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Abstract. This is a sketch of a 321D approximation which is nonlocal, and thus has nonzero
fluxes of KE (to be published in more detail elsewhere). We plan to add this as an option to
MESA. Inclusion of KE fluxes seems to help resolve the solar abundance problem (Asplund et al.
2009). Smaller cores may ease the explosion problems with core collapse supernova simulations.
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1. Introduction
Stars are three dimensional (3D), turbulent plasma, and much more complex than the

simplified one dimensional (1D) models we use for stellar evolution. Computer power is
inadequate† at present for adequately resolved (i.e., turbulent) 3D simulations of whole
stars. In his review talk, Meakin (2015) has illustrated this complexity and shown how it
may be tamed by use of 3D simulations and Reynolds-Averaged Navier-Stokes (RANS)
equations.

A minimalist, more approximate step may be easier to implement in stellar evolution-
ary codes, and instructive for the closure problem. Formally, the RANS equations are
incomplete unless taken to infinite order; they must be closed by truncation at low order
to be useful. This may be due to the nature of the Reynolds averaging, which allows all
fluctuations rather than restriction only to dynamically consistent ones. Closure requires
additional information to remove these new, extraneous solutions. As a complement to
the RANS approach, approximations which focus on dynamics are emphasized here. In
the cascade, turbulent kinetic energy and momentum are concentrated in the largest ed-
dies. We introduce a simple dynamically self-consistent model which contains the largest
eddies and the Kolmogorov cascade, and examine the consequences.

Here we will concentrate on the following issues:
(a) the turbulent cascade (Kolmogorov 1941, 1962),
(b) chaos (Lorenz 1963) and time dependence (Arnett & Meakin 2011b),
(c) boundary layers (Prandtl & Tietjens 1934) and surfaces of separation (Landau &

Lifshitz 1959),
(d) combined mixing and burning, and
(e) sensitivity of core collapse to progenitor structure

The important and related issues of coherent treatment of pulsations, eruptions and
explosions, rotation and magnetic fields, and variable mass and angular momentum must
be deferred.

† But perhaps close; see Herwig et al. (2013).
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Table 1. A Few Examples of Three-dimensional Simulations of Convection in Stars.

Attribute 3D Atmospheres Solar Convection Zone Stellar Interiors

representative Stein & Nordlund1 J. Toomre2 Meakin & Arnett3

photosphere Y(yes) N(no) N(no)
composition gradient N N Y

nuclear burning N N Y
magnetic field Y Y N

rotation N Y N
driving top top top or bottom

geometry box in star CZ in box box in star
boundary inside grid top only No Yes

hydro compressible anelastic compressible

Notes:
1 See Stein & Nordlund (1998), and Magic et al. (2013, 2014) which also refers to other recent work.
2 See Brun et al. (2011, 2004), and many papers in the IAU Symp. 271 proceedings (Brun 2011).
3 See Meakin & Arnett (2007); Viallet et al. (2013), and Arnett et al. (2014) for an overview.

Erika Böhm-Vitense developed mixing-length theory in the 1950’s (Vitense 1953; Böhm-
Vitense 1958), prior to the publication in the west of Andrey Kolmogorov’s theory of the
turbulent cascade (Kolmogorov 1941, 1962). MLT might have been different had she been
aware of the original work Kolmogorov had done in 1941. Edward Lorenz showed that a
simple convective roll had chaotic behavior (a strange attractor, Lorenz 1963). Ludwig
Prandtl developed the theory of boundary layers (Prandtl & Tietjens 1934). All these
ideas will be relevant to our discussion, which is based upon theory and 3D simulations.

1.1. 3D Simulations
Numerical approaches for fluid dynamics simulations include implicit large eddy simula-
tions (ILES) and direct numerical simulation (DNS). DNS resolves the smallest relevant
scales, and proceeds to larger scales until limited by computer power available. At present
this limit is far smaller than stellar scales, so DNS is important in stellar problems for
points of principle (e.g. Wood et al. 2013). ILES includes the largest scales in the system,
and proceeds to smaller scales until limited by computer power available. Implicit is the
assumption that sub-grid scale phenomena are correctly treated. This seems to be valid
for 3D turbulence using state-of-the-art methods (Grinstein, F. F. et al. 2007).

