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EXPLICIT FORMULAS FOR LOCAL FACTORS IN THE EULER
PRODUCTS FOR EISENSTEIN SERIESY

PAUL FEIT

Introduction

Our objective is to prove that certain Dirichlet series (in our variable
g~°), which are defined by infinite sums, can be expressed as a product
of an explicit rational function in ¢-° times an unknown polynomial M
in ¢-*. Moreover we show that M(q-*) is 1 if a simple condition is met.
The Dirichlet series appear in the Euler products of Fourier coefficients
for Eisenstein series. The series discussed below generalize the functions
a(N, g~%) used by Shimura in [12], and the theorem is an extension of
Kitaoka’s result [5].

The paper is formulated in the language of formal Dirichlet series
and local algebras, although the motivation comes from the study of
Eisenstein series. The author has been studying automorphic forms on a
“unitary” group G defined with respect to a totally real field F, a finite
dimensional division F-algebra 4, and an involution p of 4 such that F
is the fixed field of p restricted to the center of 4. The two seminal cases
studied by Shimura in [12] are

(1.a) Sp Case: 4=F, p=1; G= Sp(m, F),

(1.b)  SU Case: A4/F is a totally imaginary extension field, p is
Galois involution, G = SU(m, m; 4).

Euler products naturally arise which are indexed by P, the set of primes
of F. Moreover, the factor for pe P is an integral over the additive
group of hermitian matrices in 4, = 4®;F,. When p is finite, the inte-
gral can be naturally rewritten as a formal Dirichlet series in Np-°. The
series appearing in the cases (1.a,b) have been studied Shimura [12],
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Kitaoka [5], and the present author [3]; if
(2.2) P2 Sp Case,
2.h) p is unramified in 4/F SU Case,

then the series is characterized as an explicit rational function in Np-*
times a polynomial in Np-° which generalizes the classical ¢-functions.
Kitaoka also proves the same result in the Sp Case when p =2 and F
= Q. For more general 4, the existing theory easily extends to the cases
when 4, is a matrix algebra over F,, over F, ® F,, or over an unramified
extension field of F,. Our present objective is to prove the same sort of
characterization for every finite prime. It suffices to handle the cases
where 4, is a division algebra or is a sum of two division algebras. An
immediate consequence of the present work is

THEOREM A. Statements [3; Theorem 9.1] and [3; Theorem 9.2] are
true when the level b is any proper ideal.

The statements in [3] involve many definitions and are omitted. In
a later paper, we will give an analogous theorem at level 1 (6 = R).

Part I looks at a class of formal Dirichlet series which includes the
series arising when 4, = 4, @ 4, is a sum of two algebras. In this case,
the space of hermitian matrices is naturally identified with matrices over
4,. We consider constructions based on spaces of (possibly non-square)
matrices over a local division algebra.

Part II deals with the much more interesting situation when 4(= 4,)
is a division algebra. The main theorems are stated in Section 5. Siegel
computed Fourier coefficients of Eisenstein series of large weight % for
groups Sp(m, Q) by relating certain infinite sums to a counting problem.
The Fourier expansion of an automorphic form on Sp(m, Q) is naturally
indexed by the set L of half-integral symmetric matrices; for A e L, the
corresponding coefficient of an Eisenstein series is a limit as n+ o of
quantities involving the number of solutions to the equation TH'T =
hmod (n) where H,, is a hyperbolic half-integral matrix. When working
adelically, we encounter local Dirichlet series instead of sums over inte-
gral matrices; however, the local series are also understood by relating
them to a counting problem involving hermitian matrices over 4. For
me Z"*, the group of additive character on mXxXm “(p, ¢*)-hermitian” ma-
trices (defined below) which are 1 on “integral” matrices is identified
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with an additive subgroup 3(m, S)¥ of mxXm “(p, ¢)-hermitian” matrices.
(The group appears as a dual group of characters for a lattice 2(m, S).)
The space X(m, S)* plays the same role as the lattice of half-integral ma-
trices in the classical theory; in fact, 2(m, S)* is the set of all hermitian
matrices whose off-diagonal entries lie in one additive group 2 and whose
diagonal entries lie in another group X(1, S):. A critical technical fact
is that X(1, S)* = {x + ex*: x € 9}, which is proved as Corollary 9.2.1.

The structure of Part II is as follows: Section 6 develops a theory
of “hermitian lattices” which closely parallels the classical theory of Z-
lattices with inner products. “Modular” and “hyperbolic’’ hermitian lattices
are defined, and a Witt Cancellation Theorem is proved for such lattices.
Section 7 discusses the problem of counting the number of ways by which
one hermitian lattice can be represented by another “mod (p*)”’-part of
the problem is to give a usable definition of congruence modulo p=.
Much of this section could be simplified if Corollary 9.2.1 could be proved
by a new argument; in our present work, we use the generalized theory
to prove the corollary. Section 7 reduces the counting problem to the
computation of certain numbers |P(L, M)|, which are studied in detail in
Section 8. These technical quantities play the same role as that of the
orders of the orthogonal groups of quadratic spaces over finite fields in
Kitaoka’s work [5,6]. In Section 8, all modular lattices are classified up
to form-preserving isomorphism. Section 9 combines the theory of her-
mitian lattices with some formal power series manipulation to prove the
desired theorems.

The arguments in Part II are very general—they do not depend on
whether 4 is commutative or not, whether p is of the first or second kind,
whether hermitian or anti-hermitian matrices are considered, etc.. Un-
fortunately, the general formulation requires a deluge of notation.
Occasionally, the same variable is used for different quantities in Part
I and Part II; however, as neither Part depends upon the other, there
should be no confusion. At the end of this introduction is a list of
terms with the locations of their respective definitions.

Our formulation is purely local. We are primarily interested in local
fields of characteristic 0, but the arguments apply to finite characteristics
as well.
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Introduction
0. Notations and conventions
1. The standing hypothesis
PART 1
2. Statement of theorems for Part I
3. Auxiliary series
4. Square matrices
PART 1T
5. Statement of theorems for Part II
6. A Witt Theorem for hermitian lattices
7. Counting representations mod (n)
8. Classification of d-modular lattices and counting arguments
9. Hermitian lattices and power series
NOTATIONS.
[x] §0.A (o, ¢)-hermitian §0.B Definition 6.1
X non-trivial additive hyperbolic
character—see after I, 2.1)
1.7) «(C) (7.5)
A(M, N; m) (7.10) J(T) (1.5,6,7)
a(N, 1) (5.10) J.(T) 9.2)
b(E, s) (2.2) l logarithmic valua-
B(E, s) 2.2) tion of d-see start
c.i.r. §0.A of §5
9 (5.5) lattice §0.C
D, 9.1) Aoy (8.6)
4 finite dimensional m maximal ideal of S
division F-algebra M. ... 3.1)
4(m) (5.5) M; M
46, r) after (7.2) M v 3.1)
4, 4 (5.7) ML, M sy
€ central S-unit for M, (4]8) (3.1)
which ef = 1 M (4]8) M, (4]S)
E(r) (7.2) mod (n) modulo p"-see
F local field before (1.8)
D, (2.3) modular Definition 6.2
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Theorem 8.5.D or
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b g, (5.9), except in §8,
Definition 5.1 where it is given

u(T) (1.2), 1.7) by (8.5)

v, (C) Definition 7.1 a3, G4y T (5.9)

