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The flow within an infinitely long cylinder exhibiting solid-body rotation (SBR) is
impulsively stopped. The complete decay of the initial SBR is captured by means
of direct numerical simulations for a wide range of Reynolds numbers (Re). Five
distinct stages are identified during the decay process according to their flow structure
and their underlying mechanisms of kinetic-energy dissipation. Initially, the laminar
boundary layer undergoes a primary centrifugal instability, which causes the formation
of coherent Taylor rolls. The flow then becomes turbulent, once the Taylor rolls are
corrupted by secondary instabilities. Within the turbulent stage, two phases are
distinguished. In the first turbulent phase, the SBR core is still intact and turbulence
is sustained. The mean velocity profile is well described by the superposition of a
near-wall region, a retracting SBR core and an intermediate region of constant angular
momentum. In the latter region, the magnitude of angular momentum in viscous units
l+(Re) is approximately constant in time. In the second turbulent phase, the SBR core
breaks down, turbulence starts to decay exponentially and the kinetic energy of the
mean flow decays logarithmically. Eventually, the flow relaminarises and the velocity
profile of the analytical solution for purely laminar decay is recovered, albeit at an
earlier temporal instant due to the net effect of transition and turbulence.

Key words: vortex breakdown, turbulent boundary layers, Taylor–Couette flow

1. Introduction
Flows above concave walls have been studied for over a century due to the strong

impact of curvature onto the properties of laminar, turbulent and transitional flows.
For instance, curvature affects the stability of boundary layers (Rayleigh 1917), the
mechanism of transition to turbulence through the occurrence of secondary instabilities
(Swearingen & Blackwelder 1987), the statistical properties of turbulent boundary
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FIGURE 1. Schematic describing the evolution of vorticity (colour coded) and azimuthal
velocity profile (vectors) during the distinct stages of the spin-down process: initial
condition (ic), laminar stage (I), instabilities and transition to turbulence (II), sustained
turbulence with intact vortex core (III), corruption of vortex core and decay of turbulence
(IV) and relaminarisation (V). Spirals illustrate the existence of turbulent fluctuations in
stages III and IV.

layers (Meroney & Bradshaw 1975) and the decay of anisotropic turbulence in
wall-bounded flows (Verschoof et al. 2016; Ostilla-Mónico et al. 2017). The present
study describes a relatively simple flow which encompasses laminar, transitional,
turbulent and decaying regimes under the influence of concave walls.

An infinitely long cylinder of radius R has its axis aligned with the axial direction of
a cylindrical coordinate system with radial, azimuthal and axial coordinates denoted
respectively (r, ϕ, z). The cylinder is filled with an incompressible Newtonian fluid
of kinematic viscosity ν and rotated with angular velocity Ω (see figure 1) until
solid-body rotation (SBR) of constant axial vorticity ω = 2Ω is achieved. This flow
is characterised by the following velocity field

uϕ(r)=Ωr, ur = uz = 0. (1.1a,b)

The numerical experiment begins at the temporal instant t= 0 when, starting from the
condition of SBR, the rotation of the cylinder wall is suddenly stopped. Following this
event, a transient unsteady flow develops, referred to here as spin-down.

1.1. Motivation and objectives
Figure 1 presents the different stages of the spin-down process. Each stage is
characterised by unique flow features, which are strongly influenced by the boundary
conditions – specifically the concave walls of the cylinder. After the laminar boundary
layer formation (stage I), centrifugal instabilities emerge as addressed experimentally
by Euteneuer (1972) and Mathis & Neitzel (1985). These instabilities have also been
studied analytically by Neitzel (1982) and Kim, Song & Choi (2008). However, only
Euteneuer (1972) extended their work up to the nonlinear saturation of the primary
instability (in stage II). Yet the subsequent stages of the spin-down process have not
been investigated: the secondary instability (end of stage II), a stage of sustained
turbulence (stage III), the decay of turbulence (stage IV) and the relaminarisation
(stage V) itself.

These later stages (stages II–V) are characterised by centrifugal instabilities and
the onset of turbulence. The kinetic energy initially present in the SBR is not
only dissipated through the viscous dissipation associated with a time-varying
velocity profile of laminar spin-down, but also converted to turbulent fluctuations
and eventually dissipated via turbulent viscous dissipation. When a large fraction of
the total energy has been dissipated, turbulence does not self-sustain and a stage of
viscous decay occurs yielding relaminarisation. As mentioned in studies on decaying
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Stages of vortex decay in an impulsively stopped cylinder 885 A6-3

Taylor–Couette (TC) flow by Verschoof et al. (2016) and Ostilla-Mónico et al. (2017),
the rate at which energy is dissipated during the sustained and decaying turbulent
regimes is not known a priori. In a similar manner, the details of production and
dissipation of energy associated with turbulent fluctuations are also poorly understood.
The statistical properties of the turbulent flow and the turbulence production and
decay processes depend on the Reynolds number (Re) in at least two instances. On
the one hand, there is the obvious impact of Re on the relative importance of viscous
and inertial stresses, and thus on turbulent statistics. On the other hand, the value of
Re determines the stability properties of the laminar boundary layer forming at the
initial stages of spin-down, thereby determining the boundary-layer properties at the
instant in which instability and transition to turbulence occur.

The objective of the present work is to describe the spin-down process throughout
all of its phases from onset of centrifugal instabilities to the decay of turbulence.
Particular focus lies on the flow stages that have not been discussed previously and on
the analysis of the turbulent properties and the effect of Re. This study by no means
strives to completely cover all aspects of the spin-down process. Rather the paper
provides an initial overview of this complex transient flow and its phenomena. Each
stage on its own has significant potential for further investigations and therefore makes
the spin-down problem an interesting canonical flow to assess unsteady turbulence in
the presence of concave walls.

Each stage of the flow inherits features of related canonical flows influenced by
concave wall curvature. As such, the present study attempts to draw parallels to
prior studies on concave boundary layers, which are therefore briefly reviewed in the
following.

1.2. Review of concave-wall boundary layers
In an axisymmetric two-dimensional flow, the equilibrium between pressure and
centrifugal forces is unstable if the magnitude of the circulation Γ (r)= 2π

∫ r
0 ωr′ dr′

(ω is the vorticity) decreases with increasing radius r. By identifying this inviscid
centrifugal instability mechanism Rayleigh (1917) paved the way for research on the
influence of curvature on wall-bounded flows. Subsequently, canonical flows with flat
boundaries in the streamwise direction s were also assessed in their respective curved
counterpart (figure 2). Examples include the spatially developing boundary layer
(figure 2a, statistically steady, no streamwise pressure gradient ∂p/∂s = 0, spatially
developing boundary-layer thickness ∂δ/∂s 6= 0), the fully developed channel flow
(figure 2b, statistically steady, ∂p/∂s 6= 0, ∂δ/∂s = 0), the Couette flow (figure 2c,
statistically steady, ∂p/∂s = 0, ∂δ/∂s = 0) and the temporally developing boundary
layer (figure 2d, statistically unsteady, ∂p/∂s = 0, ∂δ/∂s = 0) after a sudden change
of boundary conditions. In the following, we briefly review studies that modify these
canonical flow scenarios to similar flows over concave walls. As it will become
evident later, the present numerical experiment embodies aspects of all such flows.

Modifying the classic stability problem of a flat, spatially developing boundary
layer to account for concave wall curvature (figure 2a) significantly changes its
stability properties, as described by Floryan (1991) and Saric (1994). In flows above
concave walls, pairs of streamwise vortices, i.e. Görtler vortices (Görtler 1941),
are formed, which get corrupted further downstream by secondary instabilities.
Experiments by Bippes (1972) and Swearingen & Blackwelder (1987) provide
visualisations of two distinct secondary instability mechanisms: a sinuous mode,
leading to spanwise meandering of the streamwise vortices and a varicose mode,
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FIGURE 2. Overview of distinct boundary-layer types and their concave counterparts:
(a) spatially developing boundary layers; (b) fully developed channel flow; (c) Couette
and Taylor–Couette flow; (d) temporally developing boundary layers, with the respective
initial condition (ic).

resulting in hairpin-like structures. Linear stability theory was applied to assess the
primary instability (Floryan & Saric 1982) and the secondary instabilities (Hall &
Horseman 1991; Li & Malik 1995). Due to its high relevance in turbomachinery,
recent work focuses on the receptivity of Görtler vortices towards roughness and
free-stream turbulence (Schrader, Brandt & Zaki 2011; Wu, Zhao & Luo 2011),
compressibility effects (Ren & Fu 2015) as well as the control of these instabilities
(Sescu & Afsar 2018).

