^e then e , x e I ^ 1 » 
La~* which implies a~an. Then ay;=0nz so that ^ £anSL which is a contra­
diction. Therefore / / = 0 . 

Similar arguments allow us to show H= 0 in the remaining cases which are 

(ii) an9^am, a^am. 
(hi) an^am9 a~am. 

The following corollaries are useful. 

COROLLARY 3. \SR(L)\ divides k. 

COROLLARY 4. If ai G K, a^e and Sy£{e} is a nontrivial subgroup ofSR(L), then 
ax $ NT(S). In particular ifkl\SR(L)\ = l<k then Y has I sub-groups of order \SR(L)\ 
which have only {e} in common. 

In the case where T is an abelian group the above results are simplified. We 
collect these results in 

THEOREM 5. If V is abelian then 

(1) ifL eDandeeL, SR(L) = {e} or SR(L)=L 
(2) ifL G D then |0B(L) | = | r | or \Y\\k 
(3) k\rork\r-l. 

Proof. Parts (1) and (2) follow easily from Corollary 4. It is well known that for 
a design k | r(r— 1). If k^r— 1 then ktv=rk—(r— 1). Therefore by property (2) 
all line orbits are of length v. Therefore, since b=(rlk)v, r\k is an integer and k | r. 
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Suppose now that L is a line on e and on a fixed point oo. Then L lies on k— 1 
points of r and so \0R(L)\ = \T\l\SR(L)\>\V\lk-l. If B={oo} then |r |=i;—1 = 
r(k— 1) and so | 0 .R(L) | >r. But there are only r lines on oo and so L=SR(L) U {oo}. 
If £ = { 0 0 ! , . . . , ooj then \Y\=v-k={r-l)(k-\) and so |O i 2(L) |> |r | / ( /c~l)= 
r—1. Now there are r lines on oo and one of these is the line 5 = { o o l 5 . . . , ooj . 
Therefore the remaining r—1 lines are in 0R(L) and again we have L=SR(L) u 
{oo}. In this latter case it follows that T has k subgroups of order k any two of 
which have only the identity in common. 

3. Difference sets. Let k, r be natural numbers such that k\r(r—\). We define 
three types of difference sets which will allow us to generate designs with parameters 

v 
v = r(k—1)+1, b = -v, r, fc, X = 1 

k 

TYPE I. Let T be a group of order v=r(k—l) + l and let D={Ll9... , L J b e a 
collection of subsets of T such that: 

(a) \Li\=k l<i<s 
(b) DR(LZ) n DR(Lj)=0 if \<i*j<s 

(c) U DB(Ld=T-{e}. 

(d) L contains a subgroup S of V such that (L, S) satisfies condition K. 

Then D is called a type I (r, fc) difference set of Y. 

TYPE II. Let T be a group of order v—l=r(k—l) and let D={L 1 , . . . , Ls} be 
a collection of subsets of T such that D satisfies: 

(a) Lx is a subgroup of order k— 1 in T and |jLt.|=fc for 2<i<s 

and (b), (c) and (d) above. 
Then D is called a Type II (r, fc) difference set. 

TYPE III. Let T be a group of order v-k=(r- l)(k-1) and let D={Ll9... , Ls} 

be a collection of subsets of T such that D satisfies. 

(a) Li is a subgroup of order k— 1 in T for 

1 <i<k and |Lj=A: for k+1 <i<s. 

and (b), (c) and (d) above. 

Then D is called a Type III (r, £) difference set. 
Unless we want to consider particular values of r and k we will generally sup­

press the (r, k) designation and speak, for example, of a Type I difference set. 
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If F is cyclic, r=k, and s=l, & Type I difference set is the perfect difference set 
defined by Singer [8]. If r=k, and s=l, a Type I difference set is the (v, k, 1) 
difference set of Bruck [3]. Hoffmann [6] has considered Type II difference sets 
for which r=k+l, and T is cyclic. If \DR(Lt)\ =k(k— 1) for l<i<s a Type I 
difference set is the difference system of Vajda [11]. 

THEOREM 6. An (r, k) difference set generates a D(r(k—l) + l, (r2(k—l)+r)lk, 

r, k, 1). 

Proof. If \Lt\=k then Ẑ oc for a £ F is a line. If | L J = / c - l then (L{ U {ooJ)a 
for a G T is a line where ooi<x.= coi. If there are k sets Lt with \L-\=k— 1 then 
{ool5 . . . , ooj is a line. The point set is the union of Y and the set of all oo^ It is 
now easy to complete the theorem. 

4. Applications. We consider Z>(46, 69, 9, 6, 1). If such a design admits a Type I, 
Type II, or Type III difference set then the associated group Y is non-abelian. 

Suppose this design admits a Type I difference set. Then |T| =46=2*23. For any 
line L, \SR(L)\ = l or 2 and hence \0R(L)\=46 or 23. Therefore the lines occur 
in one orbit of length 23 and one orbit of length 46 or else in three orbits of length 
23. Using Corollary 4 we see that Y has at least three elements of order 2 in the 
first case and at least nine elements of order 2 in the second case. If x is of order 2 
and L is the line on e and x then L=Lx. Therefore F has exactly 3 or 9 elements 
of order 2. By the Sylow theorems this is impossible and so the design does not 
admit a Type I difference set. 

If the design admitted a Type II difference set we would have | r | =45. However, 
both groups of order 45 are abelian, so that no Type II difference set exists. 

If the design admitted a Type III difference set we would have |T| = 4 0 = 2 3 • 5. 
In this case we require 6 subgroups of order 5. However Y has only one subgroup 
of order 5 and so this is impossible. 

By similar arguments it is possible to show that the following designs for which 
r < 1 5 , A=l , klr, and klr— 1 do not admit Type I, Type II, or Type III difference 
sets. 

V 

46 
51 
76 
136 

b 
69 
85 
190 
204 

r 
9 
10 
15 
15 

k 
6 
6 
6 
10 

Suppose that a projective plane of order n admits a Type II difference set. Then 
r is a collineation group which fixes a point oo and which is transitive on the re­
maining points. \Y\ =n(n+1) so that Y has at least one collineation of order 2, say 
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a. However Baer [1, Theorem 1], has shown that every line lies on a fixed point 
under a. Therefore a projective plane does not admit a Type II difference set. 

If a projective plane of order n admits a Type III difference set then it is a 
translation plane. These are discussed extensively in Dembowski [5]. In this case 
F is called a translation group. 

As a final example of the theory we consider the existence of a Type III difference 
set for a finite affine plane of order n. The existence of such a difference set implies 
the existence of a group T of order n2—n which admits a partition consisting of 
sub-groups of order n—1, say H1, . . . , Hn_l9 and one sub-group of order n, say 
K . K is a normal Hall subgroup of V and the subgroups Hl9. . . , Hn_1 are con­
jugate. It follows that r is a Frobenius group and that n is a prime power. The 
planes obtained in this manner are the nearfield planes. 
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