D maximal ideal of R X(m,e), 2(m, S) (5.3)

T generator of m 2(m, S) (5.3)

T generator of P 2(r;n), 2(r;n)* (9.1)

P(M, N; m) (7.10) t gla, in §8,

primitive §0.A indeterminate in §9

q 1R/p| «(T) (1.5)

% | S/m| tr §0.D

R integer ring of F Type I~IV Definition 8.2

R(D) (5.6) U, 2.3)

s(L) scale (6.5) Qs (8.19)

S maximal order of 4 (D) (5.6)

S(e) (5.5) X In §3 and §4, func-

a determined by tion defined after
Q= q° (3.2)

g, (5.8)

§0. Notation and conventions

§0.A. Basics

Let Z, Q, R, and C denote the ring of integers and the rational, real,
and complex number fields, respectively. Let R* be the set of positive
real numbers and put Z* = Z N R*. We use the symbols > and [] with
the convention that for ne Z, any sum indexed by > 7~ is 0 and any pro-
duct J[z-' is 1. (In Section 9, we actually have formulas which can
specialize to products []2-% but these will not be interpreted as being 1.)

Our arguments involve counting over quotient spaces. Let X be a set
and let ~ be an equivalence relation on X. We say that W is a c.i.r. set
for X/ ~(or ~\X) if W< X is a complete set of irredundant representatives
for X/~ (or ~\X). If xe X, the class of x is denoted by [x]. We some-
times write “x € X/~" to mean that x varies over a c.i.r. set for X/~.

Let S be a (possibly non-commutative) ring. For r,ke Z*, let M, (S)
denote the space of r X k matrices of S, M(S)=M, ,(S), and GLS)
denote the invertible % X k matrices. For r,ke Z* and Te M, (S), and
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we say that T is primitive if
(0.1.a) k = r and T is invertible,

(0.1.b) k> r and there exists Ue M, _, (S) such that (g) is invertible,

(0.1.c) k < rand there exists Ue M, ,_,(S) such that (UT) is invertible.
we say that an element e, of a (left) S-module M is primitive if there
exist e, ---,e, e M such that e, ---, e, form an S-basis of M.

By module, we mean left module. Each ring S which we study has
the property that if m,ne Z* and S™ = S" as left S-modules, then m = n.
Thus, if an S-module M is isomorphic to S™ for some me Z*, we say m
is rkg(M) the rank of M with respect to S. If f: M — N is a homo-
morphism of free S-modules of finite rank, then we say f is primitive if
its matrix representation over any choice of bases is primitive.

§ 0.B. Involutions and hermitian spaces

Let S be a (possibly non-commutative) ring. An involution on S is
an anti-isomorphism p: S — S such that p’=1;. If T is a matrix, we let
T* denote the matrix generated by applying p to each entry of T; we also
define the image of ae S under p by a*. For a fixed involution, we use
the notation

0.2) T* = (T)y =41,

where ‘T is the transpose of T. If T is invertible, we put T-* = (T*)-!
= (T-Y)*.

Our arguments require a variation of the usual hermitian space. Let
4 be a ring, S a subring, p an involution on 4 which maps S bijectively
to S, and ¢ an element in the center of S such that e = 1. We define
a (p, ¢)-hermitian module with respect to 4/S to be a left S-module M with
a biadditive function (,): M X M — 4 such that

0.3.a) Va,beS, Vx,ye M, (ax, by) = a(x, y)b°,

0.3b) Vx,yeM, (x,y) = (y, x).
The map (,) is also called the form of M. We usually work with a fixed
choice of p, ¢, S and 4, when the context is clear, we refer to any such
module as a hermitian module (or hermitian lattice-see below). Note that
the classical “anti” hermitian case occurs when ¢ = — 1.

If u is another member of the center of S for which uur=1, we say
u and ¢ are equivalent if there is a central S-unit such that u = (sc)/c’.
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Clearly we may replace ¢ with any equivalent element without affecting
the theory of hermitian modules.

If M is a (p, ¢)-bermitian module defined with respect to 4/S and
N € M, define the orthogonal complement by

0.4) Nt = {xe M; (x, N) = {0}}.
We say M is trivial if M+ = M.

§0.C. Orders and lattices

Let R be a Dedekind domain, F the field of fractions of R, and 4 a
finite dimensional semisimple F-algebra. An order of 4 is a subring S
such that S is a finitely generated R-module and FS = 4. A maximal
order is an order which is not properly contained in another order. For
S an order, an S-lattice is a finitely generated S-module with no R-torsion;
if V is a 4-module, then an S-lattice of V is an S-submodule M S V
which is an S-lattice and satisfies FM = V. When dealing with hermitian
modules in this context, we define a hermitian lattice to be a hermitian
module whose underlying module is an S-lattice.

Basic properties of matrices over a maximal order of a local semi-
simple algebra are listed in [3; Section 2].

§0.D. Reduced trace

Let 4 be a finite dimensional semi-simple algebra over a field F.
Express 4 = @%_, 4, where each 4, is simple, and let K; be the center of
4;. Define the reduced trace of ¢ = @ a,;€ 4 to be tr(a) = > ,tr,(a;) where
tr, is the composition of the reduced trace of 4,— K, with the field-
theoretic trace K, — F.

§1. The standing hypothesis

For the rest of this paper, we let F be a local field (of any charac-
teristic), R the integer ring of F, p the maximal ideal of R, 4 a finite
dimensional division algebra over F, S the maximal order of 4, and m
the maximal ideal of S. (By ‘“local”, we mean local and non-archimedian;
we do not include Fe{R, C}.) Put
1.1) q =|R/p| and ¢, =|S/m]|.

In Part I, we require that F be the center of 4; however, in Part II,
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there are important situations in which F can not be the center of 4.

For convenience, we make our next definitions for a family of rings.
Let A be a finitely dimensional semi-simple F-algebra, and let B be a
maximal order of A. For neZ*, we denote M, (B) and M, (B) by B*
when context makes clear which is meant. Define a function »(T) for
Te M, (B) by the property that

(1.2) " = [B*: TB"] = [B*: B*T],

with the convention that v(T) = oo if T ¢ GL,(A). The restriction of v to
GL,.(4) N M,(S) has a unique extension to a group homomorphism GL,(4)
— Z, and we denote this extension by v as well. The v function plays the
role of logarithmic determinant or reduced norm; its basic properties are
stated in [3; Section 2].

