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Computing overconvergent forms for small primes

Jan Vonk

Abstract

We construct explicit bases for spaces of overconvergent p-adic modular forms when p = 2, 3
and study their interaction with the Atkin operator. This results in an extension of Lauder’s
algorithms for overconvergent modular forms. We illustrate these algorithms with computations
of slope sequences of some 2-adic eigencurves and the construction of Chow–Heegner points on
elliptic curves via special values of Rankin triple product L-functions.

Introduction

Overconvergent modular forms provide us with an important tool for understanding p-adic
variation of modular forms and their associated Galois representations as a function of the
weight. The theory was first systematically developed by Katz [13] and has since played a
prominent role in number theory.

Many results in [13] require the existence of a lift of the Hasse invariant to Zp. In this
note, we extend some of these results to situations where such a lift does not necessarily exist.
This gives us a way to extend known algorithms and their applications to include the cases
where p is 2 or 3. The outline is as follows. In § 1, we construct an explicit basis for spaces
of overconvergent forms. As a result, we obtain a Zp-lattice which we compare to the one
considered in [13]. In § 2, we present a number of applications of these results by removing the
restriction p > 5 from both Wan’s quadratic bound for the Gouvêa–Mazur conjecture [17] and
Lauder’s algorithms for computing characteristic series for Up and constructing Chow–Heegner
points on elliptic curves [14, 15].

1. Explicit bases and lattices

In this section, we will construct explicit bases for r-overconvergent forms for any prime p,
removing the restriction p > 5 from [13, Proposition 2.6.2]. We then study how Up interacts
with the lattice corresponding to the natural supremum-norm on the given basis.

Definitions 1. Let p be a prime and K a finite extension of Qp with valuation vp,
normalised such that vp(p) = 1, and valuation ring R. The pair (E,n) is defined to be (Ep−1, 1)
when p > 5, (E4, 4) when p = 2 and (E6, 3) when p = 3. Here Ek is the Eisenstein series of
level 1 and weight k. Note that E is a lift to Zp of the nth power of the Hasse invariant;
see Remark 2. Let X → Spec(Zp) be the compactified modular curve of level Γ = Γ1(N)
for N > 5 coprime to p, with generic fibre X. Let C be the closed subscheme of cusps on
X and π : U → X the universal generalised elliptic curve with Γ-level structure. On X ,
define the invertible sheaf ω := π∗Ω

1
U/X (log π−1C), so that E is a global section of ω⊗n(p−1).

As in [5, § 1], we can define a rigid subspace Xr of Xrig for every r ∈ Cp whose points are
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exactly those x such that vp(Ex) 6 vp(r
n). We define the space of r-overconvergent modular

forms of integer weight k on Γ to be M†,rk := H0(Xr, ω
⊗k).

Remark 1. We can make similar definitions for arbitrary congruence subgroups Γ. The
computations in § 2 are for Γ0(N). The justification lies in the fact that the arguments
below continue to hold if one considers the coarse moduli scheme X0(N) over Zp instead,
working with the line bundles ωk as in [16, Lemma II.4.5]. A very careful analysis is given
in [3, Appendix].

Remark 2. We chose a particular value for n for every prime, but everything continues to
hold mutatis mutandis for n an arbitrary power of p. For computational purposes, one will want
to choose the smallest possible n that ensures the existence of a level 1 lift, as we did above.

1.1. Explicit bases

We will now attempt to find an explicit basis for M†,rk . As explained in [5, § 1], we
can obtain Xr as the Raynaud generic fibre of the completion along the special fibre of
SpecX(Sym(ω⊗n(p−1))/(E − rn)). By reducing to the case of the open modular curve, which
is affine, the analysis of the Leray spectral sequence in [13, Theorem 2.5.1] shows that we can
pull out the ideal and obtain

M†,rk = H0(X,ω⊗k ⊗ Sym(ω⊗n(p−1)))/(E − rn). (1.1)

Having this concrete description in hand, we now attempt to eliminate the relation E = rn by
investigating the map given by multiplication by E on modular forms as in [13, Lemma 2.6.1].
The proof is nearly identical.

