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EXPLICIT FORMULAS FOR LOCAL FACTORS IN THE EULER

PRODUCTS FOR EISENSTEIN SERIES1*

PAUL FEIT

Introduction

Our objective is to prove that certain Dirichlet series (in our variable
q~s), which are defined by infinite sums, can be expressed as a product
of an explicit rational function in q~* times an unknown polynomial M
in q~\ Moreover we show that M(q~s) is 1 if a simple condition is met.
The Dirichlet series appear in the Euler products of Fourier coefficients
for Eisenstein series. The series discussed below generalize the functions
<XQ(N, q~s) used by Shimura in [12], and the theorem is an extension of
Kitaoka's result [5],

The paper is formulated in the language of formal Dirichlet series
and local algebras, although the motivation comes from the study of
Eisenstein series. The author has been studying automorphic forms on a
"unitary" group G defined with respect to a totally real field F, a finite
dimensional division F algebra Δ, and an involution p of Δ such that F
is the fixed field of p restricted to the center of Δ. The two seminal cases
studied by Shimura in [12] are

(l.a) Sp Case: Δ = F, p = 1*., G = Sp(m, F),

(l.b) SU Case: ΔjF is a totally imaginary extension field, p is

Galois involution, G = S£7(ra, m; Δ).

Euler products naturally arise which are indexed by P, the set of primes
of F. Moreover, the factor for p eP is an integral over the additive
group of hermitian matrices in Δp = Δ ®F Fp. When p is finite, the inte-
gral can be naturally rewritten as a formal Dirichlet series in Np~s. The
series appearing in the cases (l.a, b) have been studied Shimura [12],

Received March 30, 1987.
Revised October 5, 1987.
X) The work on this paper was partially supported by NSF Grant DMS 8601130.

37

https://doi.org/10.1017/S0027763000001252 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001252


38 PAUL FEIT

Kitaoka [5], and the present author [3]; if

(2.a) pi2 Sp Case,

(2.b) p is unramified in Δ/F SU Case,

then the series is characterized as an explicit rational function in Np~s

times a polynomial in Np's which generalizes the classical σ-functions.
Kitaoka also proves the same result in the Sp Case when p = 2 and F
= Q. For more general Δ, the existing theory easily extends to the cases
when 4, is a matrix algebra over Fp, over Fp ® F9, or over an unramified
extension field of Fp. Our present objective is to prove the same sort of
characterization for every finite prime. It suffices to handle the cases
where Δp is a division algebra or is a sum of two division algebras. An
immediate consequence of the present work is

THEOREM A. Statements [3; Theorem 9.1] and [3; Theorem 9.2] are

true when the level b is any proper ideal.

The statements in [3] involve many definitions and are omitted. In
a later paper, we will give an analogous theorem at level 1 (b = R).

Part I looks at a class of formal Dirichlet series which includes the
series arising when Δp = ΔQ © Δx is a sum of two algebras. In this case,
the space of hermitian matrices is naturally identified with matrices over
ΔQ. We consider constructions based on spaces of (possibly non-square)
matrices over a local division algebra.

Part II deals with the much more interesting situation when J ( Ξ J ? )

is a division algebra. The main theorems are stated in Section 5. Siegel
computed Fourier coefficients of Eisenstein series of large weight k for
groups Sp(m, Q) by relating certain infinite sums to a counting problem.
The Fourier expansion of an automorphic form on Sp(m, Q) is naturally
indexed by the set L of half-integral symmetric matrices; for heL, the
corresponding coefficient of an Eisenstein series is a limit as n «-> oo of
quantities involving the number of solutions to the equation TH&T' =
/nnod(n) where H2k is a hyperbolic half-integral matrix. When working
adelically, we encounter local Dirichlet series instead of sums over inte-
gral matrices; however, the local series are also understood by relating
them to a counting problem involving hermitian matrices over J. For
meZ + , the group of additive character on mXm "(p, εp)-hermitian" ma-
trices (defined below) which are 1 on ;'integral" matrices is identified
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EISENSTEIN SERIES 39

with an additive subgroup Σ(m, S)# of mXm "(p, ε)-hermitian" matrices.
(The group appears as a dual group of characters for a lattice Σ(m, S).)
The space Σ(m, S)# plays the same role as the lattice of half-integral ma-
trices in the classical theory; in fact, Σ(m, SY is the set of all hermitian
matrices whose off-diagonal entries lie in one additive group 3ι and whose
diagonal entries lie in another group Σ(l, S)#. A critical technical fact
is that Σ(l, S)# = {x + εxp: xe<3}, which is proved as Corollary 9.2.1.

The structure of Part II is as follows: Section 6 develops a theory
of "hermitian lattices" which closely parallels the classical theory of Z-
lattices with inner products. "Modular" and "hyperbolic" hermitian lattices
are defined, and a Witt Cancellation Theorem is proved for such lattices.
Section 7 discusses the problem of counting the number of ways by which
one hermitian lattice can be represented by another "mod (p?z)"-part of
the problem is to give a usable definition of congruence modulo pn.
Much of this section could be simplified if Corollary 9.2.1 could be proved
by a new argument; in our present work, we use the generalized theory
to prove the corollary. Section 7 reduces the counting problem to the
computation of certain numbers \P(L, M)\, which are studied in detail in
Section 8. These technical quantities play the same role as that of the
orders of the orthogonal groups of quadratic spaces over finite fields in
Kitaoka's work [5, 6]. In Section 8, all modular lattices are classified up
to form-preserving isomorphism. Section 9 combines the theory of her-
mitian lattices with some formal power series manipulation to prove the
desired theorems.

The arguments in Part II are very general—they do not depend on
whether Δ is commutative or not, whether p is of the first or second kind,
whether hermitian or anti-hermitian matrices are considered, etc.. Un-
fortunately, the general formulation requires a deluge of notation.
Occasionally, the same variable is used for different quantities in Part
I and Part II; however, as neither Part depends upon the other, there
should be no confusion. At the end of this introduction is a list of
terms with the locations of their respective definitions.

Our formulation is purely local. We are primarily interested in local
fields of characteristic 0, but the arguments apply to finite characteristics
as well.
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Introduction

0. Notations and conventions

1. The standing hypothesis

PART I

2. Statement of theorems for Part I
3. Auxiliary series

4. Square matrices

PART II

5. Statement of theorems for Part II

6.
7.

8.

9.

A Witt lheorem tor hermitian lattices

Counting representations mod(ra)
Classification of 5-modular lattices and counting arguments

Hermitian lattices and ]

NOTATIONS.

[x]

X

A(M, N;

a(N, t)

HE, s)

B(E, s)

c.i.r.

2

Δ

Δ(m)

Δ(δ, r)

Δt,Δf

ε

E(r)

F

Φ

m)

§0.A

non-trivial additive

character-see after

(1.7)

(7.10)

(5.10)

(2.2)

(2.2)

§0.A

(5.5)

(9.1)

finite dimensional

division ^-algebra

(5.5)

after (7.2)

(5.7)

central S-unit for

which εεp = 1

(7.2)

local field

(2.3)

power series

(p, ε)-hermitian

hyperbolic

Jr..
*C)

XT)
Jn(T)

I

lattice

A.*
m

M'r.t+r

M'k
Mί,k+r;Pr

M'k,vr '

MrJΔIS)
Mk(Δ/S)

mod (n)

modular

§0.B Definition 6.1

(2.1)

(7.5)

(1.5, 6, 7)

(9.2)

logarithmic valua-

tion of J-see start

of §5

§o.c
(8.6)

maximal ideal of S

(3.1)

M'kt2k

(3Λ)

Aβ,2fc;pr

(3.1)

Mk>k(A/S)

modulo pn-see

before (1.8)

Definition 6.2

https://doi.org/10.1017/S0027763000001252 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001252


EISENSTEIN SERIES 41

P
π

P(M, N; m)

primitive

Q

Qo

R

R(D)

s(L)

S

S(e)

Theorem 8.5. D or

Definition 5.1

(1.2), (1.7)

Definition 7.1

maximal ideal of R

generator of m

generator of p

(7.10)

§0.A
ι\RlP\
|S/m|

integer ring of F

(5.6)

scale (β.5)

maximal order of Δ

(5.5)

determined by

<?o = <T
(5.8)

σ2 (5.9), except i n §8,

where it is given

by (8.5)

0*3> &49 0*5 (5 9)

Σ(m,ε),Σ(m,S) (5.3)

Σ(m, S)* (5.3)

Σ(r;n),Σ(r;n)* (9.1)

t σ/(73 in §8,

indeterminate in §9

τ{T) (1.5)

tr §0.D

Type I - IV Definition 8.2

Um (2.3)

Ωk (8.19)

Ωφ) (5.6)

X In § 3 and § 4, func-

tion defined after

(3.2)

§ 0. Notation and conventions

§ O.A. Basics

Let Z, Q, R, and C denote the ring of integers and the rational, real,

and complex number fields, respectively. Let R+ be the set of positive

real numbers and put Z + = Z Π i ? + . We use the symbols J] &n(l Π with

the convention that for neZy any sum indexed by 2 Γ 1 is 0 and any pro-

duct fj^"1 is 1. (In Section 9, we actually have formulas which can

specialize to products Πn~2? but these will not be interpreted as being 1.)

Our arguments involve counting over quotient spaces. Let X be a set

and let — be an equivalence relation on X. We say that W is a c.i.r. set

for X/~(or — \X) if W c: X is a complete set of irredundant representatives

for XI ~ (or ~\X). If xeX, the class of x is denoted by [x]. We some-

times write " # e X / ~ " to mean that x varies over a c.i.r. set for X[~.

Let S be a (possibly non-commutative) ring. For r, keZ+, let Mr>lc(S)

denote the space of r x k matrices of S9 M]c(S)=Mkfk(S)) and GLk(S)

denote the invertible k x k matrices. For r,keZ+ and TeMrίk(S), and
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42 PAUL FEIT

we say that T is primitive if
(0.1.a) k — r and T is invertible,

(O.l.b) k > r and there exists Ue Mk_r>k(S) such that (rpj is invertible,

(O.l.c) k < r and there exists [7e Mr>r_k(S) such that (t/Γ) is invertible.
we say that an element ex of a (left) S-module M is primitive if there
exist e2, , em e M such that eu , em form an S-basis of M.

By module, we mean left module. Each ring S which we study has
the property that if m, ne Z+ and Sm ~ Sn as left S-modules, then m = n.
Thus, if an S-module M is isomorphic to Sm for some meZ+, we say m
is rk5(M) the rank of M with respect to S. If /: M-+ N is a homo-
morphism of free S-modules of finite rank, then we say / is primitive if
its matrix representation over any choice of bases is primitive.

§ O.B. Involutions and hermitian spaces

Let S be a (possibly non-commutative) ring. An involution on S is
an anti-isomorphism p: S-+ S such that p2 = ls If T is a matrix, we let
Tp denote the matrix generated by applying p to each entry of T; we also
define the image of a e S under p hy ap. For a fixed involution, we use
the notation

(0.2) T* = (ιTy = l{Tp),

where ιT is the transpose of T. If T is invertible, we put Γ"* = (T*)"1

= (T-1)*.

Our arguments require a variation of the usual hermitian space. Let
Δ be a ring, S a subring, p an involution on Δ which maps S bijectively
to S, and ε an element in the center of S such that εεp = 1. We define
a (p, ε)-hermitian module with respect to Δ/S to be a left S-module M with
a biadditive function (,): I χ M-> Δ such that

(0.3.a) Va, be S, V i j e M , (ax, by) = α(αc,;y)6',
(0.3.b) V x j e l , (x,y) = e(y, x)p.

The map (,) is also called the form of M. We usually work with a fixed
choice of p, ε, S and J, when the context is clear, we refer to any such
module as a hermitian module (or hermitian lattice-see below). Note that
the classical "anti" hermitian case occurs when ε = — 1.

If u is another member of the center of S for which uup — l> we say
u and ε are equivalent if there is a central S-unit such that u — (εc)[cp.
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Clearly we may replace ε with any equivalent element without affecting
the theory of hermitian modules.

If M is a (p, ε)-hermitian module defined with respect to J/S and
N <Ξ M, define the orthogonal complement by

(0.4) N1 = {xe M; (x, N) = {0}}.

We say M is trivial if ML = M.

§0.C. Orders and lattices

Let R be a Dedekind domain, F the field of fractions of R, and Δ a
finite dimensional semisimple .F-algebra. An order of Δ is a subring S
such that S is a finitely generated i?-module and FS = Δ. A maximal
order is an order which is not properly contained in another order. For
S an order, an S-lattice is a finitely generated S-module with no i?-torsion;
if V is a J-module, then an S-lattice of V is an S-submodule M c: V
which is an S-lattice and satisfies FM = V. When dealing with hermitian
modules in this context, we define a hermitian lattice to be a hermitian
module whose underlying module is an S-lattice.

Basic properties of matrices over a maximal order of a local semi-
simple algebra are listed in [3; Section 2].

