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Abstract

We derive a higher order nonlinear evolution equation for a broader bandwidth
three-dimensional capillary–gravity wave packet, in the presence of a surface current
produced by an internal wave. Instead of a set of coupled equations, a single nonlinear
evolution equation is obtained by eliminating the velocity potential for the wave-induced
slow motion. Finally, the equation is expressed in an integro-differential equation form,
similar to Zakharov’s integral equation. Using the evolution equation derived here, we
show that the two sidebands of a surface capillary–gravity wave get excited as a result of
resonance with an internal wave, all propagating in the same direction. It is also shown
that surface waves can grow exponentially with time at the expense of the energy of the
internal wave.

2010 Mathematics subject classification: primary 76B07; secondary 76B15, 76B45.

Keywords and phrases: capillary–gravity wave, internal wave, sideband instability,
surface current.

1. Introduction

The effect of surface current on propagation of wave packets on the surface of water
is of considerable interest. A nonuniform current produced by long internal waves
interacts with short surface waves and causes patterns on the surface. This topic
was considered by Peregrine [14], Jonsson [12], Stocker and Peregrine [17, 18],
Ruban [15], Toffoli et al. [19] and others. In order to study the effect of surface current
due to an internal wave on a surface-wave pattern, Stocker and Peregrine [17] derived
an O(ε4) nonlinear evolution equation for a three-dimensional surface gravity wave
packet. In their paper and also in the present paper, ε is the slowness parameter which
measures the smallness of nonlinearity and the weakness of dispersion. The equation
derived by Stocker and Peregrine [17] is the same as that derived by Dysthe [7] with
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extra terms added to it due to surface current. Here the surface current is assumed to
be of O(ε2). The previous work in this approach is by Bakhanov et al. [1], who derived
an O(ε3) current-modified nonlinear Schrödinger equation in one horizontal direction.

Since the current-modified nonlinear evolution equation derived by Stocker and
Peregrine [17] is valid for narrow-bandwidth waves, they pointed out the importance
of an equation valid for a broader bandwidth wave. Such an equation in the
absence of surface current was obtained by Trulsen and Dysthe [20]. It is known
that the narrow-bandwidth constraint limits the applicability of the cubic nonlinear
Schrödinger equation and its fourth-order modification [7] while describing the
evolution of real ocean wave fields. This is because the continental shelf wave
packets are not necessarily of narrow bandwidth. Moreover, Stokes-wave solutions
of these equations have regions of instability extending outside the narrow-bandwidth
constraint. Zakharov’s [23] integral equation does not require any assumption on
bandwidth, but this equation is not very suitable for numerical solution. Keeping the
above points in view, Trulsen and Dysthe [20] assumed a bandwidth |∆k|/|k| to be of
O(ε1/2), and derived an evolution equation correct up to O(ε7/2) which includes higher
order linear dispersive terms. Using this evolution equation, Trulsen and Dysthe [20]
carried out a linear stability analysis of the uniform wave solution, and showed that
the region of instability for perturbations of a uniform Stokes wave was in better
agreement with the exact results of McLean et al. [13]. Later on, Debsarma and
Das [4] derived an evolution equation with further relaxation in bandwidth. In that
paper, the authors assumed a bandwidth of O(ε1/3) and derived an evolution equation
correct up to O(ε11/3). They found that the region of instability fits very nicely with
the corresponding figures of McLean et al. [13]. To describe the evolution of weakly
nonlinear waves, Trulsen et al. [21] suggested a new model that incorporates any power
of ε by considering exact linear dispersive behaviour in the evolution equation.

Ruban [15] derived a modified nonlinear Schrödinger equation for surface gravity
waves in the presence of steady nonuniform current without the assumption of relative
smallness of the current velocity. His method of derivation is based on a Hamiltonian
formulation [23]. He also reported that the evolution equation obtained by Stocker and
Peregrine [17] does not satisfy the principle of conservation of the wave action. He
argued that the reason for this inconsistency is due to measuring the smallness of the
surface-wave amplitude and the variation of the current velocity by the same slowness
parameter.

In the present investigation, we have considered a modification of the evolution
equation obtained by Trulsen and Dysthe [20] to include the effect of surface current
produced by an internal wave and the effect of capillarity. So, the equation derived here
is valid for broader bandwidth waves. The equation for the evolution of the amplitude
of the wave derived by Stocker and Peregrine [17] remains coupled with the velocity
potential for the wave-induced slow motion. This velocity potential is given by an
additional set of equations. Eliminating this potential, a single nonlinear evolution
equation is obtained in the present paper and this equation is also expressed in an
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integro-differential equation form. The corresponding equations for the particular case
of a surface gravity wave packet are obtained in the absence of capillarity.

Trulsen and Mei [22] studied a problem of wave propagation on an opposing current
of increasing strength. They showed that a wave in the presence of current can suffer
a reflection of its energy. They also showed that the effect of capillarity may result in
repeated reflection. In the present paper, we assume the presence of surface current
described by the velocity potential, φc. While deriving the current-modified evolution
equation, we do not take into account the possibility of wave reflection. So, the
evolution equation derived here remains valid so long as there is no reflection of energy
in the medium.

Hasselmann [9] studied the problem of resonant interaction between one finite
internal gravity wave mode (k0, ω0) and two infinitesimal internal wave modes,
(k1, ω1) and (k2, ω2). He found that waves became unstable as a result of sum
interaction: k1 + k2 = k0, ω1 + ω2 = ω0, and waves remained neutrally stable for the
case of difference interaction: k1 − k2 = k0, ω1 − ω2 = ω0.