For r, ke Z*, define

(1.3) G,,k = GL!:+ r(A)’

P, = {(g 3) € G,.: ac MyA) de MJ(A), be M,M(A)} ,

Cr,k = GLk+r(B)9
_ [O 1,]
=1, 0l
We signify the analogous constructions defined with respect to the op-

posite ring of A by the superscript™”. The standard Iwasawa decompo-
sition for G, implies that

(1’4) Gr,k = Pr,k' Cr,k .
If Te M, (A), define «(T) and j(T') by the properties that

«) =3 DG
HT) = u(d) if 2(T) = yo where ye P, ;, we C, 4,

*

*®
and o = (c d) for d e M(B).

(1.5)

If ¥, o, ¢c and d are as in (1.5), then (c d) is primitive and

(1.6) B = cB* + dB"
—>  j(T)=[B": dB’] = [cB* + dB": dB’] = [TB* + B': B'].

The function g — 73 ,(‘’g")"'(7,,)~" is a group isomorphism G, , — G? , which
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sends C,;— C%,, «(T)+— «(—'T%, and P,,— P} ,. It follows that

LEmMmA 1.1. Let A and B be as above. Let r,ke Z* and T e M, (A).

(A) jaTp) = j(T) for «a € GLAB) and Be GL(B),

B) J(¢T°) = (D),

(C) j(T) factors to a function on M, (A)/M, (B) (where the quotient
refers to the additive structure of M, ,(A)).

We denote the factored map of Lemma 1.1.C by j as well. We write
v[A, B] and j[A, B] to emphasize the ring and order.

(1.7) ConvENTION. j = j[4, S] and v = y[4, s] unless explicitly stated
otherwise.

Let X be a fixed non-trivial character of the additive group of F. For
neZ*, extend X to Te M, (4) by x(T) = X (tr (T)) where tr: M, (4) — F is
the reduced trace function. Our objective is to find the Fourier expan-
sion of the function T+~ ¢/®* (where s is a formal complex variable)
restricted to certain additive subgroups of M, ,(4)/M, (S). TUsing X, we
can identify the group of additive characters of such an additive subgroup
D with an R-submodule of M,(4). Our main interest is in the case where
this “dual” submodule is not contained in M,(S).

We use a non-standard version of Hensel’s Lemma, which we now

state.

If L is an R-lattice and ne Z*, we let “mod (n)”’ denote equivalence
up to p"L. We also refer to the class of ve L modulo "L by “v mod(n)”.
We use this notation even when L is an S-lattice. Fix r a generator of
D.

Let L and M be R-lattices. A function §: L — M said to be poly-
nomial if there are polynomials p,, - - -, p, € R[X|, ---, X,] such that

(1-8) e(xl, ) xr) = (pl(xls Tt xr); ) pk(xn ) xr))

with respect to the coordinates determined by a choice of basis a,, - -, @,
of L and b, ---,b, of M. For TelL, let df, ¢ Hom, (L, M) denote the
linear part of # with respect to a system of affine coordinates centered at
T. In terms of the representation of § using coordinates as in (1.8), the

d-th coordinate of 0,(x,, ---, x,) is >.7_, (@p4/0%x;|,-r -x;. Let df denote the
construction T — df, from L — Homg (L, M), and then the map df is also
polynomial.
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Fix a polynomial function §: L — M. Put

(1.9 o) ={neZz: pM < df (L)} for TeL,
L(n, T) = d67 (y"M) for Te L and ne o(T).

Suppose that Te L and nec o(T). Note that if o(T)x @, then rk L<rk M.
If m>n and UeT + p™L, then df, e df, + p™ Homg (L, M), and con-
sequently

(1.10) neo(U) and L(n,T)= L(n, U).

It follows that for me Z* and T, e L/p™L, there is a set o(7}) and an in-
dexed family of lattices {L(n, T}): n € o(T,)} with the property that

(1.11) olT) ={neo(T): n<m}, Vneo(T,), Ln,T)=Ln,T)
for each T'e¢ L such that T, = T + p"L.

Let TeL and neo(T). For m > 2n 4+ 1, we have

(1.12) me - pm—nL(n’ T) = pni—lL.
Suppose Uec L so that U= T mod(n + 1). For vel,
(1.13) U + z™-"v) = 8(U) + =™ "db,(v) 4+ =z *"E(U, v)

for a polynomial E,
_ (U + z™~"v) = 6(U) + =™ "dfy(v)mod (m) .

If 9(U)= Cmod(m), then 6(U’) = Cmod (m) for every U’ = Umod (h)™"-
L(n, T)). Hence, 6 factors to L/p™"L(n, T) — M/p™M, and we also denote
the factored map by 4.

The standard proof for Hensel’s Lemma can be adjusted to yield

THEOREM 1.2. Let L and M be R-lattices and let §: L —> M be a poly-
nomial function, Te L and ne o(T). For m > 2n + 1, define

(1.14) W, T; m)
={UeL/p™"L(n, T): U= Tmod (n + 1) and 6(U) = 0 mod (m)}.

Let m > 2n 4+ 1, and suppose that U,e W(n, T; m). Then there is Ue L
such that 8(U) = 0 and U = U, mod (p"*L(n, T)). Moreover, for ac Z*

(1.15) [{U,e W(n, T; m + a): U, = U, mod (p™~"L(n, T))}| = q*<= -kt

(where rk means rkp). O
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An easy consequence is the weaker

CoroLLARY 1.2.1. Let L and M be R-lattices and let 0: L — M be a
polynomial function. Let D, = L/pL and D, = {T'e L: Tmod (1) e D,}. For
m >1, put
(1.16) P@, m) ={TeL/py"L: 6(T) = 0mod (m) and Te D,}.

Suppose that ne Z* such that "M < db,(L) for each Te D, Then for
m>2n+1and ac Z",

(1.17) [P0, m + a)| = q*C* P == PG, m),

where rk means rkg. Also, if T,c P(9, m) then there is T e D, such that
T) =0 and T = T,mod (m — n).

Proof. Trivial. O

Part I

In Part, I, we make the standing assumption that F is the center of
4.

§2. Statement of theorems for Part I

For r,ke Z*, put
@.1) L. = {Ee M, (4): XM, (SE) = (1))

Fix 6 € 4* such that ' is a generator of the fractional S-ideal I,,. Then
I, =0"M,,(S) is an S-lattice, and E — (: T +— X(TE)) is an isomorphism
from I,, to the group of additive characters of M, (4)/M, (S).