§0.D. Reduced trace

Let Δ be a finite dimensional semi-simple algebra over a field F.
Express Δ — ®t

j==ιΔj where each Δs is simple, and let Kj be the center of
Δό. Define the reduced trace of a — Θ aό e Δ to be tr (a) = 2 j ^γj(aj) where
tr^ is the composition of the reduced trace of Δj -> Kj with the field-
theoretic trace Kj —> F.

% 1. The standing hypothesis

For the rest of this paper, we let F be a local field (of any charac-
teristic), R the integer ring of F, p the maximal ideal of _R, Δ a finite
dimensional division algebra over F, S the maximal order of Δ, and m
the maximal ideal of S. (By "local", we mean local and non-archimedian;
we do not include Fe{R, C}.) Put

(1.1) Q = \RlP\ and qo =

In Part I, we require that F be the center of Δ; however, in Part II,
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there are important situations in which F can not be the center of Δ.

For convenience, we make our next definitions for a family of rings.

Let A be a finitely dimensional semi-simple .F-algebra, and let B be a

maximal order of A. For neZ*, we denote MUn(B) and MnΛ{B) by Bn

when context makes clear which is meant. Define a function v(T) for

TeMn(B) by the property that

(1.2) qv^ = [JB": T£Λ] = [Bn: BnT],

with the convention that v{T) = oo if ϊ 7 g GLπ(A). The restriction of v to

GLn(Δ) Π Mn(S) has a unique extension to a group homomorphism GLn(Δ)

—> Z, and we denote this extension by v as well. The v function plays the

role of logarithmic determinant or reduced norm; its basic properties are

stated in [3; Section 2],

For r,keZ+, define

(1.3) Grtk = GLk+r(A),

Prk = {(o d)6 Gr>k: a e Mk(A) d € Mr(A)i b e M k Λ A ) ] >
Cr,k — GLJC+r(B)9

We signify the analogous constructions defined with respect to the op-

posite ring of A by the superscript"0". The standard Iwasawa decompo-

sition for Grtlc implies that

(1.4) Gr,fc = P r ,, Cr,fc.

If TeMrΛ(A\ define τ(Γ) and j{T) by the properties that

τ(T)=fJ; °leGr,fc,
(1.5)

j(T) = v(d) if r(Γ) = yω where y e Pr,fc, ω 6 Cr,fc,
and ω = (* *S for d e Mr(B).

If y, a), c and d are as in (1.5), then (c d) is primitive and

(1.6) Br = cBk + dBτ

= Φ j(Γ) = [Br: dBr] = [cJ5fe + dBr: dBr] - [T 7^ + Br: Br].

The function g >-> ηl^g0)'1^^)'1 is a group isomorphism Grfk-*G°r)k which
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sends Cr,fc-» C0,,*, τ(T) ^ τi-'T0), and P r, f c-*P°, r. It follows that

L E M M A 1.1. Let A and B be as above. Let r,keZ + and TeMr)1c(A).

(A) j(aTβ) = j(T) for a e GLr{B) and β e GLk(B),

(B) jm=j(T),

(C) j(T) factors to a function on Mrik(A)jMr}Ίc(B) (where the quotient

refers to the additive structure of Mr>lc(A)).

We denote the factored map of Lemma l.l.C by j as well. We write

v[A, B] and j[A, B] to emphasize the ring and order.

(1.7) CONVENTION, j = j[A, S] and v = v[Δ, s] unless explicitly stated

otherwise.

Let X be a fixed non-trivial character of the additive group of F. For

neZ\ extend 1 to TeMn(Δ) by X(T) = X(tr(T)) where tr: Mn{Δ)->F is

the reduced trace function. Our objective is to find the Fourier expan-

sion of the function T*->qKT)s (where 5 is a formal complex variable)

restricted to certain additive subgroups of Mr>k(J)IMrtk(S). Using X, we

can identify the group of additive characters of such an additive subgroup

D with an i?-submodule of Mn(A). Our main interest is in the case where

this "dual" submodule is not contained in Mn(S).

We use a non-standard version of HenseΓs Lemma, which we now

state.

If L is an iϊ-lattice and neZ+, we let "mod(n)" denote equivalence

up to pnL. We also refer to the class of v e L modulo pnL by "υ mod(n)".

We use this notation even when L is an S-lattice. Fix π a generator of

p.

Let L and M be iMattiees. A function θ: L —> M said to be poly-

nomial if there are polynomials pu , pk e R[Xlf , Xr] such that

(1.8) Θ(XU ' , Xr) = (PxiXu . Xr), '", P fc(* l , • , Xr))

with respect to the coordinates determined by a choice of basis au , ar

of L and 61? •••,&* of M. For TeL, let dθτ e HomΛ (L, M) denote the

linear part of θ with respect to a system of affine coordinates centered at

T. In terms of the representation of θ using coordinates as in (1.8), the

d-th coordinate of θτ(xu , xr) is ΣUiidpJdXtl^T-Xi. Let dθ denote the

construction T->dθτ from L —> Hom .̂ (L, M), and then the map dθ is also

polynomial.
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Fix a polynomial function θ: L—>M. Put

(1.9) o(T) = {neZ: pnM c dθτ{L)} for Te L,

L(n, T) = dθr\pnM) for Te L and n e o{T).

Suppose that TeL and neo(T). Note that if o(Γ)^=0, then r k L < r k M .

If 77i > n and C/e ϊ 7 + *)mL, then dθv e dθτ + |>m Horn* (L, M), and con-

sequently

(1.10) neo(U) and L(n, T) = L(n, U).

It follows that for m e Z + and TQeLlpmL, there is a set o(T0) and an in-

dexed family of lattices {L(n, To): neo(TQ)} with the property that

(1.11) o(Γ0) = {τιe o(T): n<m), Vwe o(TQ), L(n, Γo) = L(n

for each Γ e L such that To = T + pmL.

Let Γ e L and n e o(T). For m > 2n + 1, we have

(1.12) |)mL c pm-wL(τι, Γ) g ί»7l+1L.

Suppose UeL so that U=T mod(n + 1). For ueL,

(1.13) Θ(U + 7rw-nu) = ^([/) + πm-ndθu{ϋ) + π2m-2nE(U, v)

for a polynomial 2?,

= > Θ(U + ττm-wι;)

If ^ ( C 7 ) Ξ Cmod(m), then θ(Uf) = Cmod(w) for every D7 =

L(τι, Γ)). Hence, ί factors to Llpm-nL(n, T)-+M/pmM, and we also denote

the factored map by θ.

The standard proof for HenseΓs Lemma can be adjusted to yield

THEOREM 1.2. Let L and M be R-lattices and let θ: L-+M be a poly-

nomial function, TeL and n e o{T). For m>2n + 1, define

(1.14) W(n, T; m)

= {UeL/pm-nL(n9 Γ): U= Tmod(n + 1) and Θ(U) = Omod(m)}.

Let m > 2n + 1, and suppose that Uo e W(n, T; m). Then there is UeL

such that Θ(U) = 0 and U= UQmoά(pm-nL(n, Γ)). Moreover, for aeZ*

(1.15) \{U{ e Win, T; m + a): U, = UQ mod(p™-nL(n, T))}\ = q ^ ^

(where rk means rkΛ). Π
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An easy consequence is the weaker

COROLLARY 1.2.1. Let L and M be R-lattίces and let θ: L-+M be a

polynomial function. Let Do c; L/pL and Dx = {Te L: !Γmod(l) e DQ}. For

ra > 1, put

(1.16) P(θ, m) = {Te LlpmL: Θ{T) = 0 mod(m) and TeD,}.

Suppose that neZ+ such that pnM cz dθτ(L) for each TeDx. Then for

m>2n + l and a e Z+,

(1.17) \P(Θ, m + a)\ = q*wL)-*ι*»\p(e9 m ) | ,

where rk means τkR. Also, if Toe P(θ, m) then there is TeDx such that

Θ(T) = 0 and T = TQ mod (m - n).

Proof. Trivial. Π

PART I

In Part, I, we make the standing assumption that F is the center of

Δ.

§ 2. Statement of theorems for Part I

For r, keZ+, put

(2.1) Ir.t = {EeMk,r{Δ) X(Mr,M(S)E) = {1}}.

Fix δe Δ* such that d"1 is a generator of the fractional S-ideal Iltl. Then

Ir>k = δ^MjcriS) is an S-lattice, and E^(θ: T^1(TE)) is an isomorphism

from IrΛ to the group of additive characters of Mrtk{Δ)jMrΛ(S).

We consider the Dirichlet series

(2.2) b(E, s)= Σ q-jiT)sX(ET)
TMW/MMS)

where E eδ~1Mk>r(S) and s is a (formal) complex variable. The series

corresponds to a Fourier coefficient of the function q-HT^s on Mr>k(Δ)IMrtk(S).

We regard b (E, s) and all subsequent series as formal power series, and

we do not consider questions of convergence. (We remark in Section 3

that the summation properly defines a formal series.)

It is convenient to make

DEFINITION 2.1. For meZ+, put
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(2.3) Um = GLm(S), Φm = GLm(Δ) Π M m ( S ) .

Let £7TO act on Φw by left multiplication. For E e Φm, define a polynomial

in Z[t] by

(2.4) p(£, ί) = Σ ίw(Z))

The indexing set is clearly finite.

THEOREM 2.1. Let F be a local (non-archίmediaή) field of any charac-

teristic and let Δ be a finite dimensional central division F-algebra. Let

<τeZ+ so that qQ = qσ; all other parameters are as in §0, §1 and §2 above.

(A) If r, keZ+ and E e δ-ιMk,r(S), then b('E\ s) = b(E, s) (where

b^E0, s) is defined with respect to the opposite algebra of Δ).

(B) Let r,keZ+ so that k>r, and let 0r>k denote the kx r zero

matrix. Then

(2.5) π d ^ 1 ^ )

(C) Suppose m,r,keZ+ such that k> r> m, and suppose i?' e d"1

AffcfΓ(S) so that ^ α has the form (*j %\ for some aeGLr(S), βeGLk(S),

and S e GLW(J) Π δ'1 Mn(S). Then

(2.6) 6(^, s) = Π y - i ^ - g " 0 " 1 " 0 )

If the reduced norm of δE is an i2-unit, then p{δE, t) = 1.

The remainder of Part I consist of the proof of Theorem 2.1. Lemma

1.1 already implies that b(E, s) = b(Έ\ s) and that b(E, s) = b(βEa, s) for

βeGLk(S) and aeGLr(S).
An easy consequence of Theorem 2.1 is

COROLLARY 2.1.1. Let F and Δ be as in Theorem 2.1. Let A = AXX

A2 be a product of finite-dimensional F-algebras, B a maximal order of A,

and p an involution of A which induces a bίjectίon At X {0} -> {0} X A2.

Suppose ΐ: Aι->Mn(Δ) is an isomorphism of F-algebras for some neZ*,

and that ΐ(B Π A^ = Mn(S). In general, we let T denote the morphίsm

Mm(A) —> Mmn{Δ) which expands the (ί, j)-entry to the image under projec-

tions A -» Ax ~> Mn(Δ).

Let ε and u be a central B-unίts such that eεp = 1, uup — 1 and εu =̂

https://doi.org/10.1017/S0027763000001252 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001252


EISENSTEIN SERIES 49

— 1. Put j = j[A, B]. For meZ+, put Xo = 1° tr on Mm(A), and define

(2.7) Σ(m, e) = {Te Mm(A): T = e<T"},

Σ(m,u) ={TeMm(A): T = utT>],

Σ(m, B) = Σ(m, ε) Π Mm(B),

Σ(m, BY = {EeΣ(m, ύ): Xa(E-Σ(m, B)) = {1}}.

Then for each E e Σ(m, B)* and s a formal variable,

(2.8) Σ UET)q-^° = b(r((l + εu)-ιE), 2ns),

where the quotient Σ(m)IΣ(m, B) is taken with respect to addition.

§ 3. Auxiliary series

Fix r,keZ+, k> r. When we express Γ = ( C ΰ ) and T = ( d C2 D)

for TeMr>k+r(Δ), we assume that C,D,C1 and C2 are the corresponding

submatrix blocks of size r X k, r X r, r X r and r X (k — r), respectively.

Put

(3.1) MU+r = {(CD) 6 MΓ f ϊ + r(S): ι (D) < 00},

-M?,*+r;Pr = { Γ e M ^ : Γ is primitive over S},

= Mr,u{Δ)jMr>k(S).

The multiplicative group Ur acts on M^fft+r by left multiplication, and

the additive group Mrflc(S) acts on the right of M'rfk+r by

(3.2) VaeMrΛ{S), VTeM>,^r, Γ α =

Let " ~ " denote equivalence up to left t/r-action and right M7%fe(S) action.

The actions preserve the subset M^k+r;pr. Denote the class of (CD)e

M'r,k+r by [CD]. Let X: Ur\Mίtk+rIMr,k(S) ->Mr,k(ΔjS) be the function

We analyze the series (2.2), which is indexed by Mrik{ΔjS), by re-

indexing it in terms of the double coset space.

LEMMA 3.1. In the present notation.