The canonical, spatially developing boundary layer over flat plates has been
extensively studied both in laboratory experiments and in recent numerical simulations
(see Schlatter et al. 2009; Wu & Moin 2009; Sillero, Jiménez & Moser 2013). The
sizeable computational cost limits the value of Re that can be achieved in numerical
investigations. This limitation is shared also by studies of boundary layers over
concave walls, which consist almost exclusively by laboratory experiments. Meroney
& Bradshaw (1975), Hoffmann, Muck & Bradshaw (1985) and Barlow & Johnston
(1988) allow transition to turbulence in a straight channel section and, before the flow
becomes fully developed, a boundary layer of finite thickness enters a curved section
of the channel. The studies revealed persistence of streamwise rolls with wavelengths
similar to the boundary-layer thickness even in the turbulent stage, which result in
enhanced Reynolds stresses.

Significantly lower computational effort and experimental complexity than in
spatially developing boundary layers is required when turbulence is characterised in
spatially confined, fully developed and pressure-driven flows such as channels and
pipes (see figure 2b and amongst others Kim, Moin & Moser (1987)). Experimental
(e.g. Hunt & Joubert 1979) and numerical (e.g. Moser & Moin 1987) investigations
on fully developed curved channel flows also showed deviations in Reynolds stresses
due to large-scale, streamwise and wall-parallel vortices with scales similar to the
channel height (the so-called Dean instability – Dean (1928)).

Applying curvature to the classical Couette flow leads to a shear flow between two
coaxial cylinders: the TC flow, first addressed by Taylor (1923) (figure 2c). As the
system can be easily controlled and is satistically stationary, closed and symmetric,
it allows accurate measurements with moderate complexity of the experimental
apparatus as well as affordable numerical simulations even for large values of Re.
Depending upon the relative and absolute rotational speeds, the radii of the two
cylinders and fluid properties, a large variety of different flow structures can be
produced. A broad body of literature deals with TC thanks to its simple set-up, the
variety of competing physical phenomena occurring in the flow and the similarity with
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Stages of vortex decay in an impulsively stopped cylinder 885 A6-5

Rayleigh–Bénard convection. Recent reviews are given by Fardin, Perge & Taberlet
(2014) and Grossmann, Lohse & Sun (2016).

The temporal evolution of a turbulent incompressible boundary layer after an
impulsive acceleration of a flat wall – the so-called Stokes’ first problem (figure 2d)
– is the flat plate counterpart of the problem investigated here in the present study,
at least during the first phases of the spin-down process. While the linear stability of
the flow was already analysed by Luchini & Bottaro (2001) almost two decades ago,
Kozul, Chung & Monty (2016) recently identified and closed a gap in the literature
concerning the in-depth analysis of the turbulent state of such flows. Transferring
Stokes’ first problem to a flow with concave wall curvature, results in an azimuthally
accelerated cylinder. According to the Rayleigh criterion the effects of centrifugal
instabilities are only present in the case of a cylinder deceleration, which corresponds
to the spin-down case investigated in the present study. As mentioned above, literature
hereby is limited to the early stages of the flow, suggesting that there is merit in
further investigations of the subsequent flow stages.

1.3. Outline
The paper is structured as follows. Section 2.1 contains a detailed description of the
numerical method and the flow cases considered in the following. Particularly relevant
are the description of the adopted Reynolds decomposition and the budget equations
utilised to describe the temporal behaviour of the kinetic energy as described in
§ 2.2, the definition energy spectra (see § 2.4) and the details of the Lagrangian flow
visualisation (see § 2.5). Starting with an overview over the temporal flow development
in § 3, the different stages of the spin-down are discussed in detail for one of the
simulated Re in §§ 3.1–3.5. Finally, in § 4 the Re-influence is addressed by evaluating
four simulations at different Re, ranging over almost one order of magnitude.

2. Methods
2.1. Numerical procedure

A newly created database of the turbulent spin-down process in cylinders is produced
via direct numerical simulation (DNS). The code used in the present study is a
mixed-discretisation parallel solver of the incompressible Navier–Stokes equations
in cylindrical coordinates (Fabbiane 2011; Mascotelli 2016). Velocity and pressure
fields are discretised via a Fourier–Galerkin approach along the two statistically
homogeneous azimuthal (ϕ) and axial (z) directions, while second-order explicit
compact finite-difference schemes (Lele 1992) based on a three-point computational
stencil on an inhomogeneous grid are adopted in the radial direction (r). Spectral
accuracy is therefore achieved for the discretisation of all differential operators in
the statistically homogenous directions. The accuracies of the differential operators
D1 = ∂/∂r and D∗ = (∂/∂r)(r(∂/∂r)) operating in the radial direction are fourth and
second order, respectively. The incompressibility constraint is enforced within machine
accuracy by direct solution of the continuity equation, which is coupled with pressure
through the radial component of the momentum equation for the collocation point in
the fluid domain closest to the wall. The number of Fourier modes in the azimuthal
direction decreases from the wall towards the cylinder axis as a linear function of
r, so that the azimuthal resolution r∆ϕ is kept constant across the cylinder. The
regularity boundary conditions (RBC, Lewis & Bellan 1990) are based upon the
invariance of the solution with respect to the origin of the coordinate system. RBCs
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Re umax
τ /ΩR Lcyl/R Nmax

ϕ ×Nr ×Nz R+∆ϕ ∆r+ ∆z+ ∆t+ Line colour

3000 0.0814 2π 136× 68× 272 11.28 1.60 5.64 0.20 Turquoise
6000 0.0809 2π 282× 141× 566 10.81 1.52 5.38 0.16 Red
12 000 0.0766 π 502× 249× 504 11.51 1.63 5.73 0.18 Blue
28 000 0.0693 π 1024× 500× 1024 11.92 1.71 5.96 0.20 Yellow

TABLE 1. Discretisation parameters of the direct numerical simulations performed in the
present study. Nmax

ϕ and Nz are the number of maximum azimuthal and axial Fourier modes
used to represent the flow field without accounting for the additional modes required to
exactly remove the aliasing error. Nr is the number of collocation points adopted in radial
direction. The values of spatial and temporal resolutions are computed at the temporal
instant of transition to turbulence, for which the friction velocity achieves its maximum
value umax

τ . Line colours are used in § 4.

are enforced at the cylinder axis, for all wavenumber pairs that exist throughout
the cylinder cross-section, or at the radial position that represents the boundary for
wavenumber pairs that only exist above certain values of r.

The governing equations are advanced in time starting from the initial condition
of a fully established SBR. No pressure gradient is imposed in the axial direction.
Temporal discretisation is achieved with an implicit second-order Crank–Nicholson
scheme for the linear terms combined with an explicit third-order low-storage
Runge–Kutta scheme for the nonlinear part of the governing equations. Random
disturbances with constant energy of 10−12Ω2R2 satisfying no-slip boundary conditions
are superimposed to each wavenumber and velocity component of the initial
velocity field in the whole cylinder volume. The first time step of the simulation
forces the random disturbance to fulfil the continuity equation. In the resulting
divergence-free field, the energy contained in each wavenumber and velocity
component space is randomly distributed and is bound by 10−12.55Ω2R2 and
10−11.5Ω2R2. Henceforth, governing equations and all variables are normalised
via the cylinder radius R and the initial angular velocity Ω of the SBR. Four
different numerical experiments are performed, characterised by different values of
the Reynolds number Re = ΩR2/ν ∈ {3000, 6000, 12 000, 28 000}, where ν is the
kinematic viscosity of the fluid. The discretisation parameters are summarised in
table 1.

Spatial and temporal resolutions are set to fulfil the requirements for wall-bounded
turbulence (see Kim et al. 1987) at all times of the temporal evolution of the flow.
The resolutions are expressed in terms of viscous units, i.e. normalised via the
kinematic viscosity ν of the fluid and the friction velocity uτ =

√
τw/ρ. Here, τw is

the spatially averaged wall shear stress and ρ is the fluid density. Normalisation in
viscous units is indicated with the superscript +. The most stringent requirement for
spatial resolution is achieved after onset of transition, when uτ reaches the maximum
value umax

τ . At this time instant, indicated by dashed black lines in figure 3(a), the
azimuthal, axial and minimum radial resolutions are R+∆ϕ ≈ 11, ∆z+ ≈ 6 and
∆r+min ≈ 1.5, respectively. These values are computed without taking into account the
additional modes used to exactly remove the aliasing error. It must be noted that such
resolution is finer than the one required to correctly describe the onset of turbulent
transition, as discussed in § 3. The resolution in viscous units improves for all other
later time instants. The axial extent Lcyl of the computational domain is a compromise
between the need for accommodating several Taylor rolls (Brauckmann & Eckhardt
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FIGURE 3. (a) Temporal development of the friction velocity uτ at different values of Re.
The maximum value umax

τ , achieved during transition and used to determine the spatial
resolution in the numerical simulation, is marked with dashed black lines. (b) Averaged
azimuthal velocity profiles at Ωt= 0.5 (the instant is marked by a vertical dotted orange
line in figure 3a) compared with the respective analytical solution (dashed black lines).