In resonant interaction of three waves, the amplitude of each varies slowly with
time. If one of the three resonantly interacting waves has an amplitude larger than the
amplitudes of the other two and its amplitude does not change appreciably with time,
then such a wave in the process of three-wave interaction is called a pump wave and the
other two waves are called sidebands. It is known that when one of the three resonantly
interacting waves is a pump wave, the two sidebands grow exponentially with time.
For example, in case of stimulated Brillouin scattering two of the three interacting
waves are electromagnetic waves, and the third one is an ion-acoustic wave. One of
the two electromagnetic waves is a pump wave. As a result of resonant interaction, the
pump wave decays into an ion-acoustic wave together with another electromagnetic
wave propagating in the opposite direction (see Chen [2]).

It is of importance to study – if three-wave-resonant interaction can take place
in an ocean medium – when a capillary–gravity wave packet propagates at the free
water surface and a surface current is produced due to the presence of an internal
wave. Whether or not three-wave-resonant interactions will take place depends on
the dispersion relations of the participating waves. At the end of this paper, we
have considered resonant interaction between two surface capillary–gravity waves and
surface current produced by an internal wave in a two-layer model of stratified ocean.
Hogan [10] derived an evolution equation for a surface capillary–gravity wave packet
and showed that sideband instability takes place as the wave packet propagates as a
result of weakly nonlinear interaction. In this paper, we find that sideband instability
can occur as a result of three-wave-resonant interaction in which an internal wave acts
as the pump wave and sideband instability occurs in the surface capillary–gravity wave
packet. Some feasible wave numbers undergoing the resonance condition are given in
Tables 1 and 2. Stable–unstable regions are plotted in the perturbed wave-number
plane. We also observe that for a given resonant-interaction sideband, instability
is possible if the surface-current amplitude exceeds a certain critical value which
is proportional to the square of the carrier-wave amplitude of the surface capillary–
gravity wave packet.
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2. Basic equations

Assuming that the waves and currents are irrotational (so that we can work with
velocity potentials), the governing equations for the flow are the following:

∇2φ = 0, −∞ < z ≤ ζ, (2.1)

∂φ

∂z
−
∂ζ

∂t
=
∂φ

∂x
∂ζ

∂x
+
∂φ

∂y
∂ζ

∂y
at z = ζ, (2.2)

∂φ

∂t
+ gζ = −

1
2

(∇φ)2 +
ν{ζxx(1 + ζ2

y ) + ζyy(1 + ζ2
x ) − 2ζxyζxζy}

(1 + ζ2
x + ζ2

y )3/2 at z = ζ, (2.3)

∂φ

∂z
= 0 as z→ −∞. (2.4)

Here g is the gravitational acceleration; φ is the velocity potential for the flow; ζ is
the elevation of the free surface from its unperturbed state, which is taken as the z = 0
plane with z axis pointing in the vertically upward direction; ν = T/ρ with T and ρ
being the surface tension and density of water, respectively.

Expanding the terms in equations (2.2) and (2.3) using Taylor’s formula about z = 0,(
∂φ

∂z

)
z=0
−
∂ζ

∂t
= a, (2.5)(

∂φ

∂t

)
z=0

+ gζ − ν(ζxx + ζyy) = b, (2.6)

where a and b are nonlinear terms; their expressions up to cubic nonlinear terms are
given in Appendix A.

Let the velocity potential and surface elevation for surface current be φc and ζc,
respectively, given by the following (Stocker and Peregrine [17]):

∇2φc = 0 for z ≤ 0, (2.7)(
∂φc

∂z

)
z=0
−
∂ζc

∂t
= 0, (2.8)(

∂φc

∂t

)
z=0

+ gζc = 0. (2.9)

We look for solutions for φ and ζ in the form (Stocker and Peregrine [17], Davey and
Stewartson [3])

φ = φc + φ0 +

∞∑
n=1

[φn exp(inψ) + φ∗n exp(−inψ)],

ζ = ζc + ζ0 +

∞∑
n=1

[ζn exp(inψ) + ζ∗n exp(−inψ)], i =
√
−1, (2.10)

where ψ = kx − ωt and ω, k satisfy the linear dispersion relation

D(ω, k) ≡ ω2 − gk − νk3 = 0
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for a capillary–gravity wave; φ0, φc, φn, φ
∗
n are functions of x1 = ε1/2x, y1 = ε1/2y, t1 =

ε1/2t, z; and ζ0, ζc, ζn, ζ
∗
n are functions of x1, y1, t1. In equation (2.10), the summation

is taken over all positive integer values of n. Here we are considering a surface
capillary–gravity wave packet to have a bandwidth of O(ε1/2). Following Trulsen and
Dysthe [20], we call this a broader bandwidth capillary–gravity wave packet.

3. Derivation of evolution equation

For derivation of the evolution equation, we shall follow the paper by Dhar and
Das [5]. Substituting the expansion for φ given by (2.10) in equation (2.1) and then
equating coefficients of exp(inψ) for n = 0, 1, 2, . . . , we get the following equations for
φn, n = 0, 1, 2, . . . :

d2φn

dz2 − ∆2
nφn = 0, n = 0, 1, 2, (3.1)

where the operator

∆n =

[(
nk − iε1/2 ∂

∂x1

)2
− ε

∂2

∂y2
1

]1/2
.