(A) X restricts to a bijection Ur\M^k+r;pr/Mrfk(S) ^ Mr>k(Δ/S).

(B) If(c d) e Mr',fc+r;pr, then j(X[c d])) = 'v(d).

(C) Let W be a c.i.r. set for Ur\Φr, and let ( c d ) e M ; i U r ; p r Then

{(occad): ae W} is a c.i.r. set for the X~ι([d~xc\).
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Proof. As noted in (1.5), for TeL there is at least one (c d) e Mίtk+r.pr

such that X([cd]) = T and j(T) = v(d); surjectivity in (A) and statement

(B) follows immediately.

We prove injectivity in (A) and statement (C) together. Fix W a c.i.r.

set for Ur\Φr, and (c d) e M;,k+r;pr. Put T= d~'c. For ae W, (acad)e

M'r,k+r and X([acad]) = [T\. Suppose first that a, βeW so that [acad]

= [βc βd]. There exist u e Ur and t e Mr,k(S) such that u(ac ad)τ(t) = (βcβd).

Then d e GLr(Δ) and wad = βd. But then w<* = β, and the hypothesis on

W implies that a = j8.

Suppose that (CD) e Λf;,fc+r and X([CD]) = [Γ]. Let ί = Γ - D ^ C e

Mr}k(S). There exist matrices A, B over J and α, b over S for which N

= ( c I ) e G L ** ' ( J > a n d ω = (c d) e GL^(S). Express AT = yw where y e

Prlc and w e GLk+r(S). The bottom r rows of w τ(ί) and ω each have the

form z(Tΐ) for some z e GLr(ά); hence, the bottom r rows of wτ(t)ω-1 must

have the form (0 v) for υ e GL£Δ). Since wτ(t)ω"1 e GLk+r(S), we conclude

j where ^ e GLr(A). Now y = iVα;"1 where

the last r rows of N have entries in S; thus, g e Φr. We have shown that

(3.3) g-\CD)^υ(cd)τ(-t).

Hence [C D] = [αc αd] where α represents the [7r-coset of ^y 6 Φr. The

proof of statement (C) is now complete.

In the above paragraph, (ac ad) is primitive if and only if a e Ur.

There is exactly one a e W Π Ϊ7r, which shows that X sends a unique

coset of U\M'rtkλ r.prlMrtk(S) to [T\. Thus, the restriction in (A) is injec-

tive. Π

We assume the standard fact that

(3.4) Σ Q-V{D)S = Π (1 - ql-1-)-1

£>eUr\Φr j=l

For M e Z + , the number of double cosets [CD] in Ur\M'rtk+rIMr,k(S) such

that v(D)<M is finite. Hence, we are justified in defining

DEFINITION 3.1. Let r,keZ+ and Eeδ^M^XS). The summations

(3.5) B(E, s)= Σ
(<7 D) £ Ur\M'r,k+r/Mr,k{S)

b(E,s)= Σ q-HT
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determine formal Dirichlet series, and

(3.6) B(E, s) = Π (1 - q{-ι-Yιb{E, s).
. 7 = 1

Equation (3.6) follows by identifying MΓffc(J/S) with Ur\M^k+r.prlMr>k(S)

under X. Fix c.i.r. sets W and Z for Ur\Φr and Ur\Mίtk+riprIMr>k(S) re-

spectively, and identify VF X Z with Ur\Mίtk+rIMrtk(S) under the map

(τ, (c d)) !-• (τc τd). Note that this indexing of Ur\M'rΛ+rjMrik(S) depends

on the choice of representatives in Z.

The series B(E, s) is surprisingly easy to manipulate. We have an

immediate reduction of the problem to the square matrix case.

THEOREM 3.2 (Reduction I). Let r, keZ+ and assume k > r. Let Ee

Then

(3.7)

where 0 is the (k — r) X r zero matrix.

Proof. For DeΦr, put

(3.8) V(D) =

Let W be a c.i.r. set for Ur\M'r,JMr(S), and to each (Q D)eW assign

an c.i.r. set J(D) for F(Z>). Then {(C, C2D): (QD) e W, C2 e J(Z>)} is a c.i.r.

set for Ur\Mi,k,r/Mr,k(S) Now

(3.9) I V(D)\ = [Sr: DSr]k'r =

Hence,

(3.10) ( ( f ) )
\ \ υ / / ((7iD)eτF c2eJ(z>)

C 1 £). Π

§ 4. Square matrices

We consider the summation indexed by square matrices. For keZ+,

put Mi = Mk}2]c and Mk.pr = ikf^2fc:pr. We now prove

THEOREM 4.1 (Reduction II). Let k,meZ+ so that k > m, For Ee

(4.1) B (^ J], s) = j ΐ Γ d - β ϊ ^ - 1 - ) } " ^ ^ + 2m - 2*)
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where (Λ A is a k X k matrix.(o o) is a

Proof. When we express Te Mk{Δ) as Γ r rj, we mean that the sub-

matrices α, b, c, and d have size m X m, m X (k — m), (k — m) X m and

(k — m) X (k — m), respectively.

Each coset of Ute\Mi/Mk(S) can be represented by (CD) where

C

Straightforward algebra shows that the cosets of Uk\MίlMk(S) are indexed

by letting submatrices vary over c.i.r. sets for the following spaces,

(4.3) (QDde

A € Uk.m\Φk.m,

A 6M,.m,m(S)/M t.m,m(S)A,

C2 e M B , t . B ( S P A , ι . m ( S ) ,

α € Mt_m,m(S)/AM,.m,m(S),

Note that the indexing process has a definite order—that is, certain vari-
ables must be fixed before others can be chosen. Counting as in (3.9),
we find

(4.4) B((^^),S)-= Σ Σ Q».(i>i)(*—>
\ \ U U / / D S U X Φ <CD>eU\Bt/A

Direct computation shows that

(4.5) J3(0lfl, s) = Σ q%q;ns = (1 - gj-) ' 1 .

The proof of Theorem 2.1 follows by calculation once we have

LEMMA 4.2 (Reduction III). Let keZ+ and E e d-1 Mk(S) Π GLk(Δ).

Then B{Ey s) = p(βE, qk's).

Proof, For DeΦk, put

(4.6) V(D) = Mk(S)ID.Mt(S).

The summation B(E, s) may be indexed by letting D vary over Uk\Φk and,
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for each D, letting C vary over V(D), For a fixed D, the function

1(D-'CE) = l(CED~x) factors to an additive character on Ce V(D). The

character is trivial if and only if ED1 e δ~ιMk(S). Thus

(4 7) T X(D^CE) - ίl V(D)\ = ^(D) i f ED'X e β'
(4'7) 4 χ φ c^~l o i
Now ED1 e δ-'MuiS) if and only if {δE)D~ι e Mk(S). Thus, B(E, s) equals

a finite sum over classes in D e Uk\Φk of qkv^q-^DS>\ Comparing this sum

with (2.4), we deduce the theorem. •

PART II

§ 5. Statement of theorems for Part II

In Part II, we add the following conventions to our standing

hypothesis. Let π be a fixed generator of m. The valuation on F has a

canonical extension to a multiplicative norm on Δ. Let I be the logarithmic

valuation on Δ with the normalization that l(π) = 1 and the convention

1(0) = 0 0 . If N<^ Δ, put

(5.1) l(N) = min{l(x): xeN}.

We permit the values 1(N) = — 00 and l(N) = 00. Let ^ be an involution

of Δ and fix ε a central S-unit such that εεp = 1. We make

(5.2) Standing hypothesis for Part II:

(a) char(F)=£2,

(b) F is the fixed field of p restricted to the center of Δ.

We permit p to be of either the first or second kind.

For m e Z+, put

(5.3) Σ(m, β') = {Te Mm(Δ): T = *QT)},

Σ(m, ε) = {Ne Mm{Δ): T = ε^T)},

Σ(m,S) = Σ(m, ε?) Π Mm(S),

Σ(m, Sy = {Te Σ(m, ε): X(T-Σ(m9 S)) = {1}}.

Assumption (5.2) implies that T *-* T + ε!7* is a surjection Mm(Δ) -+Σ(m, ε).

If L is a hermitian S-lattice and Θ\L^> Mhm(S) is an S-isomorphism, then

(,) is uniquely determined by TeMm(Δ) such that

(5.4) (x,y) = θ
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and each T e Σ(m, ε) determines an isomorphism class of hermitian lattice

in this way. Note that Σ(m, S)* is an iMattice of Σ(m, ε). We also put

(5.5) Δ(ε) = Σ(l, εp) = {teΔ: t = {εt)p},

S(ε) = Σ(l,S) = {teS; t = (εt)>},

Of = {deΔ: VbeS, X(bd + bpdp) = 1}.

Then Te Σ(m, S)* if and only if Ttj e 2 and T3j e Σ(l, S)* for each pair of

indices (i,j).

Remark 5.1. The various factors of "ε" and 'V" may be confusing.

The present calculation arises when computing Fourier coefficients of a

function on the local points of an additive group of hermitian matrices

defined over a number field. The character group of the space of local

(p, ε)-hermitian matrices is the space of ]ocal (p, ε^)-hermitian matrices.

For a matrix N representing a character, we will describe the corre-

sponding Fourier coefficient in terms of the hermitian form given by N.

The theory of hermitian spaces used here is ultimately applied to matrices

representing characters. For this reason, we define our sums—which are

just integrals over local spaces—to be over (p, ε^)-hermitian matrices so

that all of the characters are (p, ε)-hermitian,

Let Um and Φm be as in Definition 1.1. For D e Φm, we need to

consider

(5.6) Ω(D) = {Ce Mm(S): CD* =

= \Ω(D)l(DΣ(m, S))\.

Note that if D e Φm and b e R - {0} so that l(b) > v(D), then there is a

matrix D^ such that DDX = blm, and it follows easily that bΩ(D) c: D

Σ(m, S). Thus, Ω(D)l(D'Σ(m9 S)) is a finitely generated jR-module annihilated

by b, and R(D) is a finite value.

For teZ, put

(5.7) Δt = {deA: l(d)> t}.

At = {b + εfr: beAt}.

We also let Δf = {TeMmΛ(Δ): l(Tn)> t) when context makes clear which

is meant. For Ue Mm(Δ), note that SmU= Δ? if and only if Ue GLn(Sy.

We need a list of fundamental constants. Put
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(5.8) a = rankF A ,

σx = rankF J(ε).

Take δ = Z(^). Let 0 be the i?-linear function 6 •-> 6 + ε6p factored to

Aδ+ιfpJδ-^Aδ/pAδ. Define constants by the equations

(5.9) 9 " = |ker(0)|,

(T =[S(e): τrS(eV].

The values <r, σl9 σ3, σ4 and cr5 remain unchanged throughout the rest of this

paper; however, we consider values for σ2 corresponding to "scales" other

than δ in Section 8. We shall prove in Section 9 that

LEMMA 5.1. The parameters defined in (5.8) and (5.9) satisfy σγ + σ2

+ #3 = 04 + O*

For m e Z+ and Ne Σ(m, S)*, define a formal power series in t by

(5.10) a(N, t)
x€Σ(r,8P)/Σ(r,S)

Clearly if u e GLn(S), then a(N, t) = a(uNu*, t). We cite

THEOREM 5.2. Let r,meZ+ so that m>r>0. For meZ+ and Ne

Σ(m, Sf, the summation (5.10) properly defines a formal power series. Let

r,meZ+ so that m> r> 0. Then there is a formal Dirichlet series F(s)

with the property that if Ne Σ(r, S)* and No = ί Q A e(m, S)\ then

(5.11) a(NQ, q-s) = F(s)a(N, <f*-r-η.

Proof. This is Theorem 4.1 of [3]. Although the statement appears

in a section under the standing hypothesis that F has characteristic 0

and εe{l, —1}, the proof is valid in the present, more general, context.

The proof is not effective—that is, the factor F(s) is not given in a usable

form. •

Suppose iV0 e Σ(m, S)* is non-zero, and regard No as defining a her-

mitian structure on M = Sm. Then M\ML has no i?-torsion, and so

there is a complementary S-submodule L such that M= L ±_Mλ. Repre-

senting the form on M with respect to a basis which respects the flag
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O c L g l yields a matrix of the type ff ®\ where Ne GLr(Δ). Thus,

there is u e GLm(S) such that uNou* == L Λ. We can compute α(iV, t) in

general once we know a(N, t) when iV = 0m for any m (this yields the

F(s) factor) and when Ne Σ(my S)* Π GLm(Δ). The latter series can

be characterized by using hermitian lattices.

We now state the main results of Part Π.

DEFINITION 5.1. Let meZ\ First, let NeΣ(m, S)* Π GLm(Δ). If m

is odd, define η(N) = 1. If m is even, define

(5.12.a) η{N) = 0 if for each CeΦ m , either C^NC'* e Σ(m, S)* or

(5.12.b) (̂_V) = 1 if there exists d e J and C e Φm such that Z(d) = 1(9)

and

C-ιNC-* = f ° rf/m/

b*/m / 2 0

(5.12.c) (̂iV) = — 1 if neither (5.12.a) nor (5.12.b) hold. In general,

for Ne Σ(m, S)\ put η(N) = 1 if iV == 0 and (̂iV) = V(NQ) if Noe Σ(r, S)1 Π

GLr(J) for m > r > 1 such that uNu* = ^ ^ for some ueGLm(S). Co-

rollary 8.5.2. will imply that the quantity η(N) is well-defined.