2013; Ostilla-Mónico et al. 2013), providing sufficient area for reliable computation
of spatially averaged quantities, and constraining the computational effort and the
required disk space for storing the large data sets.

2.2. Reynolds decomposition and energy budgets
The spin-down process is statistically unsteady, for which the Reynolds decomposition
applied to the velocity field reads

ui(r, ϕ, z, t)= 〈ui〉ϕ,z(r, t)+ u′i(r, ϕ, z, t), (2.1)

where index notation is used to indicate the ith velocity component in the respective
direction of cylindrical coordinates (r, ϕ, z); 〈·〉ϕ,z denotes averaging along the
statistically homogeneous azimuthal and axial directions. It must be noted that the
ensemble average of independent repetitions of the same experiment is applicable to
unsteady problems. However, this has not been performed in the present study, for
which spatial averaging resulted in sufficient statistical convergence. In equation (2.1),
u′i(r, ϕ, z, t) is the fluctuating velocity field about the average value 〈ui〉ϕ,z(r, t). In
the following, the notation 〈ui〉 = 〈ui〉ϕ,z(r, t) and u′i = u′i(r, ϕ, z, t) is used for brevity.

The temporal decay of the kinetic energy contained in the initial SBR is investigated
in the present study. In the framework of the Reynolds decomposition, kinetic energy
is split into mean kinetic energy K, associated with the averaged flow field 〈ui〉, and
turbulent kinetic energy k, associated with the fluctuating field u′i. As 〈ur〉 = 〈uz〉 = 0
in the present flow, the mean kinetic energy is given by K = 1/2〈uϕ〉2. Its temporal
evolution is governed by the following budget equation:

∂K
∂t
= −

∂

∂r
(〈uϕ〉〈u′ru

′

ϕ〉)−
〈uϕ〉〈u′ru

′

ϕ〉

r︸ ︷︷ ︸
Tm

+
∂

∂r

(
ν〈uϕ〉

∂〈uϕ〉
∂r

)
+
ν

2r
∂〈uϕ〉2

∂r︸ ︷︷ ︸
Vm

· · ·

· · · +〈u′ru
′

ϕ〉

(
∂〈uϕ〉
∂r
−
〈uϕ〉

r

)
︸ ︷︷ ︸

P

−ν

(
∂〈uϕ〉
∂r

)2

− ν
〈uϕ〉2

r2︸ ︷︷ ︸
εm

, (2.2)
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where Tm is the turbulent diffusion, Vm the viscous diffusion and εm the dissipation
of K. The turbulence production term P couples the budget equation of K and k as it
draws energy from the mean flow and transfers it to the fluctuating field. Following
Mansour, Kim & Moin (1988) and Bilson & Bremhorst (2007) the budget equation
for k= (1/2)(〈u′zu

′

z〉 + 〈u
′

ru
′

r〉 + 〈u
′

ϕu′ϕ〉) is given by

∂k
∂t
= −

1
2r
∂(r〈u′ru

′

iu
′

i〉)

∂r︸ ︷︷ ︸
Tt

+
ν

2r
∂

∂r

(
r
∂(u′iu′i)
∂r

)
︸ ︷︷ ︸

Vt

· · ·

· · · −
1
ρ

(
∂(〈u′rp

′
〉)

∂r
+
〈u′rp

′
〉

r

)
︸ ︷︷ ︸

Πd

−〈u′ru
′

ϕ〉

(
∂〈uϕ〉
∂r
−
〈uϕ〉

r

)
︸ ︷︷ ︸

P

· · ·

· · · − ν

[〈
∂u′i
∂z
∂u′i
∂z

〉
+

〈
∂u′i
∂r
∂u′i
∂r

〉
+

1
r2

〈(
∂u′ϕ
∂ϕ
+ u′r

)2

+

(
∂u′r
∂ϕ
− u′ϕ

)2
〉]

︸ ︷︷ ︸
εt

.

(2.3)

Here, the viscous diffusion Vt, the pressure diffusion Π d and the turbulent diffusion
Tt describe the transport of k, while εt is its viscous dissipation.

Beyond the averaging in the axial and azimuthal directions, the closed system allows
averaging in the cylinder volume V , which is indicated in the following with the
volume averaging operator [·]. The volume-averaged total kinetic energy [K]+ [k] can
be expressed as

[K] + [k] =
1

2VΩ2R2

∫
V

uiui dV =
1

2VΩ2R2

∫
V
〈ui〉

2 dV +
1

2VΩ2R2

∫
V
〈u′iu

′

i〉 dV. (2.4)

Due to the no-slip conditions at the decelerated cylinder walls, energy is constantly
withdrawn from the system. The temporal change of kinetic energy [K] + [k] can
be described by volume averaging and summation of the equations (2.2) and (2.3).
All transport terms Tt, Vt, Tm, Vm and Πd contained in the two equations vanish by
definition. Also the production P, which appears in both equations for [K] and [k] with
an opposite sign, vanishes when the volume average of the kinetic energy [K] + [k]
is evaluated. As a consequence, only the dissipation terms εt and εm remain

∂([K] + [k])
∂t

=
∂[K]
∂t
+
∂[k]
∂t
= [εm] + [εt] = [εtot]. (2.5)

2.3. Wall-based flow description
To characterise turbulence in the developing boundary layer during spin-down, the
classical friction Reynolds number

Reτ = uτδ99/ν (2.6)

is introduced (Jiménez et al. 2010), in which δ99 is the boundary-layer thickness and
uτ =
√
τw/ρ is the friction velocity based on the mean wall shear stress

τw = ρν
∂〈uϕ〉
∂r

∣∣∣∣
r=R

. (2.7)
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Note that in the investigated flow τw, uτ , δ99 and Reτ change with time t. Due to the
lack of a constant outer velocity, the traditional definition of δ99 is adapted by using
the retracting vortex core in SBR as follows

Ω(R− δ99)− 〈uϕ〉 = 0.01ΩR, (2.8)

i.e. δ99 is defined as the distance from the wall, at which the flow deviates 0.01ΩR
from the initial SBR.

2.4. Energy spectra
The appearance of Taylor–Görtler rolls will be assessed by the analysis of the power
spectral density of k. The summands of k= 1/2〈u′iu

′

i〉 are split up into the contribution
of different axial modes κz of wavelength λz = Lcyl/κz. The axial energy spectra are
given by

Φuiui =Φuiui(r, κz)=

∫ κmax
ϕ

κmin
ϕ

R〈ûi(κϕ, κz, r)û∗i (κϕ, κz, r)〉 dκϕ, (2.9)

where R is the real part of a complex number, ·̂ indicates the Fourier coefficients
and the superscript ∗ denotes complex conjugation. By accumulating the energy of
all modes except the base flow the summands of k are recovered,

〈u′iu
′

i〉(r, t)=
∫ κmax

z

κ1
z

Φuiui dκz =

∫ λmax
z

λmin
z

κzΦuiui d(ln(λz)). (2.10)

To gather information about the linear and subsequent nonlinear growth of the
different modes κz in the boundary layer, the energy spectrum Φuϕuϕ is spatially
averaged over the fluid volume contained in the boundary layer Vδ=π(2Rδ99− δ

2
99)Lcyl,

resulting in the one-dimensional (1-D) spectrum

1
Vδ

∫
Vδ

∫ κmax
z

κ1
z

Φuϕuϕ dκz dV =
∫ κmax

z

κ1
z

2πLcyl

Vδ

∫ R

R−δ99

Φuϕuϕ r dr︸ ︷︷ ︸
ξϕϕ(κz)

dκz (2.11)

for each time step; ξϕϕ thus describes the contribution to 〈u′ϕu′ϕ〉 of each wavenumber
κz throughout the whole boundary layer.