In order to be useful in a 1D stellar evolution code, 3D information must be projected
onto a 1D coordinate system, hence “321D”†. Table 1 gives a brief comparison of fea-
tures of some 3D simulations which are relevant to designing 1D stellar algorithms. The
simulations have different strengths and weaknesses, and tend to complement each other.

3D atmospheres. Simulations of stellar atmospheres in 3D were pioneered by Stein
& Nordlund (1998), see also Magic et al. (2013) and references therein. These simulations
are one of the great successes of radiation hydrodynamics, removing the necessity for the
micro-turbulence and macro-turbulent fudge factors previously used to calculate stellar
spectra. It is tempting to use MLT to fit such 3D simulations as a “stellar engineering”
exercise to connect atmospheres to interiors, because stellar evolution codes are almost
always formulated in the language of MLT. Magic et al. (2014) give a clear discussion
of this process, and show that MLT must be modified in at least one respect to make
the identification: a ram pressure term must be added to MLT. It appears that such fits
necessarily ignore a quantity important for stellar interiors which comes from the same

† The acronym “321D” for “projection of three dimensions to one dimension” is due to John
Lattanzio.
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term but in the energy equation. This is the flux of turbulent kinetic energy, which is
incorrectly defined as zero in MLT.

These 3D stellar atmospheres generally do not contain the whole convective zone, but
use a lower boundary condition which has been shown to have little effect on the predicted
spectra. By the same token, this means that these simulations are not a sensitive probe
of the convection at the bottom of the convection zone.

Convection, rotation and MHD. Juri Toomre and his students and collaborators
have pioneered anelastic simulations of the solar convection zone, focusing on global
MHD and differential rotation. For 2D see (Hurlburt et al. 1984), and 3D (Brun et al.
2004). Unlike the ”box in a star” grids used in 3D atmospheres and stellar interiors, such
global solutions make more serious demands on computer resources because of their larger
extent, so that, other things being equal, their zoning tends to be coarser. Recent results
suggest that the numerical viscosity is sufficiently low so that the flows are becoming
realistically turbulent (Brun et al. 2011). Merging of the insights from these simulations
with stellar evolution with rotation is a present challenge.

Stellar Interiors. Another option for use of limited computational ressources is to ex-
amine deep interiors in which composition gradients and nuclear burning occur. By using
a ”box in a star” approach it is possible to include convective zone boundaries within the
computational grid. The treatment of radiation flow is simpler (radiative diffusion). Due
to neutrino cooling the thermal time scales become shorter, and make thermal relaxation
easier to deal with; also higher luminosity as found in deep layers of red giants reduces
the thermal time scale. Deep zones (large stratification) and pressure dilatation (Viallet
et al. 2013) have been examined. The ”box in a star” approach truncates the lowest
order modes, so that a natural complement is the pioneering work of Paul Woodward
(e.g. Herwig et al. 2013) to put a ”whole star in a box”.

2. A 321D Algorithm
This proceeds in several steps:
(a) add turbulent cascade,
(b) add dynamic (acceleration) equation for integral scale,
(c) balance between driving, damping, and the role of turbulent KE flux,
(d) make quantitative connections to MLT and the Lorenz model,
(e) use the steady-state Lorenz model to approximate average behavior,
(f) use acceleration equation to define boundary behavior, and
(g) add composition effects.

Because an acceleration equation is used, it is straight-forward (in principle at least) to
add inertial forces (centrifugal and Coriolis), Lorenz forces and differential rotation.

2.1. The Turbulent Cascade
Arnett et al. (2014) estimate the Reynolds number to be Re ∼ 1018 at the base of
the solar convection zone. Numerical simulations and laboratory experiments become
turbulent for Re ∼ 103, so fluid flows in stars are strongly turbulent if, as we assume for
the moment, rotational and magnetic field effects may be neglected. This special, simpler
case is thought to be widely but not universally appropriate to stellar interiors.