THEOREM 5.3 (Context and Notation of Sections 1 and 5). Assume F

is contained in the center of Δ and that (5.2) holds. Let meZ+ and Ne

Σ(m, Sy. Let r = rank^ (NΔm) and η = (N). Express r = 2g + λ where

geZ and λ e {0,1}. Then a(N, t) is a polynomial in Z[t] times

m-g~λ-2 m-g-1

Π (1 — q^m-1+^^+σn2^)

if g =̂  0 and η ^ 0,

"if1

(1 + «•-••

m — r —1

Π (̂ - — ^

δ=0

"3)ΐf(i-
δ=0

j 0
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Moreover, if N— 0 or there exists reZ+,ueGLr(S) and NύeΣ(r, S)* Π

GLr(S)π1^ such that uNu* = ffi ||Y then a(N, t) is exactly the factor in

(5.13).

Remark 5.2. Expression (5.13) generalizes the formulas of [12], [5] and

[3]. Under the assumption Δ — F (the Sp Case of [3]) or ΔjF an unram-

ified quadratic extension (the SU Case of [3]), the quantities σ, σl9 σ2, σ3,

σ4 are determined and all of the numerator terms of the form 1 + qatb are

cancelled by denominator terms 1 — q2atu to produce the formulas already

in the literature.

We conclude this section by stating a version of Theorem 5.3 for

matrix algebras over a division ring. The proof is elementary, and is

omitted.

COROLLARY 5.3.1. Let F, Δ, R, S, and q be as in Section 1, p an in-

volution on Δ and ε a central S-unίt such that εεp = 1. Assume that (5.2)

holds. Let neZ+, put A = Mn(Δ) and B = Mn(S), and let j denote j[A, B]

as defined in (1.5) and (1.6). For meZ+, we let ϊ: Mn(A) -> Mmn(Δ) be

canonical function. Let v e GLn(S) for which u — v^v9) is a central S-unit,

and define an involution on A by τ: x*-+υ(txp)υ-ί.

For me Z+, put

(5.14) Σ(m, ε') - {Te MJA): T =

Σ(m, ε) = {Te Mn(A): T = e('Γ0} ,

Σ(m,B) =Σ(m,ε')f)Mm(B),

Σ(m, BY = {Ne Σ(m, ε): X(N Σ(m, B)) = {1}},

vm = d i a g { u , . . . , v } e

Then for meZ+ and NeΣ(m, Bf, we have an equality of Dirichlet series

in the formal complex parameters s

(5.15) Σ Wx)q->™ = a(T(ΰ^N)9 qr» ),
Σ ) / Σ B )

where a is defined by (5.10) with respect to the algebra Δ, the involution p,

and the central unit εup.

§ 6. A Witt Theorem for hermitian lattices

Suppose a e Δ* and 6, c e Δ such that l(b) > l(a) and l(c) > l(a). Let
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(6.1) Γ1 - ^
LO 1

a-epba~pcΛ
ap c J

and l(a — εpba~pc) = /(α). It follows that the matrix T is invertible. Let

(6.2) L = {(x y) e Mίti(Δ): Z(x), Z(y) > l(a)} = JJ(β).

We claim

(6.3) S 2Γ = L, ΓS2 = L*, S2 = L77-1 and S2 = T'L* .

Since T is invertible and hermitian, it suffices to show that S2T = L.

Clearly S2Γ c L. Suppose (xy) e Δ2 - S2. If Z(Λ) > l(y), then

(6.4) Z(x6) > l(εyap) =$ l(xb

and (xy)T$L. If Z(x) < l(y), then /(xα + yc) = l(xά) £ L.

We say that a hermitian lattice is fundamental if it is of rank 1 or

it can be represented by a matrix T = ί , *J| where α^=0, 6 = ε6 ,̂ c =

εcp, and Z(6) > l(a) and Z(c) > l(ά).

If L is a hermitian lattice, define the scale of L to be

(6.5) s(L) = 1{(L, D).

LEMMA 6.1 (Existence of Jordan Splittings). Let L be a hermitian

lattice.

(A) If LL = {0}, then L is the orthogonal sum of fundamental lattices.

(B) Suppose M^L is a sublattice such that

(B.l.a) M is fundamental,

(B.l.b) s(M) == s(L).

Then L =

Proof. The proof of (B) is contained in our proof of (A). We must

show that if L is a lattice non-trivial radical, then L = M J_ M1 for some

fundamental lattice M.

Put δ = s(L). Suppose that x e L so that Z((x, x)) = δ. Put M = Sx

and N — M1. If y e L, take l e S so that Λ(x, x) = (y, x), and then y — λx

eN. Thus, L = M+ N. Since Z,1 = {0}, M Π N= {0} and L = M±N.

Suppose that Z((x, x)) > s(L) for every xe L. Take x, y e L so that

Z((x, y)) = δ. Then x and y are linearly independent over J, and the form
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r e s t r i c t e d t o M = Sx + Sy i s g iven by a f u n d a m e n t a l m a t r i x T = ( p

aj.

S u p p o s e z e L, a n d l e t

(6.6) (λμ) = ((z,x)(z,y))T-\

Now λ, μeS by (6.3). By construction, (2 - λx - /ry, Λf) == {0}. Thus,

L = M±N where N = Λf1. D

Remark 6.1. From the argument it is clear that we can write any

lattice L a s a sum of L 1 and fundamental lattices where each 2 χ 2 com-

ponent can be represented by f p

 a j for l(b) > l(a) and l(c) > l(ά). This

observation is useful in Section 9.

Let V be a hermitian J-module. We say that {x, y} e V is a hyper-

bolic pair if

(6.7) (χ9χ) = (y9y) = 0 and (*,y)eJ*.

We can define two types of form-preserving transformations which do not

rely on specifying a choice of basis of V. First, suppose v e V so that

(v, v) ̂  0 and λ e Δ* so that (ϋ, v) = λ + ελp. Define

(6.8) σv§i(x) = x-(x, v)λ-ιυ .

Direct computation shows that (συ,x(x), σVtλ(y)) = (x, ̂ ) for all x, y e V. Next,

let {w, v} be a hyperbolic pair in V and put a — {w, v). Suppose that

u e (w, v}1 and b e Δ so that (w, M) = 6α+ε(&β)p. Define ξ = ξ{w,vhb>u by

(6.9) ξ(w) = w,

ξ(v) = v — bw + u,

ξ(z) = z — (z> u)a~ιw for z e (w, v}L .

Tedius calculation shows that ξ preserves the form. Moreover, it is easily

checked that for parameters v, w, u, t, λ, b

(6.10.a) σv,ελP = (σ^)'1

(b.lO.b) ζ { w , v } , b u ° ζ { w , v } , c , t = f {w,v},b + c + ( ι , u ) a - i , u + t >

(6.10.C) ?{w,ϋ},(w,M)α-i-δ,-w = = (?{w,t;},δ,zί)

Our next step is to interpret these constructions in terms of lattices.

Let L be a non-trivial hermitian lattice and put δ = s(L). First, sup-
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pose v e L and λ e ά* so that l(λ) = δ and (v, v) = λ + ελp. Then σϋf,(L) =

L. In particular, if v, w e L so that

(β.ll.a)

(6.11.b)

then τ = σw.Vii

(6.12.a)

(6.12.b)

(u, u) = (w, u;) ,

Z((w;, w — υ)) =

(to,(«;-»)) satisfies

r(L) = L,

τ(tϋ) = u .

Next, suppose that {x, y} is a hyperbolic pair of elements in L such that

l((%> y)) = S(L)- Suppose that yf eL so that (y\ y') — 0 and (x, y) — (x, y').

Then there exist ueL and be S such that τ — ξ{X,y},-b,u satisfies

(6.13.a) τ(L) = L ,

(6.13.b) τ(y) = / .

We can now prove

THEOREM 6.2 (Witt's Theorem for hyperbolic pairs). Let L be non-trivial

hermitian lattice. Suppose that {x, y}, {x', yf) are hyperbolic pairs of elements

in L such that

(6.14.a) (x,y) = (x',y'),

(6.14.b) l((x,y)) = s(L).

Then there is a form-preserving S-automorphism τ: L >̂ L such that τ(x)

= xr and τ{y) = y\

Proof. In the following argument, we write "morphism" to mean
i'form-preserving S-automorphism". Let δ = s(L), H = Sx + Sy and N =

H1. Then L = H J_ N by Lemma 6.I.B. If x = xf or y = / , we are done

by the remark in (6.13).

Put a = (Λ:, y). For c an S-unit, the S-homomorphisms of H given by

(6.15.a) χ\ >cy, y\ > εapc~pa~ιx,

(6.15.b) x\ >cx, y\ >apcpa'py9

are morphisms of H. Hence, the conclusion follows if either xr or y' is a

multiple of x or y by an S-unit.
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Express x' = ex + dy + u where c, de S and ue N. If c is an S-unit,

then τ = 0y-x',(v,v-χ') determines a morphism of L which sends y to x'.

There is an analogous symmetry if d is an S-unit, or if the projection of

y to H is primitive. Thus, we are reduced to the case

(6.16) x' = a + u aeH and ue N,

y = β + υ βeH and veN,

and a, β are not primitive.

Using the assumption that a and β are not primitive, we conclude that

l((u, v)) = l((x', y)). It is simple to construct a! e H which is primitive

such that (α, a) = (a', a*). Put x" = a' + u. Then {x", x") = 0 and /((/, y' -

x/7)) = 3. Thus, τ = Gy>-χ",{y>tV'-χ») determines a morphism of L which sends

y/ to x". The projection of x/; to H is primitive, so we are done by a

previous remark. •

DEFINITION 6.1. If L is a hermitian lattice and s(L) = <5 ^ oo, a hyper-

bolic pair of L is a pair {x, y) c L such that Z((x, ̂ )) = s(L). A hermitian

lattice iJ is called hyperbolic of denominator — δ if H is the orthogonal

union of lattices of rank 2 over S each of which has a hyperbolic pair

{x, y} with l((x, y)) = <5 as basis. A lattice of rank 2 over S with a hyper-

bolic pair as basis is called a hyperbolic plane.

Witt's Theorem extends to a few other lattices. Let α e J * and be Δ

and λe S so that b = aλ + ελpap, then

Thus, the matrix ( p ί ) determines a hyperboJic plane.

Let α e J*, 6, c e J so that b = ε6p, c = εcp, Z(6) > Z(α) and l(c) > l(a).

Let L be a lattice of rank 4, β1? e2, e3, e4 a basis of L, and suppose that the

matrix of the form with respect to the basis is

(6.18)

b a 0 0

εap c 0 0

0 0 -b -a

0 0 -εap —c

The elements
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£i + β8, e2, e3 — epba"pca'\ex + e3) + εpbυ-pe2

and

- (1 - c α - ^ ' α - 1 ' ) - 1 ^ - co-^βi + e3) + e2}

also form a basis. The matrix with respect to this basis is

(6.19)

0 a 0 0

εap c 0 0

0 0 εpba~pca-ιb - b a

0 0 εap 0

If 6 and c can each be expressed as aλ + ε(αΛ)p for λe S, then the matrix

in (6.19) determines the orthogonal product of two hyperbolic planes.

Finally, suppose that α e # and λe S such that a = λa + ε(λa)p. The

hermitian lattice given by ί ? __ j is hyperbolic with respect to basis

ei + e2, ex - λp(ex + e2).

DEFINITION 6.2. Let deZ. We say that a lattice is ^-modular if

l((v, L)) — δ for each primitive v e L and (υ, v) e Aδ (as defined in (5.7)) for

each υ e L.

'^-modular" hermitian lattices should be regarded as a generalization

of O'Meara's [8]" α-modular" lattices, not of "unimodular" lattices.

For L a hermitian lattice, we let — L denote the module of L with

the form — (,)• We have found a variety of hermitian lattices L such

that L J_ (—L) is hyperbolic. If L and M have this property, then so does

L _\_M. Suppose L is of one of the above types, and put δ == s(L). Let

M and N be hermitian lattices such that s(M), s(N) > δ and L _]_ M «

L _\_N (that is, isomorphic as hermitian lattices). Then ((—LJ_L) _[_M

~((-L)±L)±N. By Theorem 6.2, it follows that M^N.

Mimicking classical arguments from the theory of quadratic forms,

we can summarize with

THEOREM 6.3 (First structure theorem of modular lattices). Let δeZ

and L be a δ-modular lattices.

(A) If xeL is primitive and (x, x) = 0, then there is y e L so that

{x, y] is a hyperbolic pair of L.

(B) £_ |_(—L) is a hyperbolic space of denominator — δ.