2.5. Lagrangian flow visualisation: finite-time Lyapunov exponent
The identification of Lagrangian coherent structures (LCS) can provide deeper
insight into the material transport of complex flows (Haller 2015). LCS separate
flow regions of coherent movement. A classical method to calculate attracting LCS
is the backward finite-time Lyapunov exponent (FTLE) σ b

Tint
(t), which determines

the local attraction rate of particle tracks over a finite time span. The first step
to determine the backward FTLE is seeding massless tracers in the computational
domain and tracking them backward in time over the timespan Tint. In the present
work, flow-map interpolation as suggested by Brunton & Rowley (2010) is applied to
reduce the computational effort. The resulting flow map Ψ t−Tint

t is used to determine
the right Cauchy–Green tensor

C= (∇Ψ t−T int

t )T∇Ψ t−Tint
t . (2.12)

The terms of the deformation gradient ∇Ψ t−Tint
t are obtained by the numerical schemes

described in § 2.1. By evaluating and normalising the maximum eigenvalue Λmax(C),
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FIGURE 4. Temporal development of bulk flow statistics for the spin-down process at
Re = 12 000: (a) boundary-layer thickness δ99, friction velocity uτ and friction Reynolds
number Reτ ; (b) mean [K] and turbulent [k] kinetic energy. Roman numbers I–V and
background colouring indicate the different stages of the decay process.

the backward FTLE
σ b

Tint
(t)=

1
Tint

ln(Λmax(C)) (2.13)

is determined. Shadden, Lekien & Marsden (2005) define thin ridges of the FTLE as
LCS. For the present flow, the FTLE provides a clear visualisation of the complex
three-dimensional interface between the boundary layer and the vortex core. The
FTLE is particularly useful during the onset of three-dimensionality in the flow, as it
captures the location and evolution of the secondary instability through an alternative
visualisation of the flow field.

3. Flow stages
Dimensional analysis provides two dimensionless groups for the present flow: the

Reynolds number Re=ΩR2/ν and a dimensionless time. Two distinct yet convertible
representations of the dimensionless time are utilised in the following: the viscous
time νt/R2 and the outer time Ωt = Re · νt/R2, where Ωt = 2π represents a full
revolution of the SBR. This section discusses the temporal development of the spin-
down flow at Re= 12 000, before the Re scaling is addressed in § 4.

Figures 4 and 5 provide a first overview of the flow evolution. Roman numbers I–V
and background colouring indicate the different stages of the decay process. While
each stage is characterised by unique features, the transition between stages occurs
gradually and thus cannot be exactly localised in time.

During stage I, a stable, laminar boundary layer grows from the cylinder wall at
a rate proportional to the viscous time scale

√
νt (see figure 4a), while the friction

velocity uτ decreases. Since the increase in boundary-layer thickness outweighs the
decrease in uτ , Reτ increases mildly in time. Figure 4(b) shows the corresponding
evolution of volume-averaged mean and turbulent kinetic energy. As expected, [K]
decreases and the initial random disturbances contained in [k] also decay in the stable
boundary layer. Stage II is characterised by the centrifugal instability associated with
the emergence of Taylor vortices and subsequent breakdown to turbulence. The sudden
increase of uτ and δ99 (and thus Reτ ) is accompanied by the exponential growth of [k].

After transition to turbulence, stage III is entered. In this stage, [k] varies slowly
in time. The flow consists of the superposition of a constantly retracting SBR core
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FIGURE 5. Temporal development of the volume-averaged [K] (2.2) and [k] (2.3) budgets
for the spin-down flow at Re = 12 000: (a) turbulent production [P], mean dissipation
[εm], turbulent dissipation [εt] and total dissipation [εtot]; (b) ratio [εt]/[εm] and excess
production |[P]/[εt]|.

at the centre of the cylinder and a turbulent boundary layer close to the cylinder
wall. The latter is characterised by decreasing uτ and increasing δ99. The beginning of
stage IV is marked by the breakdown of the SBR core, in which turbulent fluctuations
become non-negligible and induce a reduction of 〈uϕ〉 inside the vortex core. Two
distinct phenomena occur during stage IV. First, the breakdown of the SBR core is
accompanied by a sudden increase of δ99 with no discernible effect on uτ or [k].
Then, after the SBR core has been completely eroded by turbulence, [k] and Reτ drop
in time. Finally, the temporal evolution of the flow ends with the viscous decay of
stage V.

Figure 5(a) shows the temporal evolution of [P], [εt] and [εm] during the five stages.
In stage I, energy dissipation is governed by [εm], while very small values of [εt]

indicate the decay of the initial disturbances (figure 5a). At the end of stage I, [P]
begins to increase in time until [P] exceeds [εt], at which point the Taylor rolls emerge
in stage II and yield the fast increase of [k] discussed above. The onset of turbulence
is accompanied by a strong increase of [εt]/[εm] (figure 5b), after which [εt] and
[P] are in equilibrium, yielding the sustained turbulent regime of stage III with only
marginal variation of [k] (figure 4b). Within stage IV the ratio of dissipation [εt] and
production [P] leans towards dissipation and [k] begins to decay. Eventually, the flow
laminarises and the ratio [εt]/[εm] drops significantly while [εtot] ≈ [εm]. This final
stage, which is most evident in figure 5(b), is referred to as stage V.

3.1. Stage I: laminar boundary layer

The laminar stage of the flow, for which u′i= 0 and thus ulam
ϕ =〈uϕ〉, can be described

by the analytical solution of Neitzel (1982)

ulam
ϕ

ΩR
=−2

∞∑
i=1

J1(βir/R)
βiJ0(βi)

exp(−β2
i νt/R2), (3.1)

where J0 and J1 are Bessel functions of the first kind and βi are roots of J1(βi)=0. For
small t, while δ99/R is small and the local curvature is negligible, the present boundary
layer above the concave wall is similar to Stokes’ first problem (e.g. Schlichting 1979).
Thus, for small t, the growth rate of δ99 coincides with the growth rate of the boundary
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FIGURE 6. (a) Critical wavelength λc as a function of Re. Hollow symbols and lines are
experimental data and correlations from the literature mentioned in the legend, respectively.
Green dots denote current results. Note that the values of λc reported by Maxworthy
(1971) and Mathis & Neitzel (1985) have been rescaled by a factor 0.5 due to their
different definition of λc, as noted by Kim & Choi (2006). (b) Temporal evolution of
δ99 and λT(t) for the present numerical simulation compared against the measurement by
Euteneuer (1972) at Re= 12 000.

layer in the vicinity of a impulsively accelerated flat plate (here indicated with the
superscript St),

δSt
99 = aSt

lam

√
νt≈ 3.64

√
νt. (3.2)

However, with increasing δ99/R the growth rate of δ99 in the spin-down problem,
computed exploiting the exact analytical solution (3.1), deviates from δSt

99 due to
curvature effects. The deviation is such that δ99 can be made directly proportional to√
νt, only if the proportionality coefficient alam is a weak function of time.
For simplicity, in the following analyses the growth rate during stage I is

characterised through a constant growth rate coefficient alam, which is determined
via a least square fit of the expression

δ99 ≈ alam
√
νt (3.3)

to the analytical solution for the spin-down process, which yields alam ≈ 3.68. The
approximation of neglecting the temporal variation of alam in (3.3) introduces an error
smaller than 0.01δ99 for 0 < δ99 < 0.28R. The good agreement of (3.3) (black line)
with the numerical results is emphasised in figures 4(a) and 7(a).

3.2. Stage II: emergence of Taylor rolls and laminar-to-turbulent transition
If Re is large enough (the stability limit in the literature varies in the range of
128 < Re < 350), the boundary layer is linearly stable only until a critical time
θc = νtc/R2, after which the boundary layer undergoes linear primary centrifugal
instability. The instability results in the emergence of radial plumes, which later
evolve into Taylor rolls. The plumes occur at a characteristic time-dependent spacing
λT(t) in the axial direction, which at the critical time θc is representative of the
linearly most-amplified axial wavelength, the so-called critical wavelength λc= λT(θc).
For the sake of validation, the values of λc extracted from the present numerical
simulation are compared in figure 6(a) against results obtained in the literature
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FIGURE 7. Temporal history of δ99 and uτ in (a); [K] and [k] in (b); ξϕϕ(κz, t) in (c,d) for
the spin-down flow at Re=12 000. The wavenumber and temporal dependence of ξϕϕ(κz, t)
are colour-coded in (c) and (d) respectively. The vertical dashed lines indicate the four
temporal instances Ωt ∈ {1.0, 2.0, 4.3, 5.3} that are discussed in detail in figure 8. The
vertical dotted line marks the onset of turbulence as visualised in figure 10(a). The vertical
dashed-dotted line in (d) marks the critical wavenumber κc.

via linear stability analyses (i.e. Kim & Choi 2006) and laboratory experiments
(Maxworthy 1971; Euteneuer 1969, 1972; Mathis & Neitzel 1985). In the present
work, λc is measured as the most energetic wavelength of ξϕϕ(κz, θc) (see § 2.4 for
the definition of ξϕϕ) during the early stage of the linear growth and shows excellent
agreement with these existing studies.