The solutions of the three equations in (3.1) satisfying the boundary condition (2.4)
are

φn = ez∆n An for n = 1, 2, (3.2)

φ0 = eε
1/2kzA0 for n = 0. (3.3)

In the above equations, A1, A2 are functions of x1, y1, t1; the operator

ez∆n = 1 + z∆n +
1
2!

z2∆2
n + · · · ;

and φ0 is the Fourier transform of φ0 defined by

φ0 =
1

2π

" ∞

−∞

φ0(x1, y1, z, t1)ei(kx x1+kyy1) dx1 dy1,

where k
2

= k2
x + k2

y . For the sake of convenience, we have taken the Fourier transform
of the equations corresponding to n = 0.

Since ζc is a function of x1, y1, t1 and φc is a function of x1, y1, z, t1, from equations
(2.8) and (2.9),

ζc = −
ε3/2

g

(
∂φc

∂t1

)
z=0
, (3.4)(

∂φc

∂z

)
z=0

= −
ε2

g

(
∂2φc

∂t2
1

)
z=0
, (3.5)

where we assume that φc = O(ε) (Stocker and Peregrine [17]). Substituting the
expansions (2.10) in equations (2.5) and (2.6), and then equating coefficients of
exp(inψ) on both sides, we obtain the following three sets of equations in which we
substitute the solutions (3.2) and (3.3) for φ1, φ2, φ0.
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(i) For n = 1,

∆1A1 + i
(
ω + iε1/2 ∂

∂t1

)
ζ1 = a1, (3.6)

−i
(
ω + iε1/2 ∂

∂t1

)
A1 + gζ1 + ν∆2

1A1 = b1. (3.7)

(ii) For n = 2,

∆2A2 + i
(
2ω + iε1/2 ∂

∂t1

)
ζ2 = a2, (3.8)

−i
(
2ω + iε1/2 ∂

∂t1

)
A2 + gζ2 + ν∆2

2A2 = b2. (3.9)

(iii) For n = 0, (∂φ0

∂z

)
z=0
− ε1/2 ∂ζ0

∂t1
= a0, (3.10)

ε1/2
(∂φ0

∂t1

)
z=0

+ gζ0 + ενk
2
ζ0 = b0. (3.11)

Here an, bn, n = 0, 1, 2, are contributions from nonlinear terms.
Eliminating A1 between (3.6) and (3.7), we get the following equation for ζ1:[(

ω + iε1/2 ∂

∂t1

)2
− g∆1 − ν∆

3
1

]
ζ1 = −

(
ω + iε1/2 ∂

∂t1

)
a1 − ∆1b1. (3.12)

This equation will produce the desired nonlinear evolution equation when terms up to
O(ε7/2) are retained, assuming that ζ1 = O(ε) and φc = O(ε).

In order to calculate a1 and b1 up to O(ε7/2) terms, we require solutions for A1, A2,
ζ2, ζ0, (φ0)z=0, (∂φ0/∂z)z=0 up to O(ε3/2),O(ε5/2),O(ε5/2), O(ε5/2),O(ε2), O(ε5/2) terms,
respectively.

The solution for A1 up to O(ε3/2) terms can be obtained from (3.6) by neglecting
nonlinear terms; the solution thus obtained is

A1 = −
iεω
k
ζ1 + ε3/2

(
ω

k2

∂ζ1

∂x1
+

1
k
∂ζ1

∂t1

)
. (3.13)

The equations (3.8) and (3.9) produce the following solutions for A2 and ζ2, both
correct up to O(ε5/2) terms, where we use solution (3.13) for A1.

A2 = iε2
(
ω −

2ω3

f

)
ζ2

1 − ε
5/2

{
1 + 4ω3

(g + 12νk2

f 2

)
ζ1
∂ζ1

∂x1
+ 4ω2

(gk + 10νk3

f 2

)
ζ1
∂ζ1

∂t1

}
,

(3.14)

ζ2 = 2ε2
(kω2

f

)
ζ2

1 − 8iε5/2
{
ω2

(
ω2 + 4νk3

f 2

)
ζ1
∂ζ1

∂x1
+ k2ω

(g + 4νk2

f 2

)
ζ1
∂ζ1

∂t1

}
, (3.15)

where
f = D(2ω, 2k).
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From equations (3.10) and (3.11), we get the following solutions for ζ0, (φ0)z=0 and
(∂φ0/∂z)z=0, which are correct up to O(ε5/2),O(ε2) and O(ε5/2) terms, respectively.

ζ0 = 2ε5/2ωcg

g
H

{
∂

∂x1
(ζ1ζ

∗
1)

}
, (3.16)

(φ0)z=0 = 2ε2ωH(ζ1ζ
∗
1), (3.17)(

∂φ0

∂z

)
z=0

= 2ε5/2ω
∂

∂x1
(ζ1ζ

∗
1), (3.18)

where H is the Hilbert transform operator given by

H{h(x1, y1)} =
1

2π

" ∞

−∞

(x′1 − x1)
[(x′1 − x1)2 + (y′1 − y1)2]3/2 h(x′1, y

′
1) dx′1 dy′1.

Since the lowest-order term on the right-hand side of (3.12) is of O(ε5/2), this equation,
when written correct up to O(ε2) terms, becomes

2iε3/2ω
(
∂ζ1

∂t1
+ cg

∂ζ1

∂x1

)
+ ε2

(
−
∂2ζ1

∂t2
1

+ 3νk
∂2ζ1

∂x2
1

+
ωcg

k
∂2ζ1

∂y2
1

)
= 0.

Solving this equation in a perturbative way for ∂ζ1/∂t1,

ε3/2 ∂ζ1

∂t1
= −ε3/2cg

∂ζ1

∂x1
+ iε2

{(3νk − c2
g

2ω

)
∂2ζ1

∂x2
1

+
cg

2k
∂2ζ1

∂y2
1

}
, (3.19)

which is correct up to O(ε2) terms, and expresses the time derivative of ζ1 in terms of
its space derivatives.