(C) If M is a lattice which contains L such that s(M) = δ, then M =
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(D) Let M and N be hermίtian lattices for which s(M)f s(N) > d. If

L _\_M ̂  L _[_N, then M ̂  N (where " ^ " means ίsomorphίc as hermίtian

lattices),

§ 7. Counting representations mod (n)

For this section, we fix δ e Z, π a generator of m, and τr0 a generator

of p.

Fix E an i?-submodule of Δ(ε) such that

(7.1.b) Vί/eS, VxeE, uxu* e E.

For reZ+, define E(r) to be the jR-module of r X r matrices such that

(7.2) NtjβA, for ί^j, and

iV^ e E for each index j .

Note that E = Aδ satisfies our conditions, and for this choice we denote

E(?) by Δ(δ, r). For convenience, we also define

(7.3) σ(r) = άimFΣ(r, ε) = r(r - ΐ)σ/2 + rσt.

Each Ne E(r) determines a hermitian lattice. If Ue GLr(S)π\ then NU~X

eMr(S) for NeE(r).
For CeΦr and Ne E(r), put JV[C] = C~NC-*. We remark

LEMMA 7.1. If Ne E(r) Π G^Λ^), ίΛβΛ ίΛe sβί {Ce Φ r: N[C] e E(r)} is

a finite union of right Ur-cosets.

Proof Let NeE(r) Π GLr(Δ) and let UeGLr(S)πδ. For C e Φ r ,

(7.4) viNlCW-1) = K^"1) + KC-1) + ̂ iV) + KC-*) = viNU-1) - 2y(C).

If N[C] e E(r), then NU-1 and iVfC]^"1 have entries in S, and so viNJJ-1)

> 2v(C) > 0. D

For CeΦ r , put

(7.5) KO = [C-'E^C-*: E(r)] = [S(r): CS(r)C*].

If C, D e Φr, then ί(CD) = ι(C)ι(D). If Ce C7r, then c{C) = 1.

For CeΦ r , there exist a, βeUr so that αCβ = diag{c1? , cr} where

c . e S — {0} for each ./. In terms of the matrix coordinates, we see

(7.6) c(C) = (Π i<j W. cjδcf]) X (Π, [̂ ^ ^ ^ * ] )
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If ί =̂  j9 then

(7.7) [Δδ: cAcf] = [Δδ: cjδ] [CiΔδ: ctΔδcf] = q»ww .

We are led to

DEFINITION 7.1. For ceS - {0}, put ^(c) = [E: cEc*]. For r e Z + and

C e Φ r, define vλ(C) to be the integer determined by

(7.8)

If α, j8 e C7r so that αCβ = diag {cu , cr}, then

(7.9) Vl(C) = Σ ^ ) .

Fix k,reZ+ and M e #(&) Π GLU(Δ). For iVe #(r) and m e Z+, define

(7.10) A(M9 N; m) = {Γe M r x f c(S/rS): ΓMΓ* = iVmod(m)},

P(M, N; m) = {Te A(M, N; m): T is primitive},

where mod(m) refers to the iMattice E{r). If TeMrxlc(S), we abuse

notation and write T e A(M, N; m)(T e P(M, N; m), respectively) if

Γmod <jn) e A(M, N; m) (if Tmod (m) e P(M, N; m), respectively).

Suppose k > r. Let θ: Mrxlc(S) ->E(r) be the function T^ TMT* - N.

With respect to any choice of i?-basis for S and E(r), the map θ is poly-

nomial with coefficients in R. For Te Mrx1ύ(S), the differential of θ at T is

(7.11) dθτ: v i • uMT* + TMυ* = vMT* + ε(uMΓ*)* .

Let Tit e Z+ U {0} so that pniΔk

δ c S*M. We claim that if T is primitive,

then pniΔ(δ, r) c= dθτ(Mrxk(S)). First, suppose that r = jfe and T is inver-

tible. Since Δδ is an S-ideal, J*Γ* c Jfc

ό and #δT-* c J*, Thus, preιMft(J,)

c= Mfc(S)MT*. The map do'r has image {a + εa*: a e Mk(S)MT*}, which

contains the set of pniΔ(δ, r) Now suppose k > r, and take a matrix [/

so that ffi\ e GLfc(S). For w e M(fc_r)xfc(S) and i; e Mrxlc(S),

(7.12) ίttlΛrH* = Γ Ί
LuJ L T J L* υMT*\

and we are finished by the first case.

Apply Corollary 1.2.1 to get

LEMMA 7.2. Lei k,reZ+ so that k>r, MeE(k) Π GLk(A) and Ne
E(r). Let nu n2eZ+ U {0} so that pniΔ\ c MSk and pn*E c Ai9 and put
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n = nλ + n2. Lei me Z so that m > In + 1.

(A) 1/ TQeP(M,N;m), then there is TeMrxk such that TMT* = iV

and T = To mod (m — n).

(B) 1/ a e Z+, ίΛen

(7.13) |P(Af, N; m + a)\ = q*ι*r—™\P(M, N; m)\.

Let k,reZ+ so that k > r, Me E(k) Π GLfc(J) and Ne E(r) Π GLr(J).

As above, take n1? n2 e Z + U {0} so that pniΔ\ c MSfc and pn"2? c Aa, and

put n = nx + τz2 In this case, we can reduce the computation of

\A(M, N; m)\ to the computation of values \P(M,N'; 2n + 1)|. Fix Ue

GLr(S)πδ. We restrict attention to values me Z+ for which m > vίNU'1)

+ 2n.

If Te Mrxk(S) so that Te A(M, N; m), then (TMT* - iV)^"1 e pnMr(S).

By the properties of the function v, it follows that viTMT*^1) = viNU'1),

and consequently TMT* is invertible over J. If α Γ = 0 for w; e J r , then

wTMT* = 0, and consequently w = 0. By [3; Corollary 2.3], there is C

e Φr and a primitive matrix TQ e Mrxk(S) so that T = CT0. By that same

theorem, if Ct 6 Φr and TΊ is a primitive r X k matrix such that T = QTΊ,

then there is α e J7r such that C1 = Co: and TΊ = a~ιT^. Thus, the right

J7r-coset of C is uniquely determined by T.

Let CeΦr and TeMrxJc(S) so that CTMT*C* ΞΞ AT mod (m). Since

v(CTMT*C*Uι) = viNU-1), and TMT*UX e Mr(S),

(7.14) in > KM/-1) > MC) > 0 .

There is Co e Mr(S) so that CC0 = πj ( c )l r. Let D = πom(TMT* - N)e E(r).

Then

(7.15) TiWT* - C-'NC-* = Qπΐ'^DCf .

Thus JV[C] e -E(r). Conversely, suppose C e Φ r so that 2NΓIC] e E(r). As

before, it follows that viNU'1) > 2v(C). Let Dl9 , Da be a complete ir-

redundant list of coset representatives for C^π™E(r)C-*lπ™E(r). Then

α = c(C) and Z)̂  = Omod (2n + 1) for each j . Now for Te Mrxfc(S/pmS), it

follows that

(7.16) CTMT*C* = iVmod(m) φ=> 3 j : TMT* ΞΞ N[C] + Z);. mod(m).

Finally, C divides ^ ' ' l , in Mr(S). Hence, if TeMr,k(S) and C^Γ is

primitive (with respect to S), then C~1T/ is primitive if Tf e MTtk(S) and

T r = Γmod(m).
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Let CeΦr so that N[C]eE(r). Let W(M, N, C; m) be the set of

elements Te A(M, N; m) for which CιT is primitive. Then map T «-> CT

is an additive endomorphism of Mrtk(S/pmS) whose kernel has order

(7.17) [C-^Mr,k(S); π?Mr,k(S)] = [Mr>1c(S): FMr,k(S)]

= [Sr: CSr]k = g*y(ί7).

The inverse image of W(M, N, C; m) is the union of the sets P(M, N[C]

+ Dj;m). Thus

'(C)
(7.18) I W(M, N, C; m)\ = q-*"™ £ \P(M, N[C] + D,; m)\

j = l

, N[C] + Z)^ 2n + 1)|

Putting everything together, we first get

THEOREM 7.3. Let k,reZ+ so that k>r, Me E{k) Π GLk{Δ) and Ne

E(r) Π GLr(Δ). Let nl9n2eZ+Ό{0} so that f # 5 c I S f c and pn*E c Aδ9

and put n = nx + n2. Then there is a number b e Z+ which depends only

on N with the property that if meZ+ and m> b + 2n, then

(7.19) \A(M,N;m)\

; 2n + 1)|,

where the summation is taken over a complete irredundant set of repre-

sentatives of the finite set {CeΦr: N[C] e E(r)}IUr. D

Remark 7.1. A choice for b is v{NU'') + 1 where Ue GLr(S)πδ. Put

b' = b + 2n. For m > b', we have

(7.20) qmw-*r*\A(M, N; m)\ = gδ'(σ(r)-fc? σ)|A(M, iV; 601.

§ 8. Classification of δ-modular lattices and counting arguments

Our objective is to compute value \P(M, N;ΐ)\ as defined in Section

7 when M defines an "modular" lattice; in order to do this, we work with

a rather bizarre category.

In this section we fix δeZ. Terms such as "lattice", "rank" and

"primitive" are used with respect to S-module structure, unless explicitly

stated otherwise. Define a category ^ as follows. An object is a [p, ε)-

hermitian lattice L such that for s(L) > δ and (u, υ) e Aδ every v e L. We
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say Le <% is hyperbolic if L is hyperbolic of denominator — δ, and we say

L is modular if it is ^-modular. A morphism L —> M is a primitives SjpS-

homomorphism β: L/pL-^ M/pM such that if vl9 v2eL and wl9 w2eM,

where θ{vi) = z^ mod (1) for £ = 12, then

(8.1.a) (υ19 υ2) - (wl9 w2) e pΔδ,

(8.1.b) (vi9 vz) - (wi9 u>i) e pAδ.

Define categorical composition to be the usual composition. Denote the

set of morphisms L -> M by P(L, M).

For a lattice, L, let 9 = p L : L -> L/pL. If β e P(L, M\ then a lift of

θ is a form-preserving S-homomorphism ΘQ: L ->M for which φoθ0 = 0oφ,

By Lemma 7.1, if 0 e P(L, M) and M is modular, then (9 has a lifting.

We let " = " refer to congruence module pL, pΔδ, pAδ, etc.. For zeL,

put z = z + pL. Also let Q = QL denote the map Q(z) = (z, z). We

regard Q as mapping into the i?-module, Aδ9 so equations "Q(z) = 6"

refer to congruence mod pAδ. Note that the I function factors to

{Δδ — pΔδ)jpΔδy and we adopt the convention that I of the 0-coset is l(p)

+ δ. Using Lemma 7.1 and Theorem 6.3.A, it is simple to show that if M

is modular lattice and x->M such that Q(x) = 0, then there is xf e M such

that x' = x and Q(x) = 0.

LEMMA 8.1. Let L, M9 Netf and suppose that L and M are modular.

Then

(8.2) IP(L _L N, L J_ M)\ = \P(L, L ± M)\\P(N, M)\.

Proof. Each θeP(L±N,L±M) is determined by θ1 = glL/pL and

02\M/PM- We must show that for each θλ e P(L9 L _L M) there are exactly

\P(N,M)\ choices for 6>2.

Let θί be α lift of an element in P(L, L J_ M). Then L J_ M = ΘX(L)

_L ^i(L)1 where M« ^^L)1 by Theorem 6.3. If ^ e ̂ (L) is primitive and

TeS9 then /((r^, Θ&L)) = Z(r) + δ. Consquently, for ^ e ^(L)

(8.3) (w,

If θ^θ.e P(L ±_N,L± M)9 then

(8.4) θ2{NlpN) c

It follows that θίφθ2e P(L ±N,L±M) if and only if fl2 e P(iV, ^(L)^;. D

LEMMA 8.2. If L,Me V, then \P(L9 M)\ = |P(-L, - M ) | .
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Proof. Trivial. •

Let M be a modular lattice and let L be a lattice such that P(L, M)

^ 0 . Express L = Lo J_ £1 where Lo is modular and s(Lj) > 5. By Lemma

8.1, there is Mf modular such that \P(L, M)\ = \P(L0, M)\\P(LU M% We

proceed by first classifying the isomorphism classes of modular lattices,

computing \P(L, M)\ for L and M modular, and then by computing

\P(L, M)\ in the case when l((L, L)) > d. For keZ+, let Hk denote a hy-

perbolic lattice of rank 2k.

Consider the factoring θ: ΔδlpΔδ-> AδjpAδ of the jR-homomorphism a

π-»α + εap. The map is surjective, so the kernel has order qσ~aκ In this

section, we define σ2 by

(8.5) g = | k e r ( ί U + 1 ^ ) |

and then a — σγ > σ2. For convenience, we also put t = σ/σ3.

DEFINITION 8.1. A modular lattice M i s called anisotropic if P(HU M)

= 0 . Equivalently, a modular lattice M is anisotropic if and only if there

does not exist a primitive xe M such that Q(x) = 0.