Figure 6(b) compares λT(t) computed from the present numerical data against the
experimental results of Euteneuer (1972) at Re= 12 000. Euteneuer (1972) estimated
the critical wavelength by counting the number of toroidal Taylor rolls aligned along
the axial dimension of his experimental set-up. It was found that the rate of change
in the observed number of streamwise rolls changes abruptly. This change in growth
rate was referred to as ‘Knickstelle’, the German word for ‘kink’, the origin of which
will be discussed in the following.

Figure 7 shows the initial evolution of δ99, uτ , [k], [K] and ξϕϕ . The flow
at four selected time instances, marked with dashed black lines in figure 7, is
visualised in figure 8. Figure 8 consists of a pre-multiplied spectrum κzΦuiui , the
1-D spectrum ξϕϕ averaged over the boundary layer and a (r, z)-slice of u′ϕ . The
respective boundary-layer thickness δ99 is depicted with an orange line. The complete
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FIGURE 8. Pre-multiplied 1-D spectra κzΦuiui (left), 1-D spectra ξϕϕ averaged across the
boundary layer (middle) and instantaneous velocity fluctuations u′ϕ (right) during transition
(Re = 12 000). The orange line marks the boundary-layer thickness δ99 (left and right)
and the wavenumber κδ = 2 × 2π/δ99, which would be the most energetic wavenumber
if the streamwise vortices were circular and had diameter δ99. The vertical dashed-dotted
line marks the critical wavelength λc (left) and wavenumber κc (right), respectively. (a)
Exponential growth of primary instability: Ωt = 1. (b) Exponential growth for a broad
range of modes: Ωt = 2. (c) Significant influence of instabilities onto the mean flow:
Ωt= 4.3. (d) Right before onset of secondary instability: Ωt= 5.3.

corresponding temporal evolution is provided in supplementary material Movie1.mp4
available at https://doi.org/10.1017/jfm.2019.974.

During the early linear stage (Ωt = 1, figure 8a) most modes decay and only a
narrow band of axial wavenumbers κz≈ κc is amplified. This is most clearly visible in
figure 7(c), where the temporal evolution of ξϕϕ is reported for relevant wavenumbers.
As the mean velocity profile changes due to the temporal growth of the boundary
layer, the stability properties of the mean velocity profile also change, and so does the
most amplified wavenumber. Already at Ωt=2 wavenumbers κz<κc are amplified and
carry more energy than κc. This temporal change of the most amplified disturbances
are represented in figure 7(d), in which ξϕϕ is reported as function of κz at different
temporal instances distinguishable through colour coding from the start of spin-down
(bright colour) onwards.

Starting from Ωt = 2 the energy of almost all wavenumbers grows exponentially,
leading to increasing [k] (figure 7b), until nonlinear saturation is reached and the
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(a) (b) (c)

(d) (e) (f)

FIGURE 9. FTLE visualisations of the transition process to turbulence at Re = 12 000:
(a) Ωt= 4.3, primary instability; (b) Ωt= 4.8, asymmetric growth of primary instability;
(c) Ωt = 5.3, observable streamwise ends of streamwise vortices; (d) Ωt = 5.8, onset
hairpin-like vortices; (e) Ωt = 6.8, corruption of streamwise vortices; ( f ) Ωt = 7.8, late
transition.

growth stops at Ωt=4.3. At this moment, the initially amplified wavenumbers achieve
their maximum energy content. The fluctuations start to influence the mean profile
〈uϕ〉 and thus δ99, uτ and [K]. The pre-multiplied spectrum Φuzuz shows a distinct
second peak at a radial position close to δ99, marked by an orange line in the left
panels of figures 8(c) and 8(d). The second peak is related to the axial flow at the
head of the radial jets, which starts the formation of plumes and streamwise vortices
by redirecting the radial flow in axial direction. This process is accompanied by a
simultaneous rapid growth of δ99, uτ and [k] (figures 7a and 7b).

The friction velocity uτ reaches its maximum at Ωt = 5.3, right before the
breakdown of this still coherent and quasi-axisymmetric flow through presence
of a secondary instability. This effect will be discussed later in more detail. At this
instance (figure 9e), the plumes are roughly twice as tall in the radial direction than
they are wide in the axial direction, and begin to merge with adjacent plumes towards
restoring an aspect ratio of unity. The sudden merging of consecutive plumes causes
the dominant wavelength λT to shift from the critical wavelength of early linear
primary instability to λT ≈ δ99 (figure 7d). This, together with the rapidly growing
δ99, explains the ‘kink’ observed by Euteneuer (1972). It can be seen in figure 6(b)
that the numerical data reproduce the ‘kink’ around νt/R2

≈ 3.7× 10−4 (Ωt ≈ 4.4).
However, during the later evolution of the flow, large deviations between the present
data and the curve published by Euteneuer exist. These deviations are related to the
onset of the secondary instabilities and breakdown to turbulence, as discussed in the
following.

Eventually, the interaction of the slow fluid transported from the wall with the fast
fluid in the core leads to secondary instabilities, which cause the breakdown of the
quasi-axisymmetric flow patterns formed after the primary centrifugal instability. Two
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FIGURE 10. Pre-multiplied spectra κzΦuiui (left), 1-D spectra ξϕϕ in the boundary layer
(middle) and instantaneous velocity fluctuations u′ϕ (right) during stage III (Re= 12 000).
(a) Turbulent state: Ωt= 9.3. (b) Turbulent state: Ωt= 22.8.

distinct competing mechanisms responsible for the onset of the secondary instability
have been identified in prior studies on concave-wall flows (Saric 1994): the varicose
and the sinuous mode, described in § 1. In order to observe which of the two
mechanisms dominate the onset of secondary instabilities during spin-down, the LCS
in the flow are visualised by means of the FTLE (§ 2.5). Figure 9 and supplementary
material Movie2.mp4 show the temporal evolution of the three-dimensional flow
during transition. Linear amplification of the random disturbances given by the
initial condition (details in § 2.1) results in Taylor rolls that do not cover the whole
circumference of the cylinder. As such, figure 9(a–c) present Taylor rolls with distinct
start and ending points along the circumference. Under the action of shear, the two
ends of the Taylor vortices roll up into hairpin-like vortices (figure 9d), which grow
in time (figure 9e) and eventually lead to a turbulent flow populated by a richer
range of vortical structures (figure 9f ). Note that the detected structures are similar
to FTLE visualisations of an isolated hairpin vortex in a turbulent boundary layer
(Green, Rowley & Haller 2007). Therefore, the varicose mode seems to be the
dominant secondary instability mechanism of the spin-down process.

3.3. Stage III: turbulent regime with intact vortex core
Stage III is entered once the plumes break down into a turbulent flow. The statistical
flow quantities only change slowly and multiple characteristic features co-exist.
Figure 10 shows two time instances at the beginning (figure 10a) and during the
later evolution (figure 10b) of stage III. The radial plumes have merged, leading to
an average axial plume spacing of approximately δ99. Moreover, velocity fluctuations
start to reach outside the boundary layer into the SBR core (figure 10a).

Figure 11 shows 〈uϕ〉 and the mean axial vorticity 〈ωz〉 during stages I–III. The
temporal development is colour coded and the black line depicts the end of the
laminar-to-turbulent transition and the beginning of stage III. As soon as stage III is
entered (Ωt > 9) a region of negligible mean axial vorticity 〈ωz〉 ≈ 0 is established
at radial distances between the near-wall region and the SBR. A region where
〈ωz〉 = 0 implies a spatially constant angular momentum l = l(t) = 〈uϕ〉r and is
thereby equivalent to the marginally stable case of the Rayleigh instability criterion.
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FIGURE 11. Temporal evolution of (a) 〈uϕ〉 and (b) 〈ωz〉 during the stages I–III for the
spin-down at Re = 12 000. The black solid line marks the end of the transition (II) at
Ωt≈ 9. The temporal dependence of 〈uϕ〉 and 〈ωz〉 is colour coded.

This region is well known in other flows on concave walls, such as the TC flow
(e.g. Marcus 1984; Panton 1991; Ostilla-Mónico et al. 2016) and swirling pipe flow
(Kitoh 1991). Recovering the region of spatially constant angular momentum in this
unsteady problem implies that the time scale of self-organisation in the turbulent
boundary layer is significantly smaller than the outer time scale of the temporally
varying mean flow. This is in good agreement with recent laboratory experiments on
unsteady and turbulent TC flow by Verschoof et al. (2018).