Using the solutions for A1, A2, ζ2, ζ0, (φ0)z=0, (∂φ0/∂z)z=0, ζc, (∂φc/∂z)z=0 given by
(3.13)–(3.15), (3.16)–(3.18) and (3.4)–(3.5), respectively, the expression on the right-
hand side of (3.12) is obtained correct up to O(ε7/2) terms. On the left-hand side,
keeping terms also up to O(ε7/2), we get the following nonlinear evolution equation
correct up to O(ε7/2) terms for a wider bandwidth capillary–gravity wave packet
modified by the surface current due to an internal wave:

2iε3/2ω
(
∂ζ1

∂t1
+ cg

∂ζ1

∂x1

)
+ ε2

(
3νk

∂2ζ1

∂x2
1

+
ωcg

k
∂2ζ1

∂y2
1

−
∂2ζ1

∂t2
1

)
+ iε5/2

(
−ν
∂3ζ1

∂x3
1

+
g − 3νk2

2k2

∂3ζ1

∂x1∂y2
1

)
+ ε3

(
−

g
2k3

∂4ζ1

∂x2
1∂y2

1

+
g − 3νk2

8k3

∂4ζ1

∂y4
1

)
+ iε7/2

(3g − 3νk2

8k4

∂5ζ1

∂x1∂y4
1

−
g

2k4

∂5ζ1

∂x3
1∂y2

1

)
= ε3d1ζ

2
1ζ
∗
1 + iε7/2d2ζ1ζ

∗
1
∂ζ1

∂x1
+ iε7/2d3ζ

2
1

∂ζ∗1
∂x1

+ 4ε7/2kω2ζ1H
{
∂

∂x1
(ζ1ζ

∗
1)

}
+ E,

(3.20)

where E is an expression involving surface-current terms. Its expression together with
the expressions for the coefficients d1, d2, d3 are given in Appendix B. In the nonlinear
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expression of equation (3.20), the time derivative of ζ1 has been replaced by its space
derivatives by using equation (3.19). Solving equation (3.20) in a perturbative way for
∂ζ1/∂t1, we get the following expression for ∂ζ1/∂t1, correct up to O(ε3) terms:

ε3/2 ∂ζ1

∂t1
=−ε3/2cg

∂ζ1

∂x1
+ iε2

(3νk − c2
g

2ω
∂2ζ1

∂x2
1

+
cg

2k
∂2ζ1

∂y2
1

)
+ ε5/2

{ 1
2ω2 (νω + c3

g − 3νkcg)
∂3ζ1

∂x3
1

−
1

4k2ω
(g − 3νk2 + 2kc2

g)
∂3ζ1

∂x1∂y2
1

}
+ iε3

{ 1
8ω3 (4νωcg + 9ν2k2 − 18νkc2

g + 5C4
g)
∂4ζ1

∂x4
1

−
1

4k3ω2 (gω + gkcg − 6νk3cg + 3k2c3
g)

∂4ζ1

∂x2
1∂y2

1

+
1

16k3ω
(g − 3νk2 + 2kc2

g)
∂4ζ1

∂y4
1

}
− iε5/2kζ1

(
∂φc

∂x1

)
z=0

− ε3
{
∂ζ1

∂x1

(
∂φc

∂x1

)
z=0

+
∂ζ1

∂y1

(
∂φc

∂y1

)
z=0

}
+ ε3

(kcg

2ω
− 1

)
ζ1

(
∂2φc

∂x2
1

)
z=0
−

1
2
ε3ζ1

(
∂2φc

∂y2
1

)
z=0
− iε3

( d1

2ω

)
ζ2

1ζ
∗
1 . (3.21)

Using equation (3.21), the term −ε2(∂2ζ1/∂t2
1) on the left-hand side of (3.20) can

be replaced by an expression where there exists no time derivative of ζ1. With this
expression for −ε2(∂2ζ1/∂t2

1), the nonlinear evolution equation assumes the following
dimensionless form by introducing the dimensionless variables: ξ = kx1, η = ky1, τ =

ωt1, ζ = kζ1 and φ′c = (k2/ω)φc. Finally, dropping primes on φ′c yields

i
(
∂ζ

∂τ
+ β0

∂ζ

∂ξ

)
+ ε1/2

(
β1
∂2ζ

∂ξ2 + β2
∂2ζ

∂η2

)
+ iε

(
β3
∂3ζ

∂ξ3 + β4
∂3ζ

∂ξ∂η2

)
+ ε3/2

(
β5
∂4ζ

∂ξ4 + β6
∂4ζ

∂ξ2∂η2 + β7
∂4ζ

∂η4

)
+ iε2

(
β8
∂5ζ

∂ξ5 + β9
∂5ζ

∂ξ3∂η2 + β10
∂5ζ

∂ξ∂η4

)
= ε3/2λ1ζ

2ζ∗ + iε2
(
λ2ζζ

∗ ∂ζ

∂ξ
+ λ3ζ

2 ∂ζ
∗

∂ξ

)
+ 2ε2ζH

∂

∂ξ
(ζζ∗) +

[
εζ

(
∂φc

∂ξ

)
z=0

− iε3/2
{
∂ζ

∂ξ

(
∂φc

∂ξ

)
z=0

+
∂ζ

∂η

(
∂φc

∂η

)
z=0
− µ1ζ

(
∂2φc

∂ξ2

)
z=0
− µ2ζ

(
∂2φc

∂η2

)
z=0

}
+ ε2

{
µ3ζ

(
∂3φc

∂ξ3

)
z=0

+ µ4ζ
(
∂3φc

∂ξ∂η2

)
z=0

+ µ5ζ
(
∂3φc

∂τ∂ξ2

)
z=0

+ µ6ζ
(
∂3φc

∂τ∂η2

)
z=0

+ µ7ζ
(
∂3φc

∂τ3

)
z=0

+ µ8
∂ζ

∂ξ

(
∂2φc

∂ξ2

)
z=0

+ µ9
∂ζ

∂η

(
∂2φc

∂ξ∂η

)
z=0

}]
. (3.22)