We regard the zero lattice {0} as an anisotropic space. It follows that

every modular lattice is the orthogonal sum of a hyperbolic space and an

anisotropic space.

We begin with a technical refinement of Lemma 7.1. For neZ and

keZ+, let Antk be the additive group of matrices N in Σ(k,ε) such that

(8.6)

Equivalently,

(8.7)

N^ e

N 6

Λ,

Δn

An

for

for

each pair i,j

each 7 .

T*: TeMk{Δ

and

Suppose no,r,keZ+ so that k > r, Me An>lc Π GLk(S)π\ Ne Λn,r and Te

Mrfk(S) is a primitive matrix for which TMT* — NeAn+nQtr. Let G be

the set of cosets [U] e Mrtk(S)lmno+1Mrik(S) such that

(8.8) U = 0 mod (mΏ0), (Γ + U)M(T + C7)* - Ne An+rί{o+l,r

for every representative U in the coset. The number of such cosets is

non-zero and depends only on n + nQ. Thus, for j^eZ"1", the number of

mniMr>k(S) cosets of primitive matrices T which satisfy the condition
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TMT* — NeΛn+7llfr is the product of a non-zero constant that depends

only on n and nx with the number of solutions when nx = 1.

Observe that

(8.9) pΛnΛ = A+icp),*.

In terms of lattices, the above remarks imply

LEMMA 8.3. Let M, N and N' be objects in <$ of ranks k, r and r

respectively, where k > r. Suppose that M is modular and that there is an

S-isomorphism φ: N-+N' such that for all x,yeN,

(8.10.a) Q(φ(x))- Q(x)eAδ+i,

(8.10.b) (φ(x), φ(y)) - (x, y) e J ί + ι .

Then I P(N, Λf)| = | P(N'9 M) |.

COROLLARY 8.3.1. Let M be an anίsotropic space. If υe M is primitive,

then Q(v)eAδ — Aδ+1.

Proof. Apply Lemma 8.3 to the choices N = (0) and N' = (Q(υ)). D

We begin our counting arguments.

THEOREM 8.4. Let r, ke Z+.

(A) If Netf is an anίsotropίc space of rank r over S, then the order

of P(H19 Hk _L N) is

(B) The order of P(Hr, Ht) is

r-1
(8 12) Qr{(2k-r)(2σ-σz)+σ2-σi} FT Mg(k - j-l)σs + σ - σι-σ2 I J_V^(fc-^)<T3 ]_)} .

j-=0

Proof. (B) is an tedious consequence of an induction based on

Lemma 8.1 and (A).

Fix a € Δ so that l(a) = δ. Express Hk = Mx © M2 where (ilίi, M,) =

(M2, M2) = {0} and put Λf = Hk _[_N. Let us first classify the classes of

primitive elements z e M/pM such that Q(z) = 0. First, suppose that υ e

Hk and w e N so that Q(u + w;) = 0. If w is primitive then (w, w) =

— (y, u), and Corollary 8.3.1 implies that v must be primitive. Thus, we

need only consider elements whose projection to Hk is primitive.

For the next step, fix υx e Mx be primitive and choose υ2 e M2 such
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that (vl9 υ2) = a. Decompose M2 = Δv2®Y where Y = {ue M2: (vu u) = {0}}.

Put

(8.13) D = {we(M2 + N)lp{M2 + N): Qfa + w) = 0}.

For each z#0 e Y + JV, there are exactly qσ~σi values b e Δ such that bv2 +

w0 e Zλ Thus

(8.14) \D\ = q^kiY+y^σ+σ-σt = g(r + fc)σ-σ! #

If ,ye Y + iV is not primitive, then Q(y) e Aσ+2 and there is at least one

a em such that Q(vt + av2 + y) = 0. It is now easy to check such that

(8.15) \{weD: w not primitive}! = qtr+*-i)**(t-i) + ca = ςr(r+*-i)σ-(r+*-i)σβ+^ β

A similar argument also holds for fixed v2 e M2. The number of primitive

x e M/pM such that Q(x) = 0 is computed as

( 8 16) 2(d1Cσ 0fc*-**3Wr + fc)tf-ffi C^fc^ qko-1tσ*\ίq{r+k)σ-σi ^ ( r + fe -l)σ - (r + fc -l)σ 3 + σ2\

__ /^fc<r qkσ-kσ3\Sq(r+k)σ-σi _ι_ ̂ ( r + fc-l)<r-(r+fc-l)<r3+ σ2\

Next fix xe M so Q(x) = 0. Without changing pM coset, we may

assume that Q(x) = 0. There exists yeM such that (x, y) = a and Q(y)

= 0. For w e M, (x, w) = α and Q(z#) = 0 if and only if

(8.17) w = bx + cy + u where b,ce S, ue (x, y)1, c = 1

and ba + ε(ba)p = - Q(w).

Thus, the number of hyperbolic pairs in M/pM is

(8.18) q(r+2k--l)σ-σi/qkσ qkσ - fcσ3Vg(r + k)σ - ox ι_ ^ ( r + fc - l)σ - (r +»-l)σ 8 + σ2\ ^ Γη

DEFINITION 8.2. For keZ+, put

(8.19) Ωk = Aδ>k Π GLk(S)πδ.

The group GLk(S) acts on βfc by u-M= uMu*.

We divide tuples (Δ, p; δ, ε) into types.

Type I: l(Aδ) = δ and σ > σt + σ2,

Type II: l(Aδ) — δ and σ = σx + σ2,

Type III: /(A,) ^F 3 and a > σx + σ2,

Type IV: l(Aδ) ̂  δ and σ = σ, + σ2.

THEOREM 8.5 (Quantitative structure theorem of modular lattices).

We work in the category <$ as defined above. Let σ, σu and σ3 be the

https://doi.org/10.1017/S0027763000001252 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001252


EISENSTEIN SERIES 71

quantities defined in (5.8) and (5.9), and let σ2 be as defined in (8.5). By

"rank", we mean rank as an SΊattίce.

(A) There does not exist an anisotropic lattice of rank greater than 2.

(B) 1/ M and N are modular lattices and rk (N) < rk (M), then

P(N, M) φ 0.

(C) The isomorphism classes of modular lattices are classified as follows.

Type I: For reZ+, there exists a modular lattice of rank r. Any two

modular lattices of the same rank are isomorphic. A modular lattice

is an orthogonal sum of rank 1 lattices.

There are anisotropic lattices of ranks 0 and 1.

Type II: Let reZ+. There exists a modular lattice of rank r, There are

two distinct isomorphism classes of modular lattices of rank r. If

L and M are modular lattices of rank r, then L _j_ L ~ M _[_M.

A modular lattice is an orthogonal sum of rank 1 lattices.

There are anisotropic lattices of ranks 0, 1 and 2.

Type III: A lattice is modular if and only if it is hyperbolic.

Type IV: There exists a modular lattice of rank reZ+ if and only if r is

even. If r is even, there are two isomorphism classes of modular

lattices of rank r.

There is an anisotropic lattice of rank 2.

(D) Let M be a modular lattice. Express rk (M) = 2g + λ where g e

Z+ U {0} and λe{0, 1}. Put η(M) = 1 unless g is even and M is not hy-

perbolic; in this case, put η(M) = — 1. Then \P(M, M)\ is

(8.20) qg«g+w2«-^-^ + ( g+»°*f(qε°s — η(M))*]] (qaσs — 1)
I l

* )) *fj
δ = 0

with the convention that {(qgσz — η(M)) \\s

az\(qaσz — 1)} is 1 if g = 0.

COROLLARY 8.5.1 (Context of Theorem 8.5). For keZ+, Ωk is non-

empty if k is (Δ, p;δ,ε) is of Type I or II, or k is even. If Ωk =̂  0, then

the number of orbits under conjugation by GLk(S) is 1 // (J, p δ, ε) is of

Type I or III and 2 if (Δ, p; δ, ε) is of Type II or IV. If (Δ, p; δ, ε) is of

Type I or II, then each orbit contains a diagonal matrix.

COROLLARY 8.5.2 (Context of Theorem 8.5). Let M and N be modular

lattices. If M®R F and N®R F are isomorphic as hermitian spaces over Δ,

then M and N are isomorphic as lattices over S.

Proof. The corollaries are simple consequences of Theorem 8.5. Their
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verifications are left to the reader.

For keZ+, define ~ on Ωk by

(8.21) M~ N£=$MΞΞNmod(pMk(άδ)) and

MJJ = iV^ mod (pAδ) for each 7 .

Put Ωί = Ωkj ~ . If Λf ~ iV, then M and iV lie in the same GLfc(S)-orbit

by Lemma 7.2. Thus, the action by GLk(S) on βft factors to an action by

G = GLk(S/pS) on Ωj>.

We must classify the modular spaces of (A, p; δ, ε). We do so by

giving a laborious analysis of anisotropic spaces when k — 1, 2, and then

deducing all other results from these two cases. In particular, Theorem

8.4 determines the order of the \P(N, N)\ in general once we give formulas

for anisotropic lattices. The number of isomorphism classes of modular

lattices of rank k is the number of G-orbits of Ωί.

Case 1: l(Aδ) = 3

First, put Ω = Ωv Let if be a hyperbolic plane and let {eu e2} be a

hyperbolic pair of H. Let a e Ω. If v e H and Q(v) = α, then v is primi-

tive—in fact, if v = β̂j + μe2> then λ and μ must be S-units. For each

S-unit λ, there exists μe S such that Qiλe^ + ^2) = #> a n ( i the number of

such values mod(p) is qa~ai. Hence,

(8.22) |P((α), H)\ = q—*(q< - q-<ή .

Now H « (α) J_ ( — α), and so

(8.23) |P((α), (α))| = |P((-α) , (-α)) | = |P(H, H)\I\P((a\ H)\ =

Note that |P((α), (α))| does not depend on a.

Define τ e Z + by

(8.24) tf = \{beAδ: l(b)> δ}/pAδ\.

Each G-orbit of Ω' contains |G|/(<2'σ-σi + qσή points. The number of orbits

is

(8.25) (qσi - qτ)(qa-σi + qa2)l(qσ - <T~σ3)

First, suppose that the number of orbits is 1. Now if d,e,feZ and d >

e, f, then qd > qe + qf. Hence either

(8.26.a) σx + σ2 — a + τ — σλ and σ — σz = τ + σ2, or
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(8.2β.b) OΊ + σ2 — τ + σ2 and a — σ3 = σ + τ — σx.

Since σx > τ, the latter equations do not hold. The conditions of (8.26.a)

are equivalent to σz = 2(σ1 — τ) and σ = σx + σ2 + (σs/2).

Next, suppose that the number of orbits is greater than 1. First,

suppose that σ^ + σ2 < σ. Then we have

(8.27) qr*1+αa + qσ—* > qσ — qσ'σs,

= Φ Sq"-1 > qσ = φ g = 2.

Substituting ςr = 2 into (8.25), we quickly see that σ3 = 1. It follows that

(8.28) (2*1 + *2 - 2σ+τ-σi - 2Γ+σ2)/2σ-1 e Z + U {0}.

From <7j + σ2 < σ — 1, we get

But σ — σΊ — σ2eZ+, so the last equation is impossible.

Assume σ = σ1 + σz. The number of orbits is

(8.30) 2 + {2gσ~σ3 - 2gτ + σ2}/(<T - gσ"σ 3).

The righthand ratio is 0 if and only if σz = <7j — r. Reasoning as above,

we find that the ratio is a positive integer only if q — 2, σ3 = 1 and r =

σx — 2. If (J, p) produces these parameters, then Δ = F or J is a ramified

quadratic extension of JF. But r > 0 and so σλ = 2, which is not true in

either case. Hence, the number of orbits must be 2.

We need a special remark in the Type II case. Let b and c represent

the distinct orbits of Ω. We claim that (6) J_ (b) « (c) J_ (c). Suppose that

ve(b)± (6) such that Q(υ) = c. Then (Si;)-1 = So; where (c) J_ (Q(w)) «

(6) _]_ (6). Now (Q(w )) is not isomorphic to (6), and we are done. Suppose

cgIm(Q ( 6 U ( & ) ). Under this assumption,

(8.31) ImiQ(6)) = Im(Q ( δ ) 1 ( δ ) ).

But now a simple induction implies that Im(Q(δ)) = ImίQ^) where N is a

finite orthogonal sum of spaces isomorphic to (6). The sum No of g copies

contains a primitive ι/ such that Q{vf) = 0, which implies that £Γ imbeds

into JV0. But then v elm (QNo), which leads to a contradiction.

Still assuming that l(a) = δ, suppose that N is a modular space of

rank & > 1. Then N contains a fundamental lattice of rank 1 or 2. In

either case, it is easy to show that N must contain a primitive element

https://doi.org/10.1017/S0027763000001252 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001252


74 PAUL FEIT

v such that l(Q(v)) = δ. By induction, we see that N is an orthogonal

sum of rank 1 lattices. In the Type I case, this implies that the iso-

morphism class of N is determined by its rank. In the Type II case, our

special remark implies that there are two isomorphism classes for each

rank. For either type, we can also conclude that if N and N' are two

modular lattices and rank(iV) < rank(iV), then P(N, N') ^ 0.