Lemma 1.1. Let k 6= 1; then the injection given by the multiplication by E-map

H0(X , ω⊗k)
×E−→ H0(X , ω⊗k+n(p−1))

splits as a map of Zp-modules.

Proof. The result is clear for k 6 0. For k > 2, we have H1(X , ω⊗k) = 0 by computing the
degree of ω as in [13, Theorem 1.7.1]. We obtain the short exact sequence

0→ H0(X , ω⊗k)
×E−→ H0(X , ω⊗k+n(p−1)) −→ H0(X ,F)→ 0,

where F is the quotient sheaf. This sequence remains exact after tensoring with Fp. Indeed,
F is flat over Zp as E is not identically 0 in the special fibre and, since F is a skyscraper sheaf
over Fp, it follows that H1(XFp ,FFp) = 0 and hence

Supp R1f∗F = ∅,

where f : X → Spec(Zp) is the defining morphism for X . We conclude that H0(X ,F) is a free
Zp-module, from which the conclusion follows.

For every i > 0, use the above lemma to choose generators {ai,j}j for a complement

of the submodule E · H0(X , ω⊗k+(i−1)n(p−1)) inside H0(X , ω⊗k+in(p−1)). This choice is not
canonical, but we will fix it once and for all in what follows. By running through the proof
of [13, Proposition 2.6.2], one can check that the following theorem is a direct consequence of
equation (1.1) and Lemma 1.1.

Theorem A. The set {rniai,jE−i}i,j is a basis for the p-adic Banach space M†,rk .
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Remark 3. Note that we have avoided the case k = 1, as the standard base-change
results are known to fail for many levels. However, in all our applications we can get the
required result in weight 1 by a simple application of Frobenius linearity of Up in the sense of
[6, equation (3.3)], hence reducing the question to one in higher weight for which the results
above hold. See also [14, § 2.2].

1.2. Comparing lattices

We now have two integral structures on M†,rk . The first, which we will call BH(r), is the one
defined by Katz [13, § 2.2] using the interpretation of modular forms as certain rules on test
objects. It has the advantage of being well suited for analysing its interaction with various
operators. It has the disadvantage of only being explicit (in the sense of Theorem A) when
a lift of the Hasse invariant to Zp exists. The second, which we will call BE(r), is simply
the collection of forms that have integral coordinates with respect to the chosen basis from
Theorem A. It has the advantage of being explicit and computational, but the disadvantage
of being non-canonical and hence having a rather mysterious interaction with Up. We will now
attempt to compare BH and BE , in order to get the best of both worlds.

Lemma 1.2. Assume that there exists a lift H of the Hasse invariant to Zp; then we have

rn−1BH(r) ⊆ BE(r).

Proof. Fix a choice of complementary subspaces for both E and H as above. Let f ∈ BH(r);
then by Theorem A we can write f =

∑
i>0 r

iaiH
−i, where ai is in the ith complementary

subspace for H. We rewrite this as

f =
∑
i>1

n−1∑
j=0

rni−jani−jH
−(ni−j) =

∑
i>1

rniH−ni
(n−1∑
j=0

r−jani−jH
j

)
. (1.2)

The inner sum in the above expression is guaranteed to be in H0(X , ω⊗k+ni) when multiplied by

rn−1. We can decompose this multiple as
∑i
m=0 bmE

m, where bm is in the mth complementary
subspace for E. Recall that n is a power of p, from which we get E ≡ Hn(mod pn). If we
substitute all this into (1.2), we obtain that rn−1f ∈ BE(r), as desired.

With the aid of this lemma, we now investigate the interaction of our explicit lattice BE
with the operators Up and multiplication by G := E/VpE, where Vp is the Frobenius operator
defined in [5, § 2]. Both operators will play a crucial role in the applications.