We consider the Dirichlet series
(2.2) b(E, s) = 2 q " UET)

TeMr,x(4)/Mr,k(S)

where Ecdé'M, (S) and s is a (formal) complex variable. The series
corresponds to a Fourier coefficient of the function ¢="* on M, .(4)/ M, .(S).
We regard b(E, s) and all subsequent series as formal power series, and
we do not consider questions of convergence. (We remark in Section 3
that the summation properly defines a formal series.)

It is convenient to make

DerFiNiTION 2.1. For me Z*, put
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(2.3) U, = GL,(S), 9,=GL,(4) N MLS).

Let U, act on @, by left multiplication. For Ee @, define a polynomial
in Z[t] by

2.4 pE ) = > o,

{DEUR\On:ED—1€ Dy}

The indexing set is clearly finite.

TuEOREM 2.1. Let F be a local (non-archimedian) field of any charac-
teristic and let 4 be a finite dimensional central division F-algebra. Let
cgeZ" so that q, = q°; all other parameters are as in §0, §1 and §2 above.

A If r,keZ* and Ec 6 'M,(S), then b(E’ s) = b(E,s) (where
b(E"’, s) is defined with respect to the opposite algebra of 4).

(B) Let r,keZ* so that k> r, and let 0,, denote the k& X r zero
matrix. Then

25 b0, 5y = 0= go0)
( ) ( ) S) [I;=1(1 — q"(k+j—1—s))

(C) Suppose m,r,ke Z* such that k> r > m, and suppose E'cd'.
M,,(S) so that BE’« has the form (g] 8) for some a e GL,(S), e GL(S),
and Ec¢ GL,(4) N §-* M,(S). Then

’ — II’:= (1 - q”(j_l‘s)) +r-m-—s
(26) e, = 8= €2 o, g s,

If the reduced norm of 6E is an R-unit, then p(dE, ) = 1.

The remainder of Part I consist of the proof of Theorem 2.1. Lemma
1.1 already implies that b(E, s) = b(°E’, s) and that b(E, s) = b(BE«x, s) for
Be GL(S) and a e GL,(S).

An easy consequence of Theorem 2.1 is

CoroLLARY 2.1.1. Let F and 4 be as in Theorem 2.1. Let A = A, X
A, be a product of finite-dimensional F-algebras, B a maximal order of A,
and p an involution of A which induces a bijection A, X {0} — {0} X A,.
Suppose 7: A, — M, (4) is an isomorphism of F-algebras for some neZ",
and that Y(B N A) = M,(S). In general, we let 7 denote the morphism
M, (A) — M, (4) which expands the (i, j)-entry to the image under projec-
tions A — A, — M,(4).

Let ¢ and u be a central B-units such that s = 1, uu® = 1 and eu =
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— 1. Put j=jlA, Bl. For meZ*, put %, = Xotr on M,(A), and define

2.7 2(m,e) ={TeM,(A): T=¢eTr},
2(m,u) ={TeM,(A): T=uT},
X(m, B) = X(m, ¢) N M,(B),
2(m, B}t = {E€ 3(m, u): %(E-2(m, B)) = {1}}.

Then for each E ¢ 3(m, B) and s a formal variable,
(2.8) 2 X(ET)g " = b(r(1 + ew)'E), 2ns),

X (m,e)/ 2 (m,B)

where the quotient 2(m)/2(m, B) is taken with respect to addition.

§3. Auxiliary series

Fix rrkeZ*, k>r. When we express T'= (CD) and T = (C, C, D)
for Te M, ., (4), we assume that C, D, C;, and C, are the corresponding
submatrix blocks of size r X k, r X r, r X r and r X (k — r), respectively.
Put

(3'1) :,k+r = {(C D) € Mr,k+r(s): V(D) < OO},
M rpr ={TeM),: T is primitive over S},
M, .(4]S) = M, (DM,,«S) .

The multiplicative group U, acts on M) ,,, by left multiplication, and
the additive group M, .(S) acts on the right of M, ,,, by

(3.2) Vae M, (S), VTeM.,., T-a= T((ll 2)
Let “~” denote equivalence up to left U,-action and right M, ,(S) action.
The actions preserve the subset M) .. ,,. Denote the class of (CD)e
M} ,,, by [CD]. Let X: U\M],,.,/M, (S)— M, (4/S) be the function
X([CD]) = [D'C].

We analyze the series (2.2), which is indexed by M, .(4/S), by re-
indexing it in terms of the double coset space.

LemMA 3.1. In the present notation.

(A) X restricts to a bijection UNM, ., .| M, (S) = M, (4]S).

(B) If(cd)e M}, then j(X[cd]) = v(d).

(C) Let W be a c.i.r. set for UN®,, and let (cd)e M| . ,.,,. Then
{lac ad): € W} is a c.i.r. set for the X-'([d~'c]).
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Proof. As noted in (1.5), for T'e L there is at least one (cd)e M/ ...,
such that X([ed]) = T and j(T) = v(d); surjectivity in (A) and statement
(B) follows immediately.

We prove injectivity in (A) and statement (C) together. Fix Wa c.i.r.
set for U\®,, and (cd)e M/ ,.,.,,. Put T=dc. For ae W, (acad) e
M .., and X([ac ad]) = [T]. Suppose first that «, fc W so that [ac ad]
= [fc pd]. There exist u e U, and ¢t e M, (S) such that u(ac ad)(t) = (Bc pd).
Then de GL.(4) and uad = pd. But then ua = p, and the hypothesis on
W implies that « = B.

Suppose that (CD)e M, .., and X([CD]) = [T]. Lett=T— D'Ce
M, (S). There exist matrices A, B over 4 and a, b over S for which N

= (‘é g) e GL,, (4) and o = (g g) e GL,, (S). Express N = yw where y ¢

P, . and we GL,, ,(S). The bottom r rows of wz(¢) and v each have the
form z(T'1) for some ze GL,(4); hence, the bottom r rows of wr(f)w~* must
have the form (0 v) for ve GL.(4). Since wr(t)w~' e GL,, (S), we conclude

* ok

that ve U,. Express y = (0 g) where g € GL(4). Now y = Nw-! where

the last r rows of IN have entries in S; thus, ge @,. We have shown that
(3.3) g (CD)=uvicd)y(—1t).

Hence [C D] = [ac «d] where o« represents the U,-coset of gve @,. The
proof of statement (C) is now complete.