Let N be an anisotropic rank 2 lattice in the Type II situation. Let

aeQ and put g = |P((α), (α))|. Now N = (a) J_ (6) for some be Q, and so

(8.32) \P((ά), N)\ = \P(N, N)\l\P((b), (&))| = \P(N, N)\/g.

Now ΣaeΩ'\P((ά)> N)\ is the number of primitive elements of N/pN. Thus,

(8.33) 2(\G\lg)(\P(N, N)\/g) = q2* - <?2-2" ,

=4> \P(N, N)\ = 2^+ 2 σ 2- σ 3(r 3 + 1)

The remaining claims for the Types I and II situations follow easily.

Case 2: l(Aδ)>δ.

Let N be an anisotropic lattice with matrix f j over a basis /Ί,/2.

We compute |P(JV, iV)| by studying \P(N, HJ\.

Express H2 = M,® M2 where (M19 M,) = (M2, M2) == {0}. If vx e M, and

ι;2 e M2 so that Q(ϋj + v2) = 6, then Ϊ^ and ι;2 must be primitive (because

bέAδ+1). For ^ e ϋ ί Ί primitive, there is v2eM2 such that M2 = Av2®

((Δυϊ)L Π M2). Thus, the number of y e M2/pM2 such that Q{vx + y) ΞΞ b is

ς2<τ-ffl. Next, suppose ^ e M so that Qfe) = 6, and put 6r = Qfe). There

is y e H2 so that the matrix of the form with respect to {e19 y} is ( p

 aλ.

Now (euy}L is isomorphic to — ( °ί). Thus, we can choose e2eM so
\SUf C J

that the matrix with respect to {eu e2) is ί p ? j . Hence, there are β3, β4

such that the matrix with respect to el9 e2, e3, e4 is

(8.34)

.0 0 eap 0.

Let y = aex + j8e2 + w where u e <β3, e4). Then

'V

0

α

0

0

0

0

0

0

0

a
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(8.35) (βif y ) Ξ

Q(y) = c φ=φ Q(u) = c - ab'a" - aaβ" -

The two equations imply that QHi(u) e QN(f* — α/Ί) + AH1. If (a, u) solves

the two equations, then u = λe, + μet where λ, μ are S-units. The number

of solutions is (f'-Λi{q' — q"-"3). Now — N is also anisotropic and N _]_

-N^H2, so

(8.36) |P(JV, £Γ,)| = g 4 - * ' ^ ' - ςft'-t")(q' - g—•),

Put β r = βa Inspection shows that

(8.37) | β ' | = Q2σi(qσ - r ^ 3 ) .

The orbit of hyperbolic matrices in Ωf contains

(8.38) qU-iaZ+*χ-c2(qUz

elements. Suppose that σ3 < σ — σx — <72. Then σ — σx — σ2 > 1, qσ-σi-σ2

+ 1 is prime to g, and (8.38) implies that 2σ3 > σ — σ1 — σ2. Moreover,

qσ-σi-σ2 + i divides

(8.39) QLa% + Qσ~σi~σi — qo-cx-ai/qiaz-a + σi + θ2 I ~\\ β

But then 2σ3 > 2(σ — σx — σ2), which is a contradiction.

If (73 = a — σx — σ2, then (8.38) equals (8.37) and there is one orbit.

Suppose <j3 > σ — σλ — <72 The number of anisotropic orbits is com-

puted to be

(8.40) g-tf+ffi + σ^gσβ-ff + σi + ffβ __ I^qaz + σ-σ1-σ2 _J_ l)/(q2^ — 1) .

This is a g-adic integer only if σ — σί + σ2, and in this case there is only

one anisotropic orbit.

Let N be an anisotropic lattice of rank 2. Then — N ~ N. If N' is

another anisotropic lattice, then N is an orthogonal sum of anisotropic

fundamental lattices. But the sum of two such lattices is isomorphic to

N± - N^ H2, and so N' « N or N' = {0}.

All claims concerning Types III and IV follow. •

We turn to the second problem—compute \P(L, M)\ when M is modular

and s(L) > δ. We write N — N' if there is an S-isomorphism φ: N -> N'
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which fulfills the hypothesis of Lemma 8.3. For the moment, fix L a

non-trivial hermitian la ttice and consider J£? the class of lattices Lx such

that L ~ L1 J_ D for some trivial hermitian lattice D.

Let Li e JSP. First, suppose veLλ such that Q(v) e Aδ+ί, and l((v,LJ)

= s(Lj). If l((υ, v)) = s(L,), then Li = (Sv) J_ L' for some U, and Lx - (0)

J_ ZΛ If 7((u, ϋ)) > 5(Li), then there exists w so that {u, w} is fundamental

and Lj = (v, w} _[_ ZΛ The matrix of the form with respect to {v, w} is

ftp

 a\ and so L, ~ (J J) ± L ' N e x t , observe that if Lx = A J_ B where

A is a rank 2 fundamental lattice given by ί p

 a\, then Lx — ί~ )j_ B.

We conclude that there is an element Lx e Jδf which is given by a

diagonal matrix and with the property that Q(v) & Aδ+1 for v eLγ primitive.

Formally, we have

DEFINITION 8.3. Let

(8.41) V={xeAδ: l(x)> δ}IAδ+ί.

Then V becomes an S/m-module under an action with the property that

(8.42) VaeS, VxeAδ, a x = axap,

where " " denotes the equivalence class of an element in Ad/Ad+l or

S/m. If L e <g so that s(L) > δ, then the function QL composed with φ :

Aδ —> V is an S-homomorphism. Define the defect of L to be

(8.43) def (L) = rank,/m Im (φ o QL).

LEMMA 8.6. Let Le& such that s(L) > m. Then there exists L^eΉ

(possibly of rank 0) such that L — Lx _]_ D for a trivial lattice D, and φ o

QLl induces an injection on LJxnL^ Moreover ranks(Lj) = def(L).

Let us compute d = άims/m(V) for each of the Types. The space

Aδ+JpAδ is the image of θ of (8.5) restricted to dδ+ί[pdδ. Thus,

(8.44) \Aδ

and

(8.45) q.-z-*+Λ,t = \A,lpA,\ - \Ωi\.

Hence,

(8.46) d = 0 for Types I, II and III, and d = 1 for Type IV.
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Let M be a modular lattice, De&, and let So denote the lattice S

with the trivial form. The number of v e M\pM for which Q(v) = 0 is

computed in (8.16). If v e M so that Q(v) — 0, we may express M =

(v, w} _|_ Mr where {v, w} is a hyperbolic pair. An extension of 1 »-> v to

a S-homomorphism 9: So J _ D - > M is determined by its projections ψx: D

—•M' and <p2: D -> <u, u;). It follows that if 2V is anisotropic of rank r

and £ e Z + , then

(8.47) | P ( S 0 _ L D,Hk±N)\ - gCr+ίfc-lXσ-^ + σa + rfcCi))^*., _ ^

Next we make a special comment in the Type IV situation. Fix b e Aδ

— Aδ+1. Let Metf be modular of rank 2k. Now rk V — 1, so if ce A3

— Aσ

+1, there exists ue S — m such that ce ^ 6 ^ + Aδ+1. Consequently,

|P((c), Λf)| = |P((&, M). The number of primitive members of M is

(8.48) i (Aδ - Ai+dlpAJi I P((b, M) \ + | Aδ+ JpAδ\ \ P((0, M) | .

Thus,

(8.49) |P((6), M)| = q**<-ι-*"(q*« - η(M)) .

Computation produces

THEOREM 8.7 (Context of Theorem 8.5). Let D,Metf. Suppose M is

modular lattice, r k ( D ) > 0 and s(D)>δ. Put d = rk (D), μ = def (D),

37 = ??(M), α^d express rk (M) = 2^ + ^ /or geZ and λ e {0, 1}. Then

P(D, M)^0 if and only if d = μ = 1 or P(Hd-μ, M) * 0 . If P(D, M)

^F 0> ^ β n iί has order

(8.50) gd{(2g+X-d){σ-σ3)+σ2 + (d-l)σ/2}

α = 0

Λe convention that the second term {*} is 1 if d — 0.

§ 9. Hermitian lattices and the power series

Fix 3 = l(@) for this section. For reZ+ and neZ, put

(9.1) Σ(r; ή) = {TeΣ(r, εp): l(Th) > n for each pair of indices (ij)}9

Σ(r; 7i)* - {Γe 2(r, ε): X(Γ J(r; Λ)) = {1}},

®n = {deJ: VbeJ, l(b) > n = > X(6d + bpdp) = 1}.
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Clearly 9n = Jδ_n. For TeMr(Δ), also let

(9.2) L(T) = [TSr + Δ'n: Δ% .

We begin with a Gauss Integral.

THEOREM 9.1. Let r,keZ+, neZ, and NeΣ(r,εp). Let H be a 2k X

2k matrix which represents a hyperbolic lattice of type (p, ε) and denomi-

nator n — δ, and let μ be the Haar measure on M2ktr(S) for which

μ(M21c>r(S)) = 1. Then

(9.3) ί X(HxNx*)dμ(x) = qr>»<-

Proof. When we apply this lemma later, the "JV" term here will

correspond to a variable on Σ(r, εp). For that reason, we have written

the hypothesis so that N has type (p, εp) and H has type (p, ε). In this

argument, however, we apply lemmas from previous sections to the matrix

N regarded as a (p, εi°)-hermitian lattice.

Clearly we are free to replace H by any matrix of the form uHu*

for u e GL2k(S). Let d e Δ so that l{d) = δ — n, and put

We do the proof in three steps.

Step I: k = 1 and Jvί,^, ^1 where a e # , 6 = 6"6P, c = εpcp, and

J(6), /(c) > l(a).

Using coordinates ί ^ ^\ on M2{S), the integrand becomes

(9.5) X(εdpybwp + εdpyaxp + dpzapwp + edpzcxp + dwbyp

+ εpdxapyp

Composing the integrand with the measure preserving map (w, x, y, z) •->

(w9 x,y,z — ybpa-p\ we get

(9.6) X(εdpyaxp + dpzcpxp — dpybpa'pcpxp + epdxapyp + dxczp — dxca^by9)

X X(dpzapwp + dwazή.

Fix x, y, 2. The map u; ι-> X(dpzapwp + dwaz9) is a character. Thus, the

integral over M; vanisheds unless d^α p e 3f—that is, unless l(z) > n — l(z).
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Note that when l(z) > n — l(a), then X(dpzcpxp + dpxczp) = 1 as well. Thus,

the integral equals

(9.7) q~3n{a) ί l{εdpyaxp - dpybpa~pcpxp + εpdxapyp - dxca-xbyp)dμ(x,y).
χ,yes

The argument is

(9.8) dx(εpap - ca~1b)yp + dp{x(εpap - ca^tyy9}',

where l(εpap — ca'^b) — l(a). Reasoning as before, we conclude that the

integral is q-2^a\ By (6.3), jn(N) == 2jn(α).

Step II: k = 1 and iV = (6), where b = εpbp

We allow 6 = 0. In terms of the variable matrix ί j , the integrand

is

(9.9) X(dpybpxp + cteδy).

Reasoning as in Step I, we deduce that the integral is q-jnib\

Step III: General situation

Let Ne Mr(Δ) so that N = εpN*. Put H = H,. The matrix N deter-

mines a hermitian form on Sr. By Remark 6.1, there is we GLr(S) such

that

(9.10) uNu* = diag {iVi, , Na}

where each Nό is a 6̂  X 6̂  matrix which satisfies the hypothesis of Step

I or II. Conjugation by u affects neither the j factor nor the integral,

so it suffices to prove the theorem when N = diag {Nu , Na}.

The integrand becomes

where xi} varies over MΐιtJ(S). The integral becomes

(9.12) fl q-MNl)lc = qr'-<*>*. D

For neZ and keZ+, let jE?"Λ>n be a 2A X 2^ matrix which determines

a hyperbolic (p, ε)-hermitian lattice of denominator n — δ. For m, k, rez+

so 2k > r and NeΣ(r: n)\ put

(9.13) AQ(k, 7i, iV; m) = {Γe Mrί21c(S): Γmod(m) e A^,,, , iV; m)}
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where A(Hkf7l, N; m) is defined in (7.10) with respect to E(r) = Σ(r; n)\

Then \A(Hte,n9 N; m)\ is the measure of the set AQ(k, n, N; m) with respect

to the Haar measure μf on Mr>2k(S) such that μ'(pnMr>21c(S)) = 1. Clearly

Let v denote the Haar measure on Σ(r, ep) such that v(Σ(r; n)) = 1.

For EeΣ(r:n)\

(9.14) f X(Ex)dv(x) =
ί ( )p m ί ( r n )

 σ ( r ) i£ EepnΣ(r;ή)*.

Then

(9.15) \A(Hk,n,N;m)\

Γ f %((THk,nT* - N)x)dv(x)dμ{T) .