For homogeneous, isotropic, and steady-state turbulence, the Kolmogorov relation be-
tween the dissipation rate of turbulent kinetic energy, velocity, and length scale is,

ε ∼ v3/�. (2.1)

This is a global constraint, and applies to each length scale λ in the turbulent cascade,
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so
ε ∼ (Δvλ )3/λ, (2.2)

for all scales λ, or,
Δvλ ∼ (ελ)

1
3 . (2.3)

so that the velocity variation across a scale λ is Δvλ , and increases as λ
1
3 . A description of

the cascade needs both large and small scales; Eq. 2.3 implies that the largest (integral)
scales have most of the KE and momentum while the smallest have the fastest relaxation
times. Simulations confirm this (Arnett et al. 2009).

2.2. Dynamics
In MLT the buoyant force is approximately integrated over a mixing length to obtain an
average velocity u (e.g., Smith & Arnett (2014)),

u2 = gβT Δ∇
(�2

M LT

8HP

)
. (2.4)

Working backward, this may be expressed as

du/dt = gβT Δ∇− u/τ, (2.5)

where �d ≡ �2
MLT/8HP and τ = �d/|u|, and for Δ∇ > 0. Multiplying by u gives a kinetic

energy equation,
d(u2/2)/dt = u · gβT Δ∇− u2/τ, (2.6)

for which the steady-state solution† is Eq. 2.4 (only positive Δ∇ are allowed).
Had it been available, Böhm-Vitense might have identified the damping term with the

Kolmogorov value (Eq. 2.1). However, Kolmogorov found the damping length �d to be
the depth of the turbulent region, so that it is not a free parameter, unlike MLT. There
is a further issue; ε is the average dissipation rate, not the instantaneous value (u3/�d)
which fluctuates over time; that is, u �= v except on average over τ (see Fig. 4 in Meakin
& Arnett 2007); we return to this below.

2.3. Kinetic Energy Flux
The flow is relative to the grid of the background stellar evolution code, so

d(u2/2)/dt = ∂t(u · u)/2 + ∇ · FKE , (2.7)

where FKE = ρu(u · u)/2 is a flux of kinetic energy. The generation of the divergence
of a kinetic energy flux in this way is robust for dynamic models; it occurs in the more
precise RANS approach as well (Meakin & Arnett 2007). It does not occur in MLT,
which assumes symmetry in velocity between upflows and downflows, a condition that is
violated at even weak levels of stratification (Meakin & Arnett 2010; Viallet et al. 2013).
Alternatively, MLT is equivalent to Eq. 2.5 with du/dt = 0, the local approximation.

Viallet et al. (2013); Mocák et al. (2014) find a global balance between buoyant driving
(at the largest scales) and turbulent damping (at the smallest). Because of the large
separation of these length scales, they are weakly coupled, giving rise to fluctuating
behavior typical of turbulence. This balance (on average only) is a new condition beyond
MLT, and allows the elimination of the free parameter in MLT, the mixing length, or
α = �/HP . The actual flow patterns that correspond to this global balance depend upon
the details of the turbulent energy input; nuclear heating and photospheric cooling give
different flows (Meakin & Arnett 2010), i.e., fluxes of kinetic energy.

† Care must be taken with the sign of the transit time τ and the deceleration for negative u.
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We choose a vector equation for the integral scale velocity u,

∂u/∂t + (u·∇)u = gβT Δ∇− u/τ. (2.8)

The damping term is chosen to give the Kolmogorov expression for ε, the turbulent
dissipation, if Eq. 2.8 is dotted by u and averaged over a turnover time τ .

2.4. Connections to MLT and Lorenz
In the local, steady-state, limiting case, the left-hand side of Eq. 2.8 vanishes, and an
equation similar to Eq. 2.4 results, but with the mixing length replaced by the turbulent
damping length (essentially the lesser of the depth of the convective zone or 4 pressure
scale heights, Arnett & Meakin 2011b). With this change, the cubic equation of Böhm-
Vitense may be derived (Smith & Arnett 2014), and we recover a form of MLT.

If it is assumed that the integral scale motion is that of a convective roll, Eq. 2.8 may
be reduced to the form of the classic Lorenz equations, but with a nonlinear damping term
provided by the Kolmogorov cascade (Arnett & Meakin 2011b). Because of the time lag,
the modified equations become even more unstable than the original ones.