The coefficients βk, λk and µk appearing in the above equation are given in
Appendix C. The equation (3.22) is the desired current-modified nonlinear evolution
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equation for a broader bandwidth capillarity–gravity wave packet correct up to O(ε7/2)
terms. So, in this equation ζ represents the wave envelope correct up to this order
of accuracy. Equation (3.22) gives the modified version of equation (24) of Stocker
and Peregrine [17] in order to include the capillarity effect for the case of a broader
bandwidth wave packet in infinite-depth water. In the absence of surface currents and
dispersive terms involving fourth- and fifth-order derivatives, the resulting equation
becomes the same as the equation (2.20) of Hogan [10]. The terms within the third
bracket on the right-hand side of equation (3.22) are due to interaction of surface
waves with surface current. The velocity potential φc for surface current, appearing in
equation (3.22), is governed by equations (2.7)–(2.9). Thus, for numerical simulation
of equation (3.22) one must use equations (2.7)–(2.9) along with equation (3.22). The
evolution equation (3.22) can also be written in an integro-differential equation form,
following Janssen [11].

In the absence of capillarity, that is, with m = νk2/g = 0, the evolution equation
(3.22) becomes the following, which is, therefore, the current-modified nonlinear
evolution equation for a broader bandwidth surface gravity wave packet:

i
(
∂ζ

∂τ
+

1
2
∂ζ

∂ξ

)
+ ε1/2

(
−

1
8
∂2ζ

∂ξ2 +
1
4
∂2ζ

∂η2

)
+ iε

(
−

1
16
∂3ζ

∂ξ3 +
3
8
∂3ζ

∂ξ∂η2

)
+ ε3/2

( 5
128

∂4ζ

∂ξ4 −
15
32

∂4ζ

∂ξ2∂η2 +
3
32

∂4ζ

∂η4

)
+ iε2

( 7
256

∂5ζ

∂ξ5 −
35
64

∂5ζ

∂ξ3∂η2 +
21
64

∂5ζ

∂ξ∂η4

)
= 2ε3/2ζ2ζ∗ + iε2

(
−6ζζ∗

∂ζ

∂ξ
− ζ2 ∂ζ

∗

∂ξ

)
+ 2ε2ζH

∂

∂ξ
(ζζ∗) + εζ

(
∂φc

∂ξ

)
z=0

− iε3/2
{
∂ζ

∂ξ

(
∂φc

∂ξ

)
z=0

+
∂ζ

∂η

(
∂φc

∂η

)
z=0

+
3
4
ζ
(
∂2φc

∂ξ2

)
z=0

+
1
2
ζ
(
∂2φc

∂η2

)
z=0

}
+ ε2

{1
8
ζ
(
∂3φc

∂ξ3

)
z=0

+
1
8
ζ
(
∂3φc

∂τ∂ξ2

)
z=0
−

1
2
ζ
(
∂3φc

∂τ3

)
z=0
−

1
2
∂ζ

∂η

(
∂2φc

∂ξ∂η

)
z=0

}
.

(3.23)

In the absence of surface currents and in the absence of dispersive terms involving
fourth- and fifth-order derivatives, the equation (3.23) becomes the same as
equation (14) of Stiassnie [16]. In addition, if the terms due to surface current are
neglected then equation (3.23) matches the evolution equation (21) of Trulsen and
Dysthe [20] for a broad-band surface gravity wave packet in the limiting case of
infinite-depth water.

The two evolution equations (3.22) and (3.23) remain valid as long as reflection of
energy does not take place. Trulsen and Mei [22] considered propagation of a wave
packet, taking into account the reflection of waves. They showed that when a train
of gravity waves encounters an opposing current, the wavelength is shortened and the
waves may be reflected. For the case of capillary–gravity waves, the shortened waves
may again be reflected and, as a result, may undergo further shortening.
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4. Sideband instability

In this section, we show that the resonance condition can be satisfied by two
sidebands of the surface capillary–gravity waves and an internal wave, all propagating
in the same direction.

When surface waves and internal waves both propagate along the x direction, the
evolution equation (3.22) reduces to the following equation:

i
∂ζ

∂τ
+ iβ0

∂ζ

∂ξ
+ β1

∂2ζ

∂ξ2 + iβ3
∂3ζ

∂ξ3 + β5
∂4ζ

∂ξ4 + iβ8
∂5ζ

∂ξ5

= λ1ζ
2ζ∗ + iλ2ζζ

∗ ∂ζ

∂ξ
+ iλ3ζ

2 ∂ζ
∗

∂ξ
+ 2ζH

∂

∂ξ
(ζζ∗) + ζ

(
∂φc

∂ξ

)
z=0

− i
∂ζ

∂ξ

(
∂φc

∂ξ

)
z=0

+ iµ1ζ
(
∂2φc

∂ξ2

)
z=0

+ µ3ζ
(
∂3φc

∂ξ3

)
z=0

+ µ5ζ
(
∂3φc

∂τ∂ξ2

)
z=0

+ µ7ζ
(
∂3φc

∂τ3

)
z=0

+ µ8
∂ζ

∂ξ

(
∂2φc

∂ξ2

)
z=0
, (4.1)

in which we have set ε = 1.
The Stokes uniform wave solution [7, 20] of equation (4.1) in the absence of surface

current is given by
ζ = ζ(s) = αs exp(−iΩsτ), (4.2)

where αs is a constant and Ωs = λ1|αs|
2. We now seek a nonuniform solution of

equation (4.1) in the following form:

ζ = ζ(n) = α exp(−iΩsτ), (4.3)

where α is a function of ξ and τ, satisfying the equation

i
∂α

∂τ
+ Ω0α + iβ0

∂α

∂ξ
+ β1

∂2α

∂ξ2 + iβ3
∂3α

∂ξ3 + β5
∂4α

∂ξ4 + iβ8
∂5α

∂ξ5

= λ1α
2α∗ + iλ2αα

∗ ∂α

∂ξ
+ iλ3α

2 ∂α
∗

∂ξ
+ 2αH

∂

∂ξ
(αα∗) + α

(
∂φc

∂ξ

)
z=0

− i
∂α

∂ξ

(
∂φc

∂ξ

)
z=0

+ iµ1α
(
∂2φc

∂ξ2

)
z=0

+ µ3α
(
∂3φc

∂ξ3

)
z=0

+ µ5α
(
∂3φc

∂τ∂ξ2

)
z=0

+ µ7α
(
∂3φc

∂τ3

)
z=0

+ µ8
∂α

∂ξ

(
∂2φc

∂ξ2

)
z=0
. (4.4)

We now assume the space–time dependence of α to be of the form exp[i(ω̃τ − kξ)].
Substituting (4.3) in equation (4.4) and then linearizing, we get the following linear
dispersion relation for a sideband of a Stokes wave train given by equation (4.2):

ω̃(k) = Ωs + β0k − β1k2 − β3k3 + β5k4 + β8k5. (4.5)

Assuming the presence of two sidebands (ω1, k1) and (ω2, k2) of the Stokes wave train
given by equation (4.2), α can be expressed as

α = αs + α1 exp(iψ1) + α2 exp(iψ2), (4.6)
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ω

k

Figure 1. Dispersion curves: (1) for surface capillary–gravity wave, (2) for internal waves; Γ = 0.01,
m = 0.01, d = 100, αs = 0.25; OPQR is a parallelogram establishing equation (4.7).

where α1, α2 are functions of τ only and

ψ1 = ω1τ − k1ξ, ψ2 = ω2τ − k2ξ.

Here (ω1, k1) and (ω2, k2) satisfy the following dispersion relations:

ω1 = ω̃(k1), ω2 = ω̃(k2).

We further assume that the surface current is generated by an underlying internal
wave [6, 17]. For the presence of an internal wave, we assume a simple model –
the two-layer model for a stratified ocean. In the presence of a thermocline at depth d,
the dispersion relation for an internal wave in dimensionless form is given by

ω2
0 = [ω0(k0)]2 =

Γk0 tanh(k0d)
1 + tanh(k0d)

.

Here (ω0, k0) are, respectively, the frequency and wavenumber of the internal wave
and Γ = δρ/ρ, δρ being the increment in density across the thermocline. For the
resonance of two sidebands of surface capillary–gravity waves and an internal wave,
the following condition is to be satisfied:

k0 + k2 = k1, ω0 + ω2 = ω1. (4.7)

Here the suffix “0” corresponds to the internal wave, and the suffixes “1” and “2”
correspond to the two sidebands of the surface capillary–gravity waves. The resonance
condition given in (4.7) can be simplified as follows:

R(k0, k2) ≡ ω0(k0) + ω̃(k2) − ω̃(k0 + k2) = 0.

Figure 1 shows the triad resonance among the wave number and frequencies (k0, ω0),
(k1, ω1), (k2, ω2) satisfying condition (4.7). A plot of dispersion curves for internal
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Table 1. Some wave numbers undergoing resonance condition (4.7), Γ = 0.01,m = 0.01, d = 100,
αs = 0.25.

(k0, ω0) (k2, ω2) (k1, ω1)
(0.001, 0.000952) (0.7996, 0.665226) (0.8006, 0.666179)
(0.002, 0.001816) (0.7574, 0.626025) (0.7594, 0.627840)
(0.003, 0.002602) (0.7157, 0.589083) (0.7187, 0.591684)
(0.004, 0.003319) (0.6741, 0.553867) (0.6781, 0.557186)
(0.005, 0.003975) (0.6321, 0.519836) (0.6371, 0.523811)
(0.006, 0.004579) (0.5901, 0.487211) (0.5961, 0.491709)
(0.007, 0.005135) (0.5476, 0.455512) (0.5546, 0.460647)
(0.008, 0.005650) (0.5048, 0.424811) (0.5128, 0.430461)
(0.009, 0.006129) (0.4615, 0.394895) (0.4705, 0.401023)
(0.010, 0.006575) (0.4176, 0.365636) (0.4276, 0.372211)
(0.011, 0.006993) (0.3730, 0.336920) (0.3840, 0.343913)
(0.012, 0.007386) (0.3276, 0.308642) (0.3396, 0.316028)
(0.013, 0.007757) (0.2814, 0.280765) (0.2944, 0.288522)
(0.014, 0.008108) (0.2340, 0.253023) (0.2480, 0.261131)
(0.015, 0.008442) (0.1855, 0.225457) (0.2005, 0.233898)

Table 2. Some wave numbers undergoing resonance condition (4.7), Γ = 0.01, m = 0.8, d = 100,
αs = 0.25.