Theorem B. Let vp(r) < 1/(p+ 1); then we have

rn−1pUp(BE(r)) ⊆ BE(rp) and G · BE(r) ⊆ BE(r).

Proof. Assume first that there exists a lift of the Hasse invariant to Zp. The first statement
follows immediately from Lemma 1.2 and the inclusion

pUp(BH(r)) ⊆ BH(rp),

which is [11, Proposition II.3.6]. For the second statement, we will use that G ≡
1(mod prn−p−2) when vp(r) < 1/(p + 1). For p > 5, this is exactly [17, Lemma 2.1]. For
p 6 3, we can check this directly from the formulae in [4, § 3, p. 212]. It follows that

G · BE ⊆ BE + rn−1BH ⊆ BE .

If no lift of the Hasse invariant to Zp exists, add two additional level structures that both
ensure existence and intersect trivially; see [5, § 6] and [6, §B2]. The result now follows from
taking intersections on the level of Katz expansions.
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2. Applications

We now sketch how Theorems A and B enable us to generalise previous work in the literature
due to Wan [17], Lauder [14] and Darmon et al. [8]. We work with Γ = Γ0(N) for
computational simplicity when appropriate; see Remark 1.

2.1. The Gouvêa–Mazur conjecture

An enormous amount of arithmetic information is encoded in the slopes of overconvergent
modular forms, which are the valuations of their Up-eigenvalues. One of the consequences of
the theory of Coleman [6] is that for any α > 0, there exists a smallest integer Nα with the
following property: if k1, k2 ∈ Z are such that k1 ≡ k2 mod pNα(p − 1), then the collection
of slopes 6α in weights k1 and k2 agree, with multiplicities. Gouvêa and Mazur [12, p. 797]
conjectured that Nα 6 bαc, to which a counterexample was given in [2]. However, Wan [17]
exhibited an explicit quadratic upper bound for Nα, depending on p and the level, provided
p > 5. We will now remove this restriction on p.

Wan’s analysis relies on a good knowledge of an explicit basis, along with an understanding
of how Up and G act on the integral lattice. This is exactly the content of Theorems A and B,
making the proof a straightforward adaptation of the methods in [17]. We estimate the size

of the coefficients of the characteristic series Pk(t) of Up on the space M†,rk . This is done by
analysing the entries of the matrix of Up on the Katz basis. After twisting Up by E, Theorem B
enables us to do this uniformly with respect to variations of the weight.

Notation. Choose generators au,v for the uth complementary subspace, giving rise to a Katz

basis eu,v = rnuau,vE
−u. Multiplication by Ej defines an isomorphism M†,rk →M†,rk+jn(p−1), so

we conclude by an application of Frobenius linearity of Up [5, equation (3.3)] that Pk+jn(p−1)(t)

equals the characteristic series of Up ◦Gj on M†,rk , where we recall that G = E/VpE. We write

U ◦Gj(eu,v) =
∑
w,z

Aw,zu,v (j)ew,z

for some Aw,zu,v ∈ K. The following lemma estimates the size of these numbers, independently
of j.

Lemma 2.1 (cf. [17, Lemma 3.1]). We have

vp(A
w,z
u,v (j)) > wn(p− 1)vp(r)− 1− vp(r)(n− 1).

Proof. It follows from Theorem B that

U ◦Gj(eu,v) =
1

rn−1p

∑
w

rnpw

Ew
bw(u, v, j) =

1

rn−1p

∑
w

rn(p−1)w
rnw

Ew
bw(u, v, j),

where bw(u, v, j) is in the jth complementary subspace, and hence an integral combination of
the aw,z. This gives us the desired bound on Aw,zu,v (j).

The key observation is that the above lower bound is independent of j. After taking
determinants, we obtain a lower bound on the coefficients of Pk+jn(p−1)(t), again independent
of j. Wan now proceeded by proving a very general reciprocity lemma on Newton polygons,
which allowed him to transform the lower bound for Pk(t) into an upper bound for Nα.
The analysis goes through without modifications and, using Wan’s results, we deduce from
Lemma 2.1 the following result.