Examining the temporal development of the instantaneous value of Reτ during
stage III (figure 4a) shows that the decline of uτ is compensated by the growth of δ99
so that Reτ increases only slightly in time. Therefore, near-wall similarity is expected
when turbulent statistics are normalised in time-varying viscous units, despite the
statistical unsteadiness of the boundary layer. Figure 12(a) reports the mean velocity
profile 〈u+ϕ 〉 at different temporal instances. A clear collapse of 〈u+ϕ 〉 against the
wall-normal distance y+ = (R− r)uτ/ν is visible as soon as stage III is entered. The
approximate logarithmic behaviour

〈u+ϕ 〉 =M log y+ +N (3.4)

is found for y+ > 25, resembling what has been observed for the statistically steady
TC flow, for which the constants M and N are related to the degree of curvature of the
system (see, for example, Lathrop, Fineberg & Swinney (1991); Panton (1991)). This
ratio, here described by δ99/R, varies in time. Interestingly, disregarding the significant
increase of δ99/R during stage III, M and N are observed to be only a function of Re
and do not depend on time.

An even clearer collapse within the boundary layer is obtained for the profiles of
angular momentum

l+ = 〈u+ϕ 〉
r
R
=

l
uτR

(3.5)

in viscous units, as shown in figure 12(b). In addition to being constant throughout
a range of wall-normal distances, l+ is found to be approximately constant in time,
indicating that l∼ uτ during stage III. Profiles of both 〈u+ϕ 〉 and l+ at all values of Re
are reported in the Appendix.
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FIGURE 12. (a) Mean velocity profile 〈u+ϕ 〉 in viscous wall units presented in the form
of the law of the wall. Dotted lines indicate the relationship 〈u+ϕ 〉 = y+ and (3.4) with
M = 1.11 and N = 6.81. (b) Angular momentum l+ = 〈u+ϕ 〉(r/R) in wall units. Two
vertical dashed lines enclose the region of approximately logarithmic behaviour of 〈u+ϕ 〉,
while a third dash-dotted vertical line marks the wall-normal distance up to which the
angular momentum l+ is approximately constant. Results refer to the spin-down flow at
Re= 12 000.
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FIGURE 13. (a) Terms of the K budget equation during stage III at Ωt = 9 and
Ωt = 32 (Re = 12 000, azimuthal velocity profiles plotted in inlay). (b) Terms of the k
budget equation during stage III at Ωt= 9 and Ωt= 32 (Re= 12 000). Two vertical dashed
lines enclose the region of approximately logarithmic behaviour of 〈u+ϕ 〉.

In order to understand the effects of turbulence on the decay of the SBR core,
the terms of the budget equations for K and k (§ 2.2) are studied for an early
(Ωt = 9) and a late (Ωt = 32) phase of stage III. Again, normalisation with the
instantaneous wall units is adopted. Furthermore, the terms are pre-multiplied by the
factor r/R to compensate for curvature effects and by y+ to compensate for the use
of a logarithmic scale (Hoyas & Jiménez 2008). Integrated over the cylinder volume,
all transport terms are zero by definition. The aforementioned pre-multiplication
allows one to capture this property visually in figure 13. As an additional benefit,
this representation highlights the significant contribution of the outermost part of
the boundary layer to the overall development of kinetic energy. Similarly to 〈u+ϕ 〉,
the profiles only collapse in the near-wall region. Figure 13(a) shows the different
terms of the K budget equation. Viscous dissipation εm mainly takes place in the
viscous sublayer and the buffer region. The viscous transport term Vm transfers K
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FIGURE 14. (a) Averaged velocity profiles for different time instances during stage IV
(Re= 12 000). (b) Cumulative contribution A(·) of various terms to the K budget equation
at the time instances shown in figure 14(a). The line markers introduced in the legend of
(a) indicate different time instances.

from the outer buffer layer towards the wall. In the vorticity free region (y+ > 100)
all viscous terms except of εt are negligible and the transport of K and k from the
vortex core towards the buffer region is mainly driven by turbulence (Tt and Tm).
Starting from the buffer region (y+ > 5), k is produced all through the boundary
layer. In the logarithmic region, the sum Ξ = P + εt of production and dissipation
of k tends towards a local excess of dissipation, in contrast to fully developed flat
boundary layers (Mansour et al. 1988). While ε+m is roughly unchanged between the
two exemplary time instances, ε+t increases, implying that the relative contribution
of [εt] to the total dissipation [εtot] increases during stage III. An overview of the
temporal evolution of the statistics shown in figures 11–13 is given in supplementary
material Movie3.mp4.

3.4. Stage IV: vortex-core breakdown and decay of turbulence
Regime III ends with the breakdown of the SBR core and the sudden increase of
δ99 (figure 4a). Figure 14 shows three time instances during stage IV. The region of
constant angular momentum (〈ωz〉≈0) still exists during this flow stage. At the start of
stage IV, 〈uϕ〉 at the interface between SBR and boundary layer is higher than in the
initial condition, as indicated by the dashed circle in figure 4. Eventually, the velocity
profile within the whole SBR core substantially deviates from the initial condition,
as indicated by the solid circle for the time instances Ωt = 90 and Ωt = 170. To
understand how the breakdown of the SBR core occurs, the influence of the different
K transport terms on the flow state at a time t is evaluated. The cumulative influence
A of such terms is derived by integration of the respective term from t= 0 until the
time t under consideration

A(T)=
1

Ω3R2

∫ t

t̃=0
T d t̃, (3.6)

where T is a generic term in the K or k budget equation.
Figure 14(b) shows A for the terms of the K budget equation at the same temporal

instances shown previously in figure 14(a). Both the excess of mean kinetic energy
at Ωt = 35 as well as the decaying core flow can be clearly related to the turbulent
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FIGURE 15. Cumulative contribution A(·) of various terms to the k budget equation at
time instance Ωt= 90 during stage IV (Re= 12 000).

transport term A(Tm). At Ωt= 35 fast fluid from the outer areas of the cylinder has
been transported inwards by turbulent fluctuations, inducing larger 〈uϕ〉 in the SBR at
the interface with the boundary layer. For the decaying core flow the mechanism is
the opposite; A(Tm) transports K from the core and towards the wall. The azimuthal
velocity profile suggests that the boundary layer does not yet reach the core region.
Yet there are enough fluctuations in the core to allow a significant transport of K
(see also figure 10b). To understand how fluctuations reach into the SBR core, A is
also determined for the terms of the k budget equation (figure 15). The influence of
turbulent transport A(Tt) on the propagation of k into the core flow is small. However,
the impact of pressure diffusion A(Π d) is significantly larger and not fully cancelled
by A(εt).

Due to the closed geometry under consideration, the length scale of the boundary
layer δ99 is bounded by the cylinder radius R and tops off with the breakdown of
the vortex core. Moreover, after the transition to turbulence, the wall shear stress and
the friction velocity continuously decrease. As time passes this leads to small Reτ
(figure 4a). While [P]/[εt] is approximately constant and equals unity during stage III
of the spin-down process, the ratio decreases during the later phases of stage IV.
As a consequence also [k] starts to decline (figure 4b) and [εm] becomes the main
contributor to [εtot] (see figure 5b).

3.5. Stage V: relaminarisation

Eventually, 〈k〉 becomes negligible and the flow relaminarises. The temporal evolution
of 〈uϕ〉 during transition from stage IV to V is shown in figure 16(a). The viscous
nature of the flow is highlighted by means of the K budget equation for Ωt= 2400,
shown in figure 16(b). Both P and Tm are negligible compared to the other terms
not involving turbulent quantities. With the decay of turbulence, the flow recovers the
laminar state and 〈uϕ〉 approaches the analytical solution for the laminar flow ulam

ϕ ,
given by (3.1) and visualised as a dashed blue line in figure 16(a). However, the effect
of turbulent dissipation results in a temporal shift ∆T when 〈uϕ〉 is compared with the
corresponding laminar solution ulam

ϕ : 〈uϕ〉(t)= ulam
ϕ (t+∆T). As shown in figure 16(a),

for Re = 12 000 the present solution at time Ωt = 2400 is compared to the laminar
solution at Ωt= 4430, which results in effective temporal shift of Ω∆T = 2030.
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FIGURE 16. (a) Profiles of 〈uϕ〉 in the transition from stage IV to stage V at Re= 12 000.
Blue dashed line depicts the analytical solution of the laminar flow (3.1) for Ωt= 4430,
black dotted line represents the initial SBR. (b) Instantaneous terms of the K budget
equation after re-entering the viscous state V at Ωt= 2400 (Re= 12 000).

4. Effect of Reynolds number
This section discusses the influence of varying Re in the range 3000< Re< 28 000

on the temporal evolution of the flow. First, the Re-scaling of the transition onset
is addressed and compared with classical Taylor–Couette flow in § 4.1. Second, the
Re-dependent effects of transition on the evolution of δ99 are evaluated in § 4.2
before the influence of Re on the evolution of Reτ is discussed in § 4.3. Furthermore,
the scaling of energy decay (both [K] and [k]) is analysed in § 4.4. Eventually,
a Re-independent flow feature is pointed out in § 4.5, that might facilitate future
experimental investigations.