For 321D the stellar evolution code must be supplied a smooth time-averaged value for
the convective variables; we approximate that by the steady state. The weak coupling
between large scale driving and dissipation at the small scale causes time dependent
fluctuations of significant amplitude in luminosity and turbulent velocity; see Meakin
& Arnett (2007), Fig. 4, for fluctuations in KE in an oxygen burning shell. The term
∂u/∂t in Eq. 2.8 is needed for chaotic fluctuations, wave generation and large scale
dynamic behavior. A stellar evolution code must step over the shorter turnover time
scales (weather) to solve for the evolutionary times (climate); this requires an average over
active cells, so that there is a cellular structure in both space and time. The steady-state
limit of the Lorenz equation gives a reasonable approximation to its average behavior,
filtering out the fluctuations (Arnett & Meakin 2011b); we apply the same approximation
to Eq. 2.8 for slow stages of stellar evolution.

2.5. Boundary Layers
Fluid motion in a star may be separated into two fundamentally different flows: solenoidal
flow (divergence free) and potential flow (curl free) (Landau & Lifshitz 1959). Fig. 1 shows
the striking separation in flow velocities at such boundary layers (see Prandtl & Tietjens
1934). We do not claim that we have resolved these boundary layers yet†, but their
structure and nature are important to the rate at which turbulent flow moves into or
from non-turbulent regions—the entrainment rate.

Peter Eggleton took an early step in dealing with steep gradients in composition with
the introduction of an admittedly ad-hoc diffusion operator (Eggleton 1973); this numer-
ically advantageous procedure has been widely adopted for stellar evolution.

A more physical picture results from consideration of the dynamics of the motion. At its
most elemental level, the velocity vector must turn at boundaries to maintain solenoidal
flow. Most of the momentum is at the largest scales, where dissipation is least and the
flow almost adiabatic, so this velocity must be the integral scale velocity. The magnitude
of the acceleration required is just the centrifugal value v2/w where w is the width of the
turning region and v the relevant velocity. Using Eq. 2.8 in the steady state limit, and
taking w ∼ Δr << �, the radial component of the acceleration equation becomes

ur∂ur/∂r ∼ Δ(
1
2
u2

r )/Δr ∼ gβT Δ∇. (2.9)

† We have fewer than 10 zones across the lower boundary layer; numerical viscosity may affect
the computed entrainment rate.
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Figure 1. Boundary Layers enclosing Convection (after Viallet et al. (2013).

Sorting out the signs we see that the buoyancy must be negative for the radial kinetic
energy to decrease, so that negative buoyancy decelerates the motion, and gives the
required turning. This defines a layer at which the velocity goes to zero on average. The
“overshoot” region has a width w; this material is mixed because it moves back into the
convective region after it turns.

There are fluctuations, so that the layer undulates, generating waves in the neighbor-
ing stable region. In a coordinate system moving with the undulating layer, there is a
boundary between the mixed (overshoot) region and the overlying layer which is stably
stratified. The overshoot region has solenoidal flow which flow in the stably stratified re-
gion is potential (wave) flow. By Kelvin’s theorem (conservation of circulation), entropy
change (e.g., dissipation, radiative diffusion) is required to move matter from one region
to the other. Most of the turbulent momentum is in the largest scale convective motions,
the integral scale. In simulations we see that these couple well with gravity waves†, whose
speed increases with wavelength (Landau & Lifshitz 1959, §12), so that the longer wave-
lengths carry most of the energy. The shorter wavelengths are more dissipative; they are
generated by nonlinear interaction of the long wavelengths (wave breaking; think water
waves). This is an example of a mechanism for changing entropy at the boundary, allow-
ing the turbulent region to grow. If this example is representative, such entrainment rates
are not universal but depend upon local conditions at the boundary as well as turbulent
velocities. See also Viallet et al. (2013) discussion of radiative heating at bottom of a
deep (strongly stratified) convection zone.

Grolsch (2015) approaches this issue from a quite different point of view, but comes
to some similar conclusions.