In the above paragraph, (ac ad) is primitive if and only if ae U,.
There is exactly one a«€ W U,, which shows that X sends a unique
coset of UNM] i, .pr/M, (S) to [T]. Thus, the restriction in (A) is injec-
tive. |

We assume the standard fact that
(3.4) Z q-v(D)s — l’[ (1 _ q{;—l—s)_l .
DETNOr J=1

For Mc Z*, the number of double cosets [C D] in U\M, ., ./M, .(S) such
that (D)< M is finite. Hence, we are justified in defining

DerINITION 3.1. Let r,ke Z* and Ecd6'M, (S). The summations
(3.5) B(E, s) = > q P UD'CE),

(CDYEUNM'y, k+r/Mr,1(S)

bE,s)= >, q'""UTE),

TE€Mr,x(4/8)
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determine formal Dirichlet series, and
(3.6) B(E, 5) = || (1 — gi=)""b(E, ).

Equation (3.6) follows by identifying M, ,(4/S) with UNM] .. +.pr/ M, (S)
under X. Fix cir. sets W and Z for U\®, and U\M/,..,.,./M, (S) re-
spectively, and identify W x Z with UM/ ,,./M, (S) under the map
(z, (cd)) — (zc zd). Note that this indexing of U\M] ., ./M, .(S) depends
on the choice of representatives in Z.

The series B(E, s) is surprisingly easy to manipulate. We have an
immediate reduction of the problem to the square matrix case.

THEOREM 3.2 (Reduction I). Let r,kecZ* and assume k >r. LetEec
0 'M.S). Then

3.7) B ((ff) s) — BE,s+r—Fk),

where 0 is the (k — r) X r zero matrix.
Proof. For De®,, put
(3.8) V(D) = M, ... (S)/DM, ;_(S) .

Let W be a cix. set for U\M/,,/[M(S), and to each (C,D)e W assign
an c.ir. set J(D) for V(D). Then {(C,C,D): (C,D)e W, C,e J(D)} is a c.i.r.
set for U\M, ,,,/M, . (S) Now

(39) IV(D)l — [Sr: DSr]k-r — qv(D)(k~r) )
Hence,
(310) B ((g), S) = Z Z q—u(D)sx(D_1CIE)
(C1D)EW Ca2€J (D)
= Z qv(D)(k—r—s)X(D_lclE) . 0
(C1D)ew

§4. Square matrices

We consider the summation indexed by square matrices. For ke Z*,
put M; = M{,, and M., = M ,.,,. We now prove

TuEOREM 4.1 (Reduction II). Let k,mc Z* so that k> m, For Eec
07 M, (S),

“1) B ([f 3] s) - {]ﬂm(l — q’;”“*‘)}_!B(E, s + 2m — 2k)
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where ((I;j 8) is a k X k matrix.

Proof. When we express 1€ M,(4) as T(g 3), we mean that the sub-

matrices @, b, ¢, and d have size m X m, m X (k — m), (k — m) X m and
(k — m) X (k — m), respectively.
Each coset of U\M;/M(S) can be represented by (C D) where

(4.2) c=lgcl o=[nnl

Straightforward algebra shows that the cosets of U\ M;/M,(S) are indexed
by letting submatrices vary over c.i.r. sets for the following spaces,

(4.3) (C,Dy) € U,\M,/M,(S),
D, eU._\%_n,
D, eM, . .(S)/M;_..(SD,,
C eM,, .(S)DM,, .S,
C eM,_,.(S)/DM,.,.(S),
C, eM,_.(S)DM,_,S),

Note that the indexing process has a definite order—that is, certain vari-
ables must be fixed before others can be chosen. Counting as in (3.9),
we find

@ B((go) )=, S qeemeem a0ty DACE)
00 DAE UrTm\Os—m (C1D1) ETm\BLm/Am
—{ S @eOs-\B(E, s + 2m — 2K). O

D4 € Up~m\Pk~m

Direct computation shows that

(45) B, 8) = 3 qigi™ = (1 — gi~)".

The proof of Theorem 2.1 follows by calculation once we have

LEmMmA 4.2 (Reduction III). Let ke Z* and E e 6*M(S) N GL,(4).
Then B(E, s) = p(6E, ¢*~°).

Proof, For De®,, put
(4.6) V(D) = M(S)/D-MS) .

The summation B(E, s) may be indexed by letting D vary over U,\®, and,
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for each D, letting C vary over V(D). For a fixed D, the function
X(D-'CE) = X(CED-") factors to an additive character on Ce V(D). The
character is trivial if and only if ED-'e§-*M/(S). Thus

V(D)| = g if ED"'ed-'M(S),
0 if ED' 26 'M(S).

Now ED-'ed*MS) if and only if (JE)D-'e M(S). Thus, B(E, s) equals
a finite sum over classes in D e U\®, of ¢®?¢~?*, Comparing this sum
with (2.4), we deduce the theorem. O

.7 3, HDCE) = {‘

ev(

Part II

§5. Statement of theorems for Part II

In Part II, we add the following conventions to our standing
hypothesis. Let = be a fixed generator of m. The valuation on F has a
canonical extension to a multiplicative norm on 4. Let ! be the logarithmic
valuation on 4 with the normalization that I(z) = 1 and the convention
(0) = 0. If NS 4, put

(5.1) I(N) = min {{(x): xe N}.

We permit the values /(IN) = — oo and (V) = co. Let p be an involution
of 4 and fix ¢ a central S-unit such that ¢* = 1. We make

(5.2) Standing hypothesis for Part II:
(a) char(F) + 2,
(b) F is the fixed field of p restricted to the center of 4.

We permit p to be of either the first or second kind.
For me Z*, put

(5.3) Z(m, e?) = {TeM,(4): T= (T},
X(m,e) ={NeM,d): T =T},
Z(m’ S) = Z(my sp) N Mm(s),
Z(m, Sy = {Te2(m,e): XT-2(m, S)) = {1}}.
Assumption (5.2) implies that 7'+ T + eT'* is a surjection M, (4) — 2(m, ).

If L is a hermitian S-lattice and ¢: L = M, ,.(S) is an S-isomorphism, then
(,) is uniquely determined by T e M, (4) such that

(6.4 (x,5) = 6(x)T6(y)*
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and each T e 2(m, ¢) determines an isomorphism class of hermitian lattice
in this way. Note that X(m, S)* is an R-lattice of X(m, ¢). We also put

(5.5) Me) = 31, &) = {te d: t = (b)),
Se) = 3(1, S) = {te S; t = (b))},
2 ={ded: vbe S, 1(bd + brd?) = 1} .

Then T e X(m, S)* if and only if T,;€ 2 and T, 3(1, S)* for each pair of
indices (i, j).