4.1. Critical Taylor number
In TC flow with a gap width d, a resting outer cylinder and a rotating inner cylinder
of radius Ri (angular velocity Ωi) the onset of Taylor rolls typically occurs for a
characteristic Taylor number of

Tatc =
ΩidRi

ν

√
d
Ri
≈ 41.2; (4.1)

see e.g. Fardin et al. (2014). In contrast, the stability of the spin-down flow is usually
described by a critical time θc and a critical wavelength λc. The critical values can be
obtained by stability analysis as performed by Neitzel (1982) and Kim & Choi (2006),
which showed good agreement with present DNS results as reported in § 3.2.

For the sake of comparison between TC and spin-down flow, the critical time θc
of the spin-down problem can also be translated into a Taylor number. Defining the
SBR core as the inner cylinder and δ99 as the gap width, the spin-down Taylor number
results in

Ta=
Ωδ

3/2
99 (R− δ99)

1/2

ν
. (4.2)

Note that different flow events and their respective onset time can be analysed
and related to a Taylor number. Examples include the visual onset of instabilities
(Euteneuer 1972) or the time where the energy of the critical wavelength λc first starts
to increase. However, for the following evaluation, the critical time θc is utilised, that
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FIGURE 17. (a) Temporal evolution of δ99 at different values of Re; δ99 grows
proportionally to

√
νt with the proportionality constant alam during the laminar stage

(stage I) and aturb during the sustained turbulent stage (stage III). (b) Ratio aturb/alam at
different values of Re. A least-squares fitted power law is indicated by the dashed line.

was obtained by the propagation theory of Kim & Choi (2006). Here, θc is the point
in time at which the energy growth rate of the most amplified disturbance is larger
than the energy decay rate of the base flow. Its Re-dependence can be approximated
by

θc =
νtc

R2
= 9.4Re−4/3, (4.3)

if Re is large enough. Equation (4.3) is inserted into the approximate expression for
δ99 (see (3.3)) to provide the critical boundary-layer thickness δc ≈ 11.28R · Re−2/3,
which plugged into (4.2) leads to the critical Taylor number

Tac ≈ 37.9

√
R− δc

R
= 37.9

√
1− 11.28Re−2/3. (4.4)

Thus, similar to TC flow also for the spin-down problem a Taylor number Tac can be
formulated, that is related to the onset of Taylor rolls. Tac tends to the constant value
37.9 for Re→∞.

4.2. Boundary-layer thickness δ99

Figure 17(a) presents the evolution of δ99 for different Re. The value of δ99 collapses
for all Re during the laminar stage if time is expressed in units of νt/R2. The
thickness of the laminar boundary layer grows as described by (3.3) proportionally to√
νt with a proportionality constant alam≈ 3.68, until Taylor rolls start to emerge. The

onset of Taylor rolls happens at an earlier time and thus at lower value of δ99 with
increasing Re. During stage II the fast increase of δ99 is related to the growth of radial
plumes as discussed in figure 8(d) in § 3.2. Subsequently, the growth of the plumes
becomes nonlinear and eventually ceases. Secondary instabilities appear and initiate
the breakdown to turbulence. Also in the turbulent flow of stage III the boundary
layer grows approximately proportionally to

√
νt (figure 17a), albeit with a different

and Re-dependent proportionality constant aturb = aturb(Re). The ratio aturb/alam is
plotted in figure 17(b) for different values of Re. Utilising the present results, the
ratio of these two quantities can be linked to Re by the empirical correlation

aturb/alam = 0.1Re1/3. (4.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.974


Stages of vortex decay in an impulsively stopped cylinder 885 A6-23

101 103100 102

102

101

Øt

Re
† =

 u
†∂

99
/˜

I II III IV V

Re = 3000
Re = 6000

Re = 12 000
Re = 28 000

FIGURE 18. Temporal development of Reτ . Roman numbers I–V and the background
highlight the different stages of the decay.

4.3. Friction Reynolds number Reτ
Figure 18 shows the temporal history of Reτ for each value of Re considered in the
present study. As expected, larger peak values of Reτ correspond to larger values of
Re. For the same total energy of the initial perturbations, a larger Re leads to an earlier
onset of the primary centrifugal instability, so that stage II is entered at an earlier time,
which also yields a smaller value of δ99. For the two smallest values of Re considered
in the present work, the simultaneous increase of δ99 and decrease of uτ result in an
almost constant value of Reτ during the boundary-layer growth with an intact vortex
core in stage III. For larger values of Re, however, the growth of δ99 increasingly
outweighs the decrease of uτ , resulting in a mild increase of Reτ during phase III. The
breakdown of the vortex core, which marks the beginning of stage IV and the related
sudden increase of δ99, is associated with the peak values of Reτ for all considered
values of Re. This is a consequence of the boundary-layer thickness being bounded
by the cylinder radius (δ99/R= 1) and the monotonically decreasing uτ .

4.4. Decay of mean and turbulent kinetic energy
The decay of [K] and [k] at different Re is shown in figure 19. The data are
normalised by the volume-averaged total kinetic energy of the initial condition
[K0] = [K](t= 0)= 1/4, which is identical for all considered Re. The temporal
evolution of [K] and [k] are presented with a logarithmic (figures 19a and 19c) and
a linear time scale (figures 19b and 19d) to emphasise the early and the later stages
of the decay, respectively. Different non-dimensional time units are used, which are
related by Ωt= Re · νt/R2.

The larger the value of Re, the slower the decay of [K] in units of Ωt, due to the
expected less dominant role of viscosity; see figure 19(a). There is a clearly noticeable
increase in the decay rate (i.e. the negative slope) of [K] when Taylor rolls emerge
and the flow transitions to turbulence during stage II. Towards the end of stage III the
decrease of [K] follows a logarithmic decay for all cases, which can be described by

f III
[K](Re, t)=−h[K] · log(Ωt)+ g[K](Re), (4.6)

where h[K] is constant and g[K](Re) depends on Re. The fact that the logarithmic decay
of (4.6) is either approached from larger (low Re) or lower (high Re) values of [K]
is best understood by considering the temporal evolution of [k] shown in figure 19(c).
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FIGURE 19. Temporal development of (a,b) [K]; and (c,d) [k] at different values of Re
(colour coding as in figure 18). Roman numbers I–V and the background highlight the
different stages of the decay.

Note that the initial decrease of [k] before the onset of primary instability, which was
previously discussed in the context of figure 4(b), is not visible here due to the linear
scale. For all considered values of Re, the emergence of Taylor rolls with the primary
instability yields the visible strong increase of [k] and results in the peak of [k] at
the end of stage II. In particular, the peak of [k] is larger for lower values of Re, due
to the larger radial extent of the Taylor rolls before secondary instabilities occur. In
fact, the larger the size of the Taylor rolls, the larger the amount of kinetic energy
the Taylor rolls can extract from [K] and redistribute into [k] in form of streamwise
vortices. Therefore, a faster decay of [K] at the beginning of stage III is observed for
lower Re, until the logarithmic decay of (4.6) is approached at approximately Ωt= 20.
The value of [k] grows slowly during stage III for all Re considered in the present
study. Yet the growth is more pronounced for the larger Re cases. As a result, except
at Re = 3000, the global maximum of [k] is not given by the peak of stage II but
occurs later on during stage III. The relative importance of the two mechanisms of
[K] conversion, via the initial Taylor rolls and via turbulence, determines how the
logarithmic decay of [K] (4.6) is approached; see figure 19(a).

The decay of [k] during the late portion of stage IV exhibits an exponential
character as shown in figure 19(d). The decay can be described by

f IV
[k] (Re, t)= g[k](Re) · exp(−h[k] · νt/R2), (4.7)

where h[k] is constant and g[k](Re) depends on Re. Once [k] is small enough, a laminar
velocity profile ulam

ϕ is recovered; see § 3.5. This leads to the collapse of the data with
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FIGURE 20. (a) Velocity profiles 〈uϕ〉 at different values of Re (colour coding as in
figure 18) are compared against the velocity profile of a Rankine vortex uran

ϕ . The
irrotational part of uran

ϕ is chosen to match the angular momentum l of the 〈ωx〉≈0 portion
of 〈uϕ〉. Temporal instants corresponding to three different values of l ∈ {l1, l2, l3} are
indicated with a subscript. Insets show close ups of the regions, where uran

ϕ deviates most
significantly from 〈uϕ〉. (b) Temporal evolution of [K] at various Re for the actual 〈uϕ〉
profile (solid line) and its Rankine-vortex approximation [K]ran (dashed lines).

the kinetic energy of the laminar solution

[Klam] =
1

2VΩ2R2

∫
V
(ulam
ϕ )2 dV (4.8)

in stage V , if the latter is shifted by a Re-dependent ∆T =∆T(Re) (see figure 19b),

f V
[K] =

[Klam](t+∆T(Re))
[K0]

. (4.9)

Note that the decay of [Klam] and as such also of [K] is approximately exponential
for large t (see (3.1)).