† Sound waves couple well only for higher Mach number flow (Landau & Lifshitz 1959, §64).
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2.6. Mixing and Burning

Change in composition due to nuclear burning is a fundamental feature of stellar evo-
lution. In general stars do not have uniform composition. In stellar evolution, mixing is
determined according to the criterion of Schwarzschild, or of Ledoux. The Schwarzschild
criterion is defined as S = ∇−∇e , and the Ledoux criterion is L = S −∇Y , so Δ∇ = L
which reverts to S if there is no composition gradient (∇Y = 0).

Mixing motions (solenoidal flow) result from buoyancy, pressure perturbations, or dif-
ferential rotation. We focus on the buoyant acceleration, −gρ′/ρ. Composition gradients
enter the buoyancy on an equal basis with entropy gradients; for the simplest case of an
ideal gas, ρ′/ρ = T ′/T +Y ′/Y −P ′/P, where Y = 1/μ is the number of free particles per
baryon, or inverse mean molecular weight. For a more general equation of state, there
are multiplicative factors of order unity on the r.h.s. Traditionally P ′/P is taken to be
zero even though this is incorrect for strongly stratified convection (Viallet et al. 2013).

Brunt frequency, which is important for asteroseismology, is N 2 = −L(gβT /HP ), in-
dicating a fundamental connection with boundary conditions (Aerts, C. et al. 2010).

3. Solar Abundances
In the steady-state but non-local case, the (u·∇)u term gives a coupling between

driving regions and damping regions in the form of a flux of turbulent kinetic energy
(Meakin & Arnett 2007, 2010); this is assumed to be zero by symmetry in MLT (a
major flaw). Even moderate stratification breaks the symmetry, and gives a finite flux of
turbulent kinetic energy.

Any model of the Sun which uses MLT will neglect the effect of turbulent kinetic energy
fluxes. To estimate the sign and size of the necessary changes, we scale from the simula-
tions in Viallet et al. (2013) for a convection zone which like the Sun is highly stratified.
The luminosity due to kinetic energy is LKE ∼ −0.35L near the base of the convection
zone, which is significant. This negative luminosity must be balanced by increased pos-
itive radiative luminosity, to maintain a solar luminosity, so Lnew/L� = 1.35. This may
obtained by a reduction in opacity. The opacity is well known, and depends upon the
composition, primarily the metal abundance. If we simply assume that the opacity scales
with metalicity, κnew/κold ∼ 3/4, and the actual metalicity should shift from the stellar
evolution value (from the “standard solar model”, SSM) to znew ∼ 0.02(3/4) ∼ 0.015,
which is the value determined from 3D atmospheres. Asplund et al. (2009) conclude that
the discrepancy between abundances determined from 3D atmospheres, and from stellar
evolution is unidentified. The argument just given suggests that there is a significant flaw
in the physics of SSM, correction for which tends to resolve the discrepancy. Until stellar
models including kinetic energy flux are constructed, it seems reasonable to take the 3D
atmospheric abundances as our best estimate, and attribute the disagreement to use of
a local convection theory.

4. Sensitivity to Progenitor Structure
Simulations of core collapse may be sensitive to convection algorithms used to construct

precollapse models. Couch & Ott (2013) get increased tendency toward explosion simply
by adding a nonradial velocity component to the progenitor model (Arnett & Meakin
2011a), as turbulence requires. This also suggests changes to the initial models used by
Kochanek (2014).
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Figure 2. Changes in Density structure of 15 M� with Entrainment.

Fig. 2 shows two TYCHO models at the end of oxygen burning. The density structure
is sensitive to the assumed entrainment physics. The two curves represent stars of 15M�,
with only the entrainment physics changed. Not only are the sizes of the cores changed,
but the carbon/oxygen ratio is affected by entrainment as well.

Core-collapse simulations often fail because of the high rate of infall of mantle matter
onto the newly formed, nuclear density core. This matter must be photo-dissociated by
the explosion shock if an explosion is to occur. Lower rates of infall aid the explosion.
The rate of infall is

Ṁin = uin4πr2
inρin . (4.1)

The infall velocity is essentially the local sound speed in the progenitor mantle; matter
falls in as a rarefaction wave moves out. To make the rate of mass infall Ṁin small,
the initial density ρin should be small. The critical time occurs during the infall of the
mantle (labeled “Infall”); the envelope falls in too slowly to affect the explosion shock.
Clearly the curve in Fig. 2 with the larger core will have larger ρin , and be harder to
explode. This large core resulted from taking the maximum entrainment rate that was
energetically allowed, throughout the evolution from the main sequence (for simplicity
no mass loss or binary stripping were considered).