Theorem 2.2. There is an explicitly computable quadratic polynomial P ∈ Q[x], depending
only on p and the level, such that Nα 6 P (α).
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2.2. Buzzard’s slope conjectures

Using the explicit bases for M†,rk in [13] and the p-adic estimates in [17, Lemma 3.1], Lauder
presented an algorithm to compute the characteristic series of Up when p > 5 [14]. By an
application of Coleman’s trick [5, equation (3.3)], it is particularly useful when k becomes
very large. Given the theory above, it is straightforward to remove the restriction on p. The
code for our extension to small primes can be found on the author’s web page. In what follows,
we will explicitly compute some examples. All computations took no more than a few minutes
on a standard laptop.

In [1], Buzzard made very precise conjectures on the sequence of slopes for M†,rk on
Γ0(N), and gave a precise conjectural recipe when p is Γ0(N)-regular. This is a condition
which essentially ensures that the slopes at small weights are as small as Hida theory allows
them to be. For a precise definition and a reformulation in terms of Galois representations,
see [1, § 1].

Example 1. We compute that the first few slopes of U3 acting on M†278(Γ0(41)) are

012,114,348,614,722,86,922,1014,1248,1414,1622,176,1822, . . . ,

where the subscripts denote multiplicities. We check that 3 is Γ0(41)-regular, and that the
slopes agree with Buzzard’s prediction. Note that this slope sequence equals the one in weight
8 for all the terms we display here, suggesting a very strong form of the Gouvêa–Mazur
conjecture.

Example 2. To illustrate a case where regularity fails in a striking way, we compute
the first few slopes of U2 acting on M†10(Γ0(89)), where as before the subscripts denote
multiplicities:

016,122,222,14/55,31,468,9/24,61,31/55,722,822,930,1022,21/216,1252, . . . .

The appearance of denominators as large as 5 does not seem to have been recorded before.
Note that by Coleman’s classicality criterion [5, Theorem 6.1], the overconvergent forms giving
rise to these denominators are in fact even classical.

Example 3. A more systematic computation of 2-adic overconvergent forms of levels Γ0(53)
and Γ0(61) suggests a remarkable relationship between the corresponding eigencurves, for
which we have no explanation. The table below lists the first few entries of the 2-adic slope
sequences in weights 14 and 16.

k = 14

Γ0(53) 010,113,223,413,659,913,1123,1213,1318,1413,29/210,1618,1713,1823,2113, . . .
Γ0(61) 012,115,225,415,669,915,1125,1215,1322,1415,29/210,1622,1715,1825,2115, . . .

k = 16

Γ0(53) 010,113,3/210,331,17/33,61,767,15/22,91,28/33,1231,27/210,1413,1518,1613, . . .
Γ0(61) 012,115,3/210,337,17/33,61,778, 81 ,91,28/33,1237,27/210,1415,1522,1615, . . .

This computation was carried out to a large precision, and for a much larger range of
weights. We chose to include the start of the sequence for k = 14, 16, as it illustrates the
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general behaviour rather well. The set of slopes, without multiplicities, seems to agree for both
levels in all weights, with the exception of a small deviation. This deviation, if it occurs, seems
to come from the 2-stabilisations of the largest classical cuspidal slope of level N .

Remark 4. Example 3 is akin to the examples given in [1, Consequence 4.6], where the
5-adic slopes in levels Γ0(6),Γ0(8) and Γ0(30),Γ0(40) are observed to coincide for all weights,
even with multiplicities.

2.3. Chow–Heegner points on elliptic curves

We will now use our results to explicitly perform some Heegner-type point constructions on
elliptic curves, following the theory in [9] and the algorithm of [15], which was conditional on
p > 5.