(k0, ω0) (k2, ω2) (k1, ω1)
(0.001, 0.000952) (0.162, 0.001463) (0.163, 0.002338)
(0.002, 0.001816) (0.162, 0.001463) (0.164, 0.003212)
(0.003, 0.002602) (0.180, 0.017143) (0.183, 0.019743)
(0.004, 0.003319) (0.275, 0.097752) (0.279, 0.101070)
(0.005, 0.003975) (0.896, 0.575880) (0.901, 0.579855)
(0.006, 0.004579) (0.807, 0.506770) (0.813, 0.511348)
(0.007, 0.005135) (0.663, 0.398709) (0.670, 0.403923)

wave and surface capillary–gravity waves is shown in Figure 1 for αs = 0.25, m = 0.01,
Γ = 0.01 and d = 100. If P,Q,R are the three points representing (k0, ω0), (k1, ω1) and
(k2, ω2), respectively, then it follows from (4.7) that

−−→
PR +

−−→
RQ =

−−→
PQ. Also, the three

points P,Q,R along with the origin O form a parallelogram OPQR.
In Tables 1 and 2, some of the feasible values of (k0, ω0), (k1, ω1) and (k2, ω2) are

given when the resonance condition (4.7) is satisfied for Γ = 0.01, d = 100 and αs =

0.25. In Table 1, m = 0.01, while in Table 2, m = 0.8. The value m = 0.01 corresponds
to surface capillary–gravity wave number k = 0.37 cm−1, wavelength λ = 17 cm and
frequency ω = 19 rad s−1. Since all the variables are made dimensionless using k and
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ω, the dimensional values of the entries of Table 1 can be found by multiplying those
wavenumbers and frequencies, respectively, by the characteristic values k = 0.37 cm−1

and ω = 19 rad s−1. In this table, k0 actually represents the ratio of the wave number
of the internal wave to the wave number of the surface capillary–gravity wave. For
Table 2, the wavelength of the surface capillary–gravity wave is λ = 1.92 cm and the
frequency is ω = 76 rad s−1.

For a physically relevant situation, one should consider up to several hundred
wavelengths of the short waves on one wavelength of an internal wave. Stocker and
Peregrine [17] reported that in an estuarine channel, experimental data are available,
for which the wavelength λ of a surface wave is 40 cm and the wavelength of a surface
current is Λ = 12 000 cm. Thus, Λ/λ = 300. A pycnocline may be formed at a depth
of 600 cm with Γ = 0.0025 and the surface current may have a maximum value of
4 cm s−1. For numerical computations, Stocker and Peregrine [17] chose Λ/λ = 20,
which models the physical situation in which 20 wavelengths of a short wave arise
on an 800 cm internal wave with a maximum current of 4.7 cm s−1. Such a physical
situation may be observed when a pycnocline is formed at a depth of 77 cm with
freshwater having low salinity of 10 parts per thousand overlying sea water with
salinity content of 35 parts per thousand.

For the internal wave, we take φc in the following form:

φc = φ̂c exp(iψ0) + φ̂c
∗ exp(−iψ0), (4.8)

in which φ̂c is a constant and ψ0 = ω0τ − k0ξ. Substituting (4.6) and (4.8) in equation
(4.4) and assuming that α1, α2 are infinitesimal in magnitude having time dependence
of the form exp(−iΩτ), we get the following equation for finding Ω:

[Ω − (2λ1 + λ2k1 − 2|k1|)|αs|
2][Ω − (2λ1 + λ2k2 − 2|k2|)|αs|

2] = BC|φ̂c|
2, (4.9)

where

B = k0 − µ1k2
0 − µ3k3

0 + µ5k2
0ω0 + µ7ω

3
0 − k0k1 + µ8k2

0k1,

C = k0 + µ1k2
0 − µ3k3

0 + µ5k2
0ω0 + µ7ω

3
0 − k0k2 − µ8k2

0k2.

Equation (4.9) determines Ω as

[Ω − 2λ1|αs|
2 − {λ2(k1 + k2) − 2(|k1| + |k2|)}|αs|

2]2 = A2|αs|
4 + 4BC|φ̂c|

2, (4.10)

where
A = λ2(k1 − k2) − 2(|k1| − |k2|).

The frequency Ω given by (4.10) will have an imaginary part if the conditions

BC < 0 (4.11)

and
|φ̂c| >

|A|

2
√
|BC|
|αs|

2 (4.12)
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are satisfied. The conditions (4.11) and (4.12) are then the conditions for sideband
instability, in which case the two sidebands of capillary–gravity waves start growing
exponentially with time. The condition (4.11) is equivalent to BC = [Gk0 + O(ε2)] < 0,
where

G ≡ k0 − k0(k1 + k2) + k0k1k2 − (µ1 − µ8)k2
0(k1 − k2) − (µ2

1 + 2µ3)k3
0 + 2µ5k2

0ω0 + 2µ7ω
3
0.

(4.13)
Retaining terms correct up to O(ε7/2), we get Gk0 < 0 for instability, which gives G < 0,
since k0 > 0.

The lowest order at which the condition (4.13) is satisfied is at O(ε3). Thus,
the minimal model that produces instability for a perturbation of the uniform wave
solution can be obtained from equation (3.22) by dropping terms multiplied by ε2.

Using equation (3.4), we can rewrite the condition (4.12) as

|ζc| >
|A|

2
√
|BC|

ω0|αs|
2. (4.14)

The condition in (4.14) shows that for a given set of wave numbers of internal wave
and surface capillary–gravity waves and for a given amplitude of the carrier wave
of a surface capillary–gravity wave packet, sideband instability is possible when the
surface-current amplitude exceeds a certain critical value ζ(c)

c given by

ζ(c)
c =

|A|

2
√
|BC|

ω0|αs|
2.