Remark 5.1. The various factors of “¢” and “¢c*” may be confusing.
The present calculation arises when computing Fourier coefficients of a
function on the local points of an additive group of hermitian matrices
defined over a number field. The character group of the space of local
(p, €)-hermitian matrices is the space of local (p, ¢’)-hermitian matrices.
For a matrix N representing a character, we will describe the corre-
sponding Fourier coefficient in terms of the hermitian form given by N.
The theory of hermitian spaces used here is ultimately applied to matrices
representing characters. For this reason, we define our sums—which are
just integrals over local spaces—to be over (p, e°)-hermitian matrices so
that all of the characters are (p, ¢)-hermitian,

Let U, and @, be as in Definition 1.1. For De®,, we need to
consider

(5.6) D) = {Ce M,(S): CD* = e DC*},
R(D) = |2(D)/(D-2(m, S))!.

Note that if De @,, and be R — {0} so that I(b) > »(D), then there is a
matrix D, such that DD, = bl,,, and it follows easily that b2(D) < D.
2(m, S). Thus, 2(D)/(D-2(m, S)) is a finitely generated R-module annihilated
by b, and R(D) is a finite value.

For te Z, put

5.7 4, ={ded: I(d)>1t}.
4p = {TeM,,(4): (T)=>t},
A, ={b+¢eb: bed}.
We also let 47 = {T'e M, (4): T,) > t} when context makes clear which

is meant. For Ue M,(4), note that S™U = 47 if and only if Ue GL,(S)x".
We need a list of fundamental constants. Put
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(5.8) g = rank; 4,
g, = rank, 4(¢) .

Take 6 = I[(2). Let 8 be the R-linear function b+~ b 4 ¢b® factored to
d;,./pd; — A,[pA;. Define constants by the equations

(5.9) q = |ker ()],
qQ’* = q, = |S/m|,
g = R(n),

q°s = [S(e): #S(e)z*].

The values o, 0,, g,, 0, and ¢, remain unchanged throughout the rest of this
paper; however, we consider values for ¢, corresponding to “scales” other
than 6 in Section 8. We shall prove in Section 9 that

LEmMA 5.1. The parameters defined in (5.8) and (5.9) satisfy o, + o,
+ 03 = 0, + 0.

For me Z* and Ne 2(m, S)*, define a formal power series in ¢ by

(5.10) N, S N .

2E X (r,eP)/Z (7,8)
Clearly if ue GL,(S), then «(lV, t) = a(ulNu*,t). We cite

THEOREM 5.2. Let r,me Z* so that m>r>0. For meZ* and Ne
3(m, S), the summation (5.10) properly defines a formal power series. Let
r,meZ* so that m>r> 0. Then there is a formal Dirichlet series F(s)

with the property that if Ne 2(r, S)* and N, = (éV 8) e (m, S), then

(5.11) a(Ny, ¢7*) = F(s)a(N, q"""%).

Proof. This is Theorem 4.1 of [3]. Although the statement appears
in a section under the standing hypothesis that F has characteristic 0
and e¢ {1, —1}, the proof is valid in the present, more general, context.
The proof is not effective—that is, the factor F(s) is not given in a usable
form. 0

Suppose N, e 3(m, S)* is non-zero, and regard [NV, as defining a her-
mitian structure on M = S™. Then M/M* has no R-torsion, and so
there is a complementary S-submodule L such that M = L | M*. Repre-
senting the form on M with respect to a basis which respects the flag
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0C L C M yields a matrix of the type (f)" g) where Ne GL,(4). Thus,

there is v € GL,(S) such that uNju* = ({)V 8) We can compute a(lV,?) in

general once we know «a(lV,?) when N =0, for any m (this yields the
F(s) factor) and when NeX(m, S)¥ N GL,(4). The latter series can
be characterized by using hermitian lattices.

We now state the main results of Part II.

DerFINITION 5.1. Let me Z*. First, let Ne Z(m, S)* N GL,(4). If m
is odd, define 7n(N) = 1. If m is even, define

(6.12.a) n(N) =0 if for each Ce®,, either C-NC-*¢ X(m, S)* or
C-'NC-*z-*® ¢ GL,(S),

(5.12b) 7(IN) = 1 if there exists d e 4 and C e @,, such that (d) = [(2)

and
1 0 dI
coNe-+ = | <k
€d‘DIm/2 O
(56.12.c) n(N) = — 1 if neither (5.12.a) nor (5.12.b) hold. In general,

for Ne 3(m, S)!, put (N) =1 if N =0 and »(N) = (V) if N, € 2(r, S)* N
GL.(4) for m>r>1 such that ulNu* = (évv 8) for some u e GL,(S). Co-
rollary 8.5.2. will imply that the quantity n(IV) is well-defined.

THEOREM 5.3 (Context and Notation of Sections 1 and 5). Assume F
is contained in the center of 4 and that (5.2) holds. Let me Z* and Ne
2(m, S)!. Let r = rank,(N4A™) and 7= (N). Express r = 2g + 2 where
geZ and 2€{0,1}. Then a(N, t) is a polynomial in Z[t] times

m—g—2a-2 m—g-1
(5.13) gn (1 + qbas+a4t08) (1 — qboatvs)
= m—r-—1 = (1 + 77q(m—g—-2—1)<73+“t03)
] (1= gmorostosgo)
j=0
ifgx0and px0,
m—g—i-1 m—g—2
@+ o) ] (1= ge)
b=0 — b=0 if 77 — O,
1— (m—1+j)03+05tas
jUO ( q )
m—2-1 m—1
(1 + qb¢3+a4t2a3) I"I (1 . qbastaa)
o b=0 if g=0.
(1 — q(m—l+j)as+ost%s)
i=0
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Moreover, if N =0 or there exists re Z*, ue GL(S) and N,ec3(r, S} N
GL.(S)r*® such that ulNu* = (év" g), then o(N,t) is exactly the factor in
(5.13).

Remark 5.2. Expression (5.13) generalizes the formulas of [12], [6] and
[38]. Under the assumption 4 = F (the Sp Case of [3]) or 4/F an unram-
ified quadratic extension (the SU Case of [3]), the quantities o, o,, 03, 03,
o, are determined and all of the numerator terms of the form 1 4+ g% are
cancelled by denominator terms 1 — ¢*##** to produce the formulas already
in the literature.

We conclude this section by stating a version of Theorem 5.3 for
matrix algebras over a division ring. The proof is elementary, and is
omitted.

CoroLLARY 5.3.1. Let F, 4, R, S, and q be as in Section 1, p an in-
volution on 4 and ¢ a central S-unit such that ec* = 1. Assume that (5.2)
holds. Let ne Z*, put A = M,(4) and B = M,(S), and let j denote j[A, B]
as defined in (1.5) and (1.6). For me Z*, we let v: M,(A) — M, . (4) be
canonical function. Let ve GL,(S) for which u = v(‘v=") is a central S-unit,
and define an involution on A by t: x> v(*x*)v~'.