Let p be a prime and E/Q an elliptic curve of conductor N , associated to the p-ordinary form
f ∈ Snew

2 (Γ0(N)), and let g be any other weight 2 newform which is p-ordinary. As explained
in [15, § 1], we can deduce from [9, Theorem 1.3] that there exists a point Pg ∈ E(Q) such
that

log(Pg) = 2dg ·
E0(g)E1(g)

E(g, f, g)
· Lp(g, f ,g)(2, 2, 2), (2.1)

where log denotes the formal p-adic logarithm on E, dg is an integer described in
[7, Remark 3.1.3], the E-factors are computable quadratic numbers depending only on the
pth coefficients of f and g described in [9, Theorem 1.3] and Lp(g, f ,g) is the Rankin triple
product p-adic L-function associated to the Hida families f ,g through f, g, respectively.

The crux in computing the special value of the Rankin triple product p-adic L-function
is the efficient computation of the Up-operator on the space M†,rk . The previous subsection
removed the restriction p > 5 from the algorithm in [14] to compute this action, and it
is now straightforward to compute the desired special value of the Rankin triple product
p-adic L-function, as described in detail in [15]. We have implemented a version in Magma that
works for all p, which is available on the author’s web page. Let us turn to some numerical
examples.

Example 4. Let E : y2 + xy = x3− x2− x+ 1 be the rank 1 elliptic curve of conductor 58,
with associated newform f , and let g be the unique newform on Γ0(58) different from f . Both
f and g are 2-ordinary. Letting P = (0, 1) be a generator for E(Q), we compute that

L2(g, f ,g)(2, 2, 2) ≡ 3 logE(P ) (mod 2200),

as predicted by the theory in [9].

Remark 5. When the Tate module of EQ is wildly ramified at 2 or 3, we might wonder
whether the Chow–Heegner point construction just described continues to work. The associated
newform f will be of infinite slope, so we lack a notion of Hida or Coleman family passing
through f . It is therefore not obvious whether the theoretical framework of [9] will generalise
to such a setting. Nonetheless, we are often able to run our extension of Lauder’s algorithms
[14, 15], and recover a rational point on E, as the following examples show.

Example 5. Let E : y2 + y = x3 + 9x− 10, which is an elliptic curve over Q of conductor
4617 = 35 · 19 and rank 1. Let f be the associated newform. Let g = q − 2q3 − 2q4 + 3q5 −
q7 + . . . be the unique cuspidal newform of weight 2 on Γ0(19). Despite f being of infinite
3-adic slope, we can run the computation and find a numerical value for L2(g, ‘f ’,g)(2, 2, 2).
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We find that

L3(g, ‘f ’,g)(2, 2, 2) ≡ t · logE(P ) (mod 3200), where 2t2 + 48t+ 729 = 0,

where P = (4, 9) is a generator of E(Q). The fact that both quantities are related by a
quadratic number t of small height suggests that a more general analogue of the theory for
ordinary forms in [9], and more specifically equation (2.1), might exist.

Example 6. Let E : y2 = x3 + x2 − 62 893x − 6 091 893, which is an elliptic curve over
Q of rank 1 and conductor 15 104 = 28 · 59. Let f be its associated newform, and let g =
q − q2 − q3 + q4 − 3q5 + . . . be the newform of level 118 associated to the elliptic curve with
Cremona label 118.a1. Note that g is 2-ordinary. We compute that

L2(g, ‘f ’,g)(2, 2, 2) ≡ 6 logE(P ) (mod 2100),

where P = (20 821, 3 004 216) is a generator of E(Q). As in the previous example, this
suggests that an analogue of equation (2.1) holds for f of infinite slope. Note that this would
work the other way: once we compute the value of L2(g, ‘f ’,g)(2, 2, 2), we can use a formal
exponentiation routine as in [15] to recover a point of infinite order, which is of considerable
height in this example.

Remark 6. Chow–Heegner points have a well-understood geometric origin and can also be
constructed by complex analytic methods; see [7, 10]. For an application of triple product
p-adic L-functions, and the methods in this paper, to the p-adic construction of points in more
mysterious settings, we refer the reader to [8].
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