Interchanging the order of integration and invoking Theorem 9.1, we get

(9.16) gmσ(r)-2Wfcr*| A(Hk>n, N; m)\ = ί X(-Nx)q-jn{x)kdv(x).

Define formal power series in an indeterminate t by

an(N, t) = Σ X(-Nx)t-"*>.

It is routinely verified that an(N, t) is a properly defined power series,

and that for tQeC with \to\ sufficiently small, we have limmι_ooα:^(iV, tQ) =

an(-N, 0 . Observe that <(iV, t) = αn(-2NΓ, ί) and αn(iV, ί) = αn(-iV, t).

LEMMA 9.2. Lei neZ+, reZ+, and NeΣ(r; n)* Π GLr{Δ). Then there

exists beZ+ such that a%(N, t) = an(N, t) for each m> b.

Proof. Let beZ+ be the bound in Theorem 7.3 for £0 = l(@n) and

E = Σ(l;n)*. Remark 7.1 and equation (9.16) imply that a?(N, q~k) =

ab

n(N, q~k) for all M > b and k > r/2. Thus, for m > 6 we have <(iV, ί)

= ab

n(N, t). It follows that an{N, t) = ab

n(N, t). Π

COROLLARY 9.2.1. For neZ,

(9.18) Σ(l 7z)# = {d + ed?: d e ^ J ,

where 2ΰn and Σ(l; rif are given in (9.1). Equivalently,
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(9,19) Aδ_n = {de 2(1, ε): X(d-2(1; n)) = {1}}.

Proo/. Clearly (9.18) implies (9.19). Let b e 2(1; nf - {0}, and put

N = (6). By Lemma 9.2, αrn(iV, ί) is a polynomial whose constant term is

obviously 1. It follows that there is keZ+ for which A(Hktn,N;m) is

not empty for all m greater than some bound. The reasoning of Section

7 (Lemma 7.2 and Theorem 7.3) implies that there is a primitive form-

preserving injection of (c~ιbc~*) into Ήk for some c e S — {0}. Thus, c^bc"*

e Aδ_ny and our claim follows. •

We can now prove half of the claims in Section 5.

Proof of Lemma 5.1. Let π be a generator of the maximal ideal of S.

Then c »-» cπ* induces an additive isomorphism Ω(π) ̂ > 2(1 ί)[Σ(l 2). By

Lemma 9.2, the character group of Σ(l; 1)/2(1;2) is Aδ_2IAδ_1. The latter

space is isomorphic to Aδ/Aδ+1 under c^>πcπ*. Now

(9.20) q'* = [A,: pAJ - [At+ί][Aδ+1: pAδ] ,

where we have established that [Aβ: Aa+1] = qσ\ The map <9 used in (5.9)

is surjective, and so [A ί + 1:

Proof of Theorem 5.3 u /ierc r — m. We use the formulas in (8.20),

(8.50) and (7.19) with the convention " M " is hyperbolic of denominator

— δ and of rank 2k and 71, = ^ = 0. For g,heZ+ U {0}, A, μ e {0, 1} and

27 6 { — 1,1} such that

(9.21) μ< h, η=l if A = 1, and μ=l only if λ = 0,

let JS(g, /ι, A, 27, ̂  t) be the polynomial

((1
(9.22) L

g + ^ + ^ l

x Π (1 -
0

Π
J-0

with the convention that the bracketed product is 1 if g + h — 0. Sup-

pose CeΦr such that N[C]e Σ(r; S)K Express the lattice determined by

N[C] as L J_ D where L is unramified and s(D) > 5. Then the summand in

(7.19) corresponding to the coset of C is R(g, rank (D), 61, τ?(L), def (D); g"fc)

where 2^ + λ — rk (L). Consequently, a(N, t) = αo(iV, ί) agrees with the

sum of polynomials R(g, rank (D), ,̂ )y(L), def(D); ί) taken over cosets C.

Some simple identities are
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(9.23) R(g, h, λ,η,μ;t)\R(g - 1, h + 2, λ, if, μ' t),

R(g,h,λ,η9l;t)\R(g9h9λ,η,O;t),

R(g, 0, 0, η, 0; t)\R(g - 1,1, 1, 1, 0; t)\R(g - 1, 2, 0, η, μ; t) ,

R(g, 0, 0,η,0;t)\R(g, 1, 0,1, 0; t)\R(g - 1, 2,1,1, 0; t).

The expression in Theorem 5.3 divides every term. If N determines a δ-

modular lattice, then a(N, t) equals the term corresponding to C = 1. •

Once we find a(0, t) for 0 any square zero matrix, the remainder of

Theorem 5.3 follows by direct calculation. For the rest of this paper, fix

7r a generator of the ideal m, and recall that qQ = \S/πS\. For reZ+, let

I(r) be the set of all tuples (α,, , at; bu , bt)eZ2t such that

(9.24.a) teZ\

(9.24.b) aj > 0 for each index j ,

(9.24.c) 0 < bx < b2 < < bt,

(9.24.d) ΣJ-i«i = r .

Put d(au , at; b» , bt) = diag {̂ δl, . . ., τrδl, π&2, , ^δ2, ̂ δί, -, π%

where the term πbJ appears a5 times. Also, put

(9.25) f(n) = Π U (1 - 9o"O for n e Z + , and

/(αj, , at; bί9 , bt) = fly-i/fa)

Let f = (al9 - -, at; bu , 6J 6 /(r). If A e Z so that δj > yfe(6i /̂ ), we write

ξ > k(ξ > k) and let f — /̂  denote (al9 , at; bx — k, , bt — k).

We need

THEOREM 9.3. Let r e Z+, ξ = (αt, , at; bu , bt) e I(r), and put Θ

= d(f)
(A) Ϊ7ιe additive group Enάs(SrISrθ) has order

(9.26) qfr where κx = Σ &A2 +
ii

(B) TΛβ sets Ur\UrθUr and UrθUr/Ur are finite and share the common

order

(9.27) ψl φ where κ2 =
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(C) As formal Dίrίchlet series in the variable q~\ we have the equality

(9.28) Σ Q~V(D)S = Tf (1 - q'^-^y1.
DeUr\Φr i=0

Proof, The results are well-known when Δ = F, The classical proofs

apply to the non-commutative case, so we omit them. •

Let meZ+. Define a diagonal matrix of order m to be a diagonal

matrix θ such that each diagonal entry λ satisfies l(λ) = m. If r, k e Z+

and θ and θ' are diagonal matrices of order m of sizes r X r and k X k,

respectively, then

(9.29) θMuk(S)θf-1 = θ-'Mryli(S)θf = Mr>k(S).

In what follows, we freely identity ^ e J with a matrix of the form θlr.

From [3; (4.4), (4.5)] with the choice T = 0, we see that

(9.30) ( Σ q-viD)sM0r,q-s) = ( Σ
DQϋr\Φr Deϋr\Φr

Again, although the proof of this fact is given under the assumptions

char (F) = 0 and ε e {1, — 1}, the argument holds in general. We next

turn to the quantities Ωφ) and Rφ) for DeΦr. If a, β e Ur, then R(aDβ)

= Rφ). Let rt, r2 e Z+, Dι e Φ r i , A e Φr2, and 0 € S - {0} such that ΘD^1

e Φri and A^" 1 € $r2- Let r = rx + r2, and decompose any matrix Ce Mr(S)

by

(9.31) C=[ C »S where C " e « - CI2eM_(S),

LC21 C22J ς e M r i Λ ( S ) C 2 2 e M r 2 ( S ) .

Put D — ί Q ' £ j . Our assumptions imply that if Te MTltT,{S) then

(9.32) DtTD;* - Dφ-\θTθ-*){θ*D?*) e MruTJ[S).
Direct calculation shows that for a choice of submatrices (C u , Cn, C22),

either there is no CeΩ(D) with the assigned parts, or

(9.33.a) Cn e

(9.33.b) C2 2 e Ω(D2),

and then there is exactly one such C. We get an obvious isomorphism

(9.34) Ω(D)IDΣ(r, S) -^-> ΩiDdlD.Σir,, S)

X

= Φ -R(-D) =
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Equation (9.34) is true if rx = 0 or r2 = 0. A simple induction implies

that if ae S - {0}, then R(alr) = R(a)rqr{r-ι^a)β for all r.

Let reZ+, DeΦr, and let 0 be an r X r diagonal matrix of order m.

The map C^>θ*Cθ induces an isomorphism

(9.35) Ω(θDΘ*)l(ΘDθ*)Σ(r, S) - ^ > Ω(D)ID(θ*Σ(r, S)θ)

From Definition 7.1, we get c(β) = q*«-w<*+™<*m

For k,reZ+, define

(9.36) fc(r, s) = Σ R(d(ξ))I Ur\Urd(ξ)Ur I
f e / ( ) £ 2 f c

We use the convention that βk(0, s) = 1 for all £. Then /30(r, s) is the

righthand side of (9.30). Note that for k,r,me Z+,

(9.37) βm + 21c(r, S) = ρ - ( r - l ) ^ . + r*..-2r* ,. igm ( Γ ) § )

since

(9.38) v(d(ξ + 2k)) =

I Ur\Urd(ξ + 2^)C7r| = I Ur\Urd(ξ)Ur\,

Λ(d(f + 2A)) = R(πkd(ξ)(μψ) = ^ c - ^ ^ ^

We get recursive formulas involving βQ and ĵ by relating the relevant

quantities for ξ e I(r) with the analogous quantities for a shorter tuple

ξ' e I{rf) where rf < r.

Let $ = (au , 6£) e I(r). We assume that ί > 1. Express bx =

2^ + ^ where A e Z and A e {0,1}. Let ξ' = (α2, 62 - 2A, •••,&«- 2ife).

To simplify the formulas which follow, put a — ax. Note that ξ' > λ.

Then

(9.39) v(d(ξ)) =

\Ur\Urd(ξ)Ur\ = χ ( ( r )

/(α)/(r - α)
R(d(ξ)) = Λ r( r-1) f c f f3 + » ̂ 5 + ̂ ' 'ί{2 ' - a -

With obvious conventions on "0 X 0" matrices, the formulas are true

when t = 1.

Let reZ+. Let us introduce some more notation. Put /(0) = 1. If

ξ = (aί9 , at) e (Z+ U {0})ί so that J > , < r, then put
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(9.40) PJ = f(r){/(α,) -f(at).f(r - Σp,)}-1 .

Reducing each ξ e I(r) to ξ' e /(r'), we get

p<\r, s) = 2 J 2 J Z - i - ^ W 4 ι ; 8 β 8 ' 8 U v ;" ' f t + i v ' ' — b , s — b)

(9.41) = (1 — gr<Cr-l),s + σ5-2,,,})-l J ] ^ { j ^ Γ — 6, S — 6)
6 = 1

_|_ g (T4+ r - <r5 + σ 3 r - δ r + 6 - ) + δ δ - )/ ) - ( r - δ S β^j, __ fog __ ty} ^

Decompose {ξ e I(r): ξ>l} into {ξ e I(r): ξ > 2} and Uα{? e /(r): f =

(α, •••;!,•••)}.

r

Substitute (9.42) into (9.41). Multiply both sides by (1 - ^{(r-i),,^,^.})
and then add qr{ir-ί)σ*+σ5-2σ*s}βQ(r, s) to each side. Note that PζPr

b

e =

P?+bP
e

b

+b for e, b, r e Z+ U{0} such that r > e + 6. We get

(9.43) βQ(r,s)

r e
y 1 (prgσz{(r-e)(r +e-1)-2(r-e)s} + (r-e)σ 5 o /^. ^ „ ^\ y 1 peQθz{b(e -b)s] +δ(δ -l)/2 + δσ4|

δ=0 δ=0

We now cite the classical identity

(9.44) Π (1 + yH) = £] γ»y(»-»>+(δ<
δ=0 δ=0

where y and t are indeterminates and

n

Γj (i __ y-j)
(9.45)

Σ (i - y-0

Put ί = ρ^-ff3S and y = g^3. We have

(9.46) βQ(r,s)

e=0

Divine inspiration suggests the substitution

( re \ m " 1

m, S + -?*- - 1 + m) f]
2(73 / 6 = 0

where the new functions satisfy
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(9.48.a) B(0, β) = 1,

m

(9.48.b) B(m, β) = Σ Pϊp '- t*-"-" '^*, s) for each m e Z+ .
0

Clearly (9.48.a, b) uniquely determine the family of functions {B(m, s);

meZ+}. We claim that

(9.49) B(m, s) = " [ fa - g—<>+2o)-i.

With the substitution 3/ = g-"3 and Z = q~2σ3\ and after dividing by the

expression B(m, s) given in (9.49), we may derive (9.48.b) from

LEMMA 9.4. Regard Y% given in (9.45) as a rational function in the

variable y. For t,y indeterminates,

"(9.50) 1 = £ Y%y-W-*ψ"π (1 - y't) .

Proof. It suffices to verify (9.50) for substitutions y = q where q is a
positive integral power of a prime. But this follows from (7) in [4; Pro-
position 1 of Section 5] after substituting x = l[t, z = 0, and then multi-
plying both sides by Γ. •

The remaining work is straightforward computation.
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