For me Z*, put
(5.14) 2(m, &) = {Te M,(A): T= (0T},

S(m,e) ={TeM,(A): T =T},
X(m,B) = 3(m,¢) N M,(B),
2(m, B)f = {Ne 2(m,¢): AN-X(m, B)) = {1}},

A

Un = dlag {U, ) U} € Mm(A))°

Then for me Z* and N e 3(m, B)}, we have an equality of Dirichlet series
in the formal complex parameters s

(5.15) 2 WNx)q@* = ar(05'N), ¢°™'),

ZE X (m,eP)/Z (m,B)

where « is defined by (5.10) with respect to the algebra 4, the involution p,
and the central unit eu’.

§6. A Witt Theorem for hermitian lattices
Suppose a € 4* and b, ce 4 such that (b) > l(a) and Uc) > l(a). Let
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1 —e¢ba" 0 a-—c¢barc
©.1) 0 1 ca’ c

and l(a — e’ba~?c) = l(a). It follows that the matrix T is invertible. Let

(6.2) L = {(xy)e M,,(4): Ux), (y) > Ua)} = 4} ).
We claim
(6.3) ST=L, TS*=1L* S*=LT' and S*= T-'L*.

Since T is invertible and hermitian, it suffices to show that S°7 = L.
Clearly S*T < L. Suppose (xy)e 4* — S%. If I(x) > I(y), then

(6.4) I(xb) > eya®) == lxb + eya®) = l(ya’) < la),

and (xy)T e L. If I(x) < I(y), then l(xa + yc) = l(xa) ¢ L.
We say that a hermitian lattice is fundamental if it is of rank 1 or
b a

it can be represented by a matrix 7 = (aa” ¢

ec’, and I(b) > l(a) and I(c) > Il(a).
If L is a hermitian lattice, define the scale of L to be

(6.5) s(L) = (L, L)) .

) where a0, b = ¢b’, ¢ =

LEmMA 6.1 (Existence of Jordan Splittings). Let L be a hermitian
lattice.
(A) If L+ = {0}, then L is the orthogonal sum of fundamental lattices.
(B) Suppose M < L is a sublattice such that
(B.1.a) M is fundamental,
(B.1.b) s(M) = s(L).
Then L= M | M*.

Proof. The proof of (B) is contained in our proof of (A). We must
show that if L is a lattice non-trivial radical, then L = M | M* for some
fundamental lattice M.

Put 6 = s(L). Suppose that xe L so that I((x, x)) = 6. Put M = Sx
and N= M*. If yeL, take 2¢ S so that i(x, x) = (y, x), and then y — Ax
eN. Thus, L=M+ N. Since L* ={0}, MN N= {0} and L= M | N.

Suppose that I((x, x)) > s(L) for every xe L. Take x,yec L so that
I((x,y)) = 6. Then x and y are linearly independent over 4, and the form
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restricted to M = Sx 4+ Sy is given by a fundamental matrix 7 = (EZ,, ‘Z)

Suppose ze L, and let

(6.6) Ay = (%) ()T
Now 2, ze S by (6.3). By construction, (z — ix — gy, M) = {0}. Thus,
L=M_ | N where N = M*. O

Remark 6.1. From the argument it is clear that we can write any
lattice L as a sum of L' and fundamental lattices where each 2 X 2 com-

ponent can be represented by (b a) for I(b) > l(a) and I(c) > l(a). This

ea® ¢
observation is useful in Section 9.

Let V be a hermitian 4-module. We say that {x,y}e V is a hyper-
bolic pair if

(6.7) (x,2) = () =0 and (x,y)ed*.

We can define two types of form-preserving transformations which do not
rely on specifying a choice of basis of V. First, suppose ve V so that
(v,v) % 0 and 2e 4* so that (v,v) = 1 + ¢2*. Define

(6.8) g,,(%) = x — (x,v)2 0.

Direct computation shows that (o,,,(x), 0,,,() = (x,y) for all x, ye V. Next,
let {w, v} be a hyperbolic pair in V and put « = (w,v). Suppose that
uelw,v)* and be 4 so that (v, u) = ba+e(ba)’. Define & = &, )5, by
(6.9) fw) =w,

Ew)=v—bw+u,

@) =2z— (z,wa'w for ze<w, v)+.

Tedius calculation shows that & preserves the form. Moreover, it is easily
checked that for parameters v, w, u,t, 2, b

(6.10.2) o0 = (04,7
(610b) S(w,@},bu ° S{w,v},c,t == g{w,v},b+c+(n,u)a—1,u+t ’
(6.10(3) S{w,v),(u,u)a—l—b,-u == (e{w,v),b,u)_l .

Our next step is to interpret these constructions in terms of lattices.
Let L be a non-trivial hermitian lattice and put 6 = s(L). First, sup-
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pose ve L and 2¢€ 4* so that () = ¢ and (v,v) = 2 + e2*. Then o, (L) =
L. In particular, if v, we L so that

(6.11.a) (v, v) = (w, w),
(6.11.b) (w, w—v) =34,
then t = g,_,,(u,(w-v, Satisfies

(6.12.a) (L) =L,
(6.12.b) w)="v.

Next, suppose that {x, y} is a hyperbolic pair of elements in L such that
1((x, y)) = s(L). Suppose that y’ e L so that (¥, y) = 0 and (x, y) = (x, y').
Then there exist uc L and be S such that ¢ = &,,,,,,,. satisfies

(6.13.2) o(L)=L,
(6.13.b) () =y.

We can now prove

THEOREM 6.2 (Witt’s Theorem for hyperbolic pairs). Let L be non-trivial
hermitian lattice. Suppose that {x, y}, {x', '} are hyperbolic pairs of elements
in L such that

(6.14.2) (x,y) = (*,y),
(6.14.b) U((x, ) = s(L) .

Then there is a form-preserving S-automorphism t: L = L such that z(x)
=« and =(y) = ¥

Proof. In the following argument, we write ‘“morphism” to mean
“form-preserving S-automorphism”. Let ¢ = s(L), H= Sx + Sy and N =
H:. Then L=H | N by Lemma 6.1.B. If x = x’ or ¥y = y’, we are done
by the remark in (6.13).

Put @ = (x,y). For ¢ an S-unit, the S-homomorphisms of H given by
(6.15.a) xX—>cy, y—>cea’ca'x,
(6.15.b) X —>cx, y—>a‘cta*y,

are morphisms of H. Hence, the conclusion follows if either x’ or ¥’ is a
multiple of x or ¥y by an S-unit.
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Express x’ = cx + dy + u wherec,de Sand ue N. If ¢ is an S-unit,
then ¢ =0, . 4. -2 determines a morphism of L which sends y to x'.
There is an analogous symmetry if d is an S-unit, or if the projection of
y' to H is primitive. Thus, we are reduced to the case

(6.16) X =a+u aceH and uel,
y=8+v peH and veN,

and «, B are not primitive.