In Figures 2 and 3, the region of stability (G > 0) and the region of instability (G < 0)
have been shown in the (k0, k2) plane. In these two figures, resonance curves satisfying
condition (4.7) are also displayed. Thus, in Figures 2 and 3, we find wave numbers
k0 of the internal wave and wave numbers k2 of the surface capillary–gravity wave
undergoing the resonance condition with wave numbers k1 of the surface capillary–
gravity wave and, as a result, the Stokes wave being stable or unstable according as
G > 0 or G < 0.

In Figures 4 and 5, ζ(c)
c has been plotted against αs for different values of thermocline

depth. These two figures reveal the dependence of ζ(c)
c on thermocline depth d.

5. Conclusion

The main aim of this paper is to derive the equations (3.22) and (3.23), which
are the broader bandwidth nonlinear evolution equations, respectively, for capillary–
gravity and surface gravity wave packets modified by surface currents due to an
internal wave. The importance of such equations was pointed out by Stocker and
Peregrine [17]. The derived evolution equation has also been expressed in integro-
differential equation form, suitable for deriving a wave kinetic equation. Using the
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Figure 2. Regions of stability and instability; G = 0 for broad-band wave packet, G = 0 for narrow-
band wave packet, contour plot of resonance curves satisfying condition (4.7); Γ = 0.004,m = 3,
d = 150, αs = 0.2.

Figure 3. Regions of stability and instability; G = 0 for broad-band wave packet, G = 0 for narrow-band
wave packet, contour plot of resonance curves satisfying condition (4.7); Γ = 0.01,m = 0.2, d = 300,
αs = 0.2.

evolution equation derived here, we have made an investigation of sideband instability
of a surface capillary–gravity wave packet when it undergoes resonant interaction with
a surface current due to an internal wave.

Dysthe and Das [8] studied a theoretical model to present the coupling of an internal
wave with a surface-wave spectrum. They considered a simple three-layer model
of the ocean with a (shallow) seasonal thermocline region separating homogeneous
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Figure 4. Plot of ζ(c)
c against αs for different thermocline depths d; Γ = 0.004, d = 25, d = 50, d = 100.

Figure 5. Plot of ζ(c)
c against αs for different thermocline depths d; Γ = 0.01, d = 20, d = 30, d = 150.

waters above and below. With this model, they showed that the nonuniform surface
current induced by an internal wave causes refraction and thereby causes modulation
of the surface-wave spectrum. This modulation introduces nonuniform radiation stress
on the internal wave. They derived a transport equation for the spectral density of a
surface-wave spectrum and showed that modulational instability may persist because
of a coupling between a modulational mode of the surface-wave spectrum and an
internal wave. In the present paper, we have followed a deterministic approach and
proved that sideband instability of surface capillary–gravity waves occurs as a result
of resonant interaction with an internal wave, all propagating in the same direction.
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Appendix A. Nonlinear terms
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Appendix B. Some coefficients and terms in (3.20)

d1 = 2k2ω2 −
3
2
νk5 + 4k2ω4 f −1,

d2 =−6kω2 + 9νk4 − 12kω4 f −1 − 4kω4 f −2(2gk + 24νk3)
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g + 2ωcg

ω

)
∂2ζ1

∂x2
1

(
∂φc

∂x1

)
z=0

−

(g + 3νk2

2ω

)
∂2ζ1

∂y2
1

(
∂φc

∂x1

)
z=0
− 2cg

∂2ζ1

∂x1∂y1

(
∂φc

∂y1

)
z=0

+ i
(3νk − c2

g

2ω

)
∂3ζ1

∂x2
1∂y1

(
∂φc

∂y1

)
z=0

+ i
(g + 3νk2

4kω

)
∂3ζ1

∂y3
1

(
∂φc

∂y1

)
z=0

}
.
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Appendix C. Coefficients of evolution equation (3.22)

m =
νk2

g
, β0 =

1 + 3m
2(1 + m)

, β1 = −
1 − 6m − 3m2

8(1 + m)2 , β2 =
1 + 3m

4(1 + m)
,

β3 =−
(1 − m)(1 + 6m + m2)

16(1 + m)3 , β4 =
3 + 2m + 3m2

8(1 + m)2 ,

β5 =
5 + 20m + 70m2 − 28m3 − 3m4

128(1 + m)4 , β6 = −
15 + 35m + 5m2 + 9m3

32(1 + m)3 ,

β7 =
3 + 2m + 3m2

32(1 + m)2 , β8 =
7 + 33m + 54m2 + 210m3 − 45m4 − 3m5

256(1 + m)5 ,

β9 =−
35 + 120m + 150m2 + 15m4

64(1 + m)4 , β10 =
3(7 + 15m + 5m2 + 5m3)

64(1 + m)3 ,

λ1 =
8 + m + 2m2

4(1 + m)(1 − 2m)
, λ2 = −

3(8 − m + 9m2 − 4m3 − 4m4)
4(1 + m)2(1 − 2m)2 ,

λ3 =−
(1 − m)(8 + m + 2m2)

8(1 + m)2(1 − 2m)
,

µ1 =−
3 + m

4(1 + m)
, µ2 = −

1
2
,

µ3 =
1 + 8m + 3m2

8(1 + m)2 , µ4 =
m

2(1 + m)
, µ5 =

1 + 3m
8(1 + m)

,

µ6 =−
m
4
, µ7 = −

1 + m
2

, µ8 =
m

(1 + m)2 , µ9 = −
1 − m

2(1 + m)
.
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