Fifth Meeting, March 13th, 1896.

Dr Peddie, President, in the Chair.

On Curve Tracings.

By G. Duthe, M.A.

Note on Four-Dimensional Figures.
 By J. D. Höppner.

By assuming that multiplication by a line is the true operation corresponding to the passing from space of n dimensions to space of $n+1$ dimensions we may arrive very simply at certain wellknown results in geometry of higher dimensions.

A finite straight line may be symbolised by

$$
1 . a^{1}+2 a^{0}
$$

which indicates that the line consists of one line quantity and (+) is fixed by two non-dimensional quantities. For simplicity, we may write the above symbol in the form

$$
a+2
$$

The algebraic square of this quantity is

$$
a^{2}+4 a+4
$$

and this is also the symbol of a geometrical square, having 1 area bounded by 4 sides and 4 points. Raising $(a+2)$ to the 3 rd power we obtain

$$
a^{3}+6 a^{2}+12 a+8
$$

which represents 1 volume, bounded by 6 faces, 12 lines, and 8 points.

Passing on to a higher dimension, we obtain as the symbol of the four-dimensional figure

$$
(a+2)^{4}=a^{4}+8 a^{3}+24 a^{2}+32 a+16
$$

consisting of 1 four-dimensional region bounded by 8 cubes, 24 squares, 32 lines, and 16 points.

The method admits of other applications and of obvious extension to higher dimensions.