The small core case resulted from an entrainment rate of 0.01 of the maximum, so
that the boundary dynamics was almost elastic, and consistent with analytic estimates.
Smaller rates and smaller cores are possible. The highest resolution 3D simulations we
have done were the most nearly elastic in the boundary layers, so we regard this as the
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more reasonable case. It has smaller cores that conventional progenitor models; ad-hoc
diffusion smoothes gradients, leading to larger cores.

5. Conclusions
This is a sketch of a 321D approximation which is nonlocal, and thus has nonzero

fluxes of KE (to be published in more detail elsewhere). We plan to add this as an option
to MESA. Inclusion of KE fluxes seems to help resolve the solar abundance problem
(Asplund et al. 2009). Smaller cores may ease the explosion problems with core collapse
supernova simulations.
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Discussion

Maeder: Analytical studies suggest that transport processes by meridional circulation
and by shear diffusion are strongly affected by the horizontal turbulence in differentially
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rotating stars. What can the 3D simulations tell us about the possible value of the
horizontal turbulence?

Arnett: Great question! We do not seem to see Jean-Paul Zahn’s strongly asymmetric
diffusive mixing velocities. However the overturn is effective at mixing the whole con-
vective region, except for Si burning, which has “cellular” burning regions. The shellular
approximation may be fine for earlier stages, up to and including oxygen burning, if
we can get the boundary motion—the entrainment rates—right. The shellular approx-
imation will break down during explosive or eruptive events due to 3D instabilities, of
course.

Now suppose we spin up a non-rotating star. Turbulence is turbulence, whether driven
by buoyancy or by differential rotation. At first we get slight distortions of spherical
equipotentials, leading to meridional circulation, and the solenoidal flow also reacts to
the inertial accelerations. Eq. 2.8 is a 3D vector equation, and contains these effects; the
velocity includes the velocity of meridional circulation and the horizontal turbulence, at
least in principle. An interesting issue is the relative importance of dissipation in the
boundary layers versus in the bulk of the turbulent flow.

As the spin increases (Rossby number decreases) it will have an increasingly important
influence on flow, convection, and angular momentum transport, and the importance of
MHD becomes an issue (our code does not have MHD active at present). One can think
of a continuous sequence from non-rotating star to accretion disk, parameterized by
angular momentum, and the literature contains examples of 3D simulations all along
this sequence. That said, the results are complex, and it seems that we still have much
to learn.

Khalak: How may stellar rotation be introduced into the equation for turbulence?

Arnett: It is already in Eq. 2.8 if we do the usual transformation to a rotating frame.
This is a deceptively simple vector equation (the Navier-Stokes equation in the turbulent
limit), which has deep connections to a lot of theoretical work on rotating stars. André
Maeder has written a beautiful development of the physics of rotating stars (Maeder,
André 1999) which starts from the Navier-Stokes equation (his Eq. 1.2).

Moravveji: In the very vicinity of the fully mixed core and the radiative layers (braking
and/or entrainment layer?), what is the behavior of Δ∇ term in your energy balance
equation?

Arnett: Thanks, this is an important point that I went through too quickly. The answer
may be implicit in §2.3 and §2.4. The Δ∇ is a factor in the buoyant acceleration, and
can change sign. It depends upon both the temperature gradient and the composition
gradient. However mixing makes the composition gradient tend to zero, which changes
Δ∇ itself; this problem must be solved implicitly. In the simulations there is a transition
layer in which the composition does change, but it may not yet be resolved numerically
(the “boundary layer” in Fig. 1). This is the layer where the velocity field changes from
solenoidal to potential flow, i.e., from convection to waves. See also the contribution by
Arlette Noels (Grolsch 2015).

The simulations show additional complexity: the boundary is dynamic and has vigorous
and fluctuating wave motion, features not in MLT. If we assume that the boundary
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dynamics has only a slow secular variation on average (an “entrainment” model, Meakin
& Arnett 2007), we might use Eq. 2.9 and asteroseismology to try to make progress.

Dave Arnett
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