4.5. Rankine-vortex analogy
For all investigated Re, three distinct regions can be distinguished in the radial profile
of 〈uϕ〉 during stage III: the region of SBR, the region of spatially constant angular
momentum (〈ωz〉 = 0, l= l(t)) and the shear layer at the wall. These are visualised in
figure 20(a). The two innermost regions of the 〈uϕ〉 profile are well approximated by
a Rankine vortex

〈uran
ϕ 〉(l, r)
ΩR

=

{
Ωr ∀ r 6

√
l/Ω

l/r ∀ r>
√

l/Ω,
(4.10)

with angular momentum l in its irrotational portion chosen to match the 〈ωx〉 ≈ 0
portion of 〈uϕ〉.

Rankine vortices at three different values of l= li are presented in figure 20(a). At
each value of li a matching time instance is selected for each of the four investigated
Re. As expected, the velocity profiles almost collapse. Only near the wall and at the
interface between the region of SBR and 〈ωz〉 = 0 the profiles differ (see close ups in
figure 20a). With increasing Re, the error made by the Rankine-vortex approximation
decreases, as shown exemplarily for [K] and its approximation [K]ran estimated with
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(4.10) in figure 20(b). This bears particular potential for experimental investigations,
as now 〈uϕ〉 and the connected quantities (i.e. angular momentum and K) can be
estimated by determining the temporal velocity development 〈uϕ〉(r1, t) at a single
radial position r1 inside the region of constant angular momentum.

5. Conclusions
In the present work, we present the first DNS results for a complete spin-down

process, which occurs when the rotation of an infinitely long cylinder containing fluid
in SBR is suddenly stopped. The generated data, which cover almost a decade of
Reynolds numbers up to Re= 28 000, allow for the observation of five different flow
stages (I–V) during the decay of the initial SBR, each entailing its own characteristic
phenomena. The following describes these five stages:

(I) In the first stage of spin-down a laminar boundary layer, similar to Stokes’ first
problem, grows at the cylinder walls.

(II) The formation and merging of Taylor rolls following linear and nonlinear growth
of a primary centrifugal instability is the characteristic phenomenon of stage II.
This causes a fast increase in boundary-layer thickness δ99, which is associated
with a simultaneous shift of the dominant axial wavelength in the energy
spectra. The subsequent transition to turbulence, initiated by secondary shear
instabilities, is analysed by means of LCS. Hereby, the streamwise endpoints
of the elongated streamwise vortices (Taylor rolls) are identified as the origin
of evolving hairpin-like vortices and thus as the nucleus of transition. Larger
values of the global Reynolds number Re are associated with earlier transition
and smaller wavelengths of the primary instability. As such, the maximum of
kinetic energy accumulated in the Taylor rolls decreases with increasing Re.

(III) Once transition to turbulence is completed, the boundary-layer flow is turbulent
while the retracting SBR vortex core is still intact. Therefore, the flow resembles
turbulent TC flow between two concentric rotating cylinders, in which the inner
cylinder in TC flow represents the SBR core in the present case. However, the
unique feature of the present flow is that the radius of the SBR core varies in
time, due to the growth of the boundary layer. In addition, turbulent fluctuations
are allowed at the interface with the SBR core, whereas in TC flow a no-slip
condition exists at the inner cylinder.
Interestingly, in the investigated Reynolds number range, δ99 still grows at the
laminar growth rate

√
νt, albeit with a different constant of proportionality.

The simultaneous increase of δ99 and decrease of uτ lead to a negligible
temporal variation of Reτ and thus to a collapse of turbulence statistics in
the near-wall region. In addition, the outer boundary layer organises as dictated
by the marginal stability criterion (Rayleigh 1917). A slowly growing region
of constant angular momentum l= uϕr forms, so that the mean velocity profile
is well approximated by an appropriately defined Rankine vortex. It is found
that the angular momentum l+ = (r/R)〈u+ϕ 〉 in viscous units is constant in time.
Similarly, the constants M and N describing the logarithmic behaviour of 〈u+ϕ 〉
do not vary significantly during stage III, despite significant changes of the local
curvature δ99/R in the boundary layer. During stage III and the early stage IV a
logarithmic decay of [K] is observed.

(IV) Eventually, the SBR core breaks down. Applying a temporal integration of k
and K budget equations, the mechanism behind the core breakdown is identified:
the pressure diffusion term Πd transports fluctuations into the core region.
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These fluctuations in turn transport K from the core into the boundary layer
(term Tm). Towards the end of stage IV turbulent dissipation εt overtakes its
production P and [k] starts to decrease exponentially.

(V) As [k] diminishes, laminar flow is recovered and the velocity profile collapses
with the analytical solution (Neitzel 1982). The net effect of transition and
turbulence can be lumped into a single parameter, namely the temporal shift
Ω∆T that needs to be added to the laminar solution in order to match the
velocity profile of the actual flow.

While the present analysis is limited to a first overview of the observed flow
regimes, many questions about the spin-down process remain that should be addressed
in future works. For instance, the Re scaling of the primary instability should be
further investigated. Very high Re values result in small δ99/R during the growth
of the primary instability, and thus a diminishing influence of curvature. In TC
flow the narrow-gap limit with negligible curvature converges towards the linearly
stable Couette flow. However, for the present spin-down case, Stokes’ first problem
is approached when δ99/R is very small during transition. As such, for very large
Re, Tollmien–Schlichting waves (Luchini & Bottaro 2001) could originate before or
simultaneously with the centrifugal instability.

In § 3.2 the corruption of the primary centrifugal instability by secondary
instabilities has been speculated to be related to non-axisymmetric Taylor rolls.
This hypothesis could be further validated by enforcing the development of perfectly
toroidal Taylor rolls, achievable via axisymmetric initial conditions.

Furthermore, during the turbulent stage III, the similarity with TC flow suggests
that models formerly applied to predict the torque scaling could also be extended
to spin-down. Friction laws similar to the ones proposed by Panton (1991), Lathrop
et al. (1991) could be derived by leveraging the fact that l+, M and N are temporally
invariant and 〈uϕ〉 is well modelled by a Rankine vortex. The analogy between
TC flow and RB convection put forward by Eckhardt, Grossmann & Lohse (2007)
could be extended to the present, statistically unsteady flow, in order to predict the
dependence of uτ and δ99 on Re and time.

As visualised via LCS in § 3.2, the turbulent non-turbulent interface (TNTI) in
spin-down separates a growing turbulent boundary layer from a rotational retracting
SBR core with negligible turbulent fluctuations. The presence of vorticity in the
non-turbulent volume (see sketch in figure 2d) is a distinctive feature of TNTI in
spin-down compared to other flows (da Silva et al. 2014), where the non-turbulent
region is irrotational. Therefore, spin-down presents itself as an interesting canonical
flow to assess the role of vorticity annihilation in the propagation of TNTI.
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Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2019.974.

Appendix. The Re-scaling in stage III
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FIGURE 21. (a,c,e) Mean velocity profile 〈u+ϕ 〉 presented in the form of the law of the
wall. Dotted lines indicate the relationship 〈u+ϕ 〉 = y+ and equation (3.4). (b,d, f ) Angular
momentum l+ = 〈u+ϕ 〉(r/R) in wall units. Two vertical dashed lines enclose the region of
approximately logarithmic behaviour of 〈u+ϕ 〉, while a third, dash-dotted vertical line marks
the wall-normal distance up to which the angular momentum l+ is approximately constant.
Results refer to the spin-down process at (a,b) Re= 3000, (c,d) Re= 6000 and (e, f ) Re=
28 000.

Figure 21 presents the logarithmic near-wall region of the azimuthal velocity profile
(figure 21a,c,e) and the region of constant angular momentum (figure 21b,d, f ) for
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the remaining simulations not shown in figure 12: Re ∈ {3000, 6000, 28 000}. Higher
Re values result in larger values of uτ and thus in a wider spatial extend of both
the logarithmic region as well as the region of constant angular momentum. While
collapsing during stage III for the individual simulations, the constants M and N of
the logarithmic region (3.4) as well as the normalised angular momentum l+ (3.5) vary
for different Re.
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