Using the assumption that « and 8 are not primitive, we conclude that
I((u,v)) = I((x,y)). It is simple to construct «’ ¢ H which is primitive
such that (a, a) = (¢’, ’). Put ¥’/ = &’ 4+ u. Then (x”, x”) = 0 and I((y,y —
x")) = 8. Thus, t = g, _, - determines a morphism of L which sends
y’ to x”. The projection of x”” to H is primitive, so we are done by a
previous remark. O

DeriniTION 6.1. If L is a hermitian lattice and s(L) = 6 = oo, a hyper-
bolic pair of L is a pair {x,y} < L such that I((x, y)) = s(L). A hermitian
lattice H is called hyperbolic of denominator — ¢ if H is the orthogonal
union of lattices of rank 2 over S each of which has a hyperbolic pair
{x, ¥} with I((x,y)) = 6 as basis. A lattice of rank 2 over S with a hyper-
bolic pair as basis is called a hyperbolic plane.

Witt’s Theorem extends to a few other lattices. Let aec 4* and be 4
and 1€ S so that b = al + «2°a?, then

617 o e ol 3= 6]

. (b a
Thus, the matrix (ea” 0

Let ae 4%, b, ce 4 so that b = ¢b?, ¢ = ec?, I(b) > l(a) and I(c) > l(a).
Let L be a lattice of rank 4, e, e, e, e, a basis of L, and suppose that the
matrix of the form with respect to the basis is

) determines a hyperbolic plane.

b «a 0 0
(6.18) ea® ¢ 0 Ol .

0o 0 —b —a

0 0 —ca —cJ

The elements
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e, + e, e, e, — ctbaca (e, + e;) + e’bv ‘e,
and
— (@ — ca'bra ") e, — ca (e, + e;) + e}

also form a basis. The matrix with respect to this basis is

0 a 0 0
(6.19) ea® ¢ 0 0
0 O0cebarca'd—ba
0 0 ea’ 0

If b and ¢ can each be expressed as al + ¢(al)* for 1¢ S, then the matrix
in (6.19) determines the orthogonal product of two hyperbolic planes.
Finally, suppose that a € 4* and 2¢ S such that a = 1a + ¢(Aa)*. The

hermitian lattice given by (g _2) is hyperbolic with respect to basis

e, + e, e, — (e + ).

DerFINITION 6.2. Let de Z. We say that a lattice is d-modular if
(v, L)) = 6 for each primitive ve L and (v, v) € A; (as defined in (5.7)) for
each ve L.

“g-modular” hermitian lattices should be regarded as a generalization
of O’Meara’s [8]” a-modular” lattices, not of “unimodular” lattices.

For L a hermitian lattice, we let —L denote the module of L with
the form —(,). We have found a variety of hermitian lattices L such
that L | (—L) is hyperbolic. If L and M have this property, then so does
L | M. Suppose L is of one of the above types, and put 6 = s(L). Let
M and N be hermitian lattices such that s(M), s(N) >d and L | M =
L | N (that is, isomorphic as hermitian lattices). Then ((—L | L) | M
= ((—L) 1 L) | N. By Theorem 6.2, it follows that M =~ N.

Mimicking classical arguments from the theory of quadratic forms,
we can summarize with

THEOREM 6.3 (First structure theorem of modular lattices). Let e Z
and L be a é-modular lattices.

(A) If xeL is primitive and (x,x) = Q, then there is ye L so that
{x, ¥} is a hyperbolic pair of L.

B) L | (—=L) is a hyperbolic space of denominator — 6.

(C) If M is a lattice which contains L such that s(M) = 6, then M =
L | L.
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(D) Let M and N be hermitian lattices for which s(M), s(N) > 5. If
L1 M=L | N, then M = N (where “~” means isomorphic as hermitian
lattices).

§ 7. Counting representations mod (n)

For this section, we fix § € Z, = a generator of m, and », a generator
of .
Fix E an R-submodule of 4(¢) such that

(7.1.a) A; C EC 4,
(7.1.b) YueS, VxecE, uxu*eckE.
For re Z*, define E(r) to be the R-module of r X r matrices such that

(7.2) N;ed; fori=xj, and
N;;e E  for each index j.

Note that E = A, satisfies our conditions, and for this choice we denote
E(r) by 4(3,r). For convenience, we also define

(7.3) a(r) = dim, 3(r, &) = r(r — 1)o/2 + ra; .

Each Ne E(r) determines a hermitian lattice. If Ue GL,(S)z% then NU™*
e M,(S) for Ne E(r).
For Ce®, and Ne E(r), put N[C] = C-NC-*. We remark

Lemma 7.1. If Ne E(r) N GL4), then the set {Ce®,: N[C]le E(r)} is
a finite union of right U,-cosets.

Proof. Let Ne E(r) N GL(4) and let Ue GL(S)z’. For Ced,,
(7.4) wN[CIUY) = »(U) 4+ AC") + uN) + v(C*) = (NU") — 20(C).

If N[C]e E(r), then NU-' and N[C]U-* have entries in S, and so v(NU"")
> 2(C) > 0. O

For Ced,, put
(7.5) «(C) = [C'E(r)C-*: E(r)] = [E(r): CE(r)C*].

If C,De®,, then «(CD) = «(C)«(D). If Ce U, then «(C) = 1.
For Ce @,, there exist «, fe U, so that «Cp = diag{c,, - -, ¢,} where
c;e S — {0} for each j. In terms of the matrix coordinates, we see

(7.6) (C) = ([Tecy st cudictD) X (T1,[E: c;Ecf]) .
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If { 2 j, then

{(1.7) [4;: c.dict]l = [4;: cdi] [c,ds: c dicF] = greo ¢,
We are led to

DerFiNiTION 7.1. For ce S — {0}, put v(c) = [E: cEc*]. For re Z* and
Ce @,, define v,(C) to be the integer determined by

(7.8) C(C) — qv1(0)+(7‘—1)~(0) .
If «, pe U, so that «Cp = diag{c,, -+, c,}, then
(7.9 »(C) = ijl(cj) .

Fix k,reZ* and Me E(k) N GL(4). For Ne E(r) and me Z*, define
(7.10) AM, N; m) = {T e M,(S/p™S): TMT* = Nmod (m)},
PM,N;m) = {Te A(M, N; m): T is primitive},
where mod (m) refers to the R-lattice E(r). If Te M, (S), we abuse
notation and write T e A(M, N; m)(T ¢ P(M, N; m), respectively) if
Tmod (m) e A(M, N; m) (if T mod (m)c P(M, N; m), respectively).
Suppose k>r. Let 6: M,,,(S)— E(r) be the function T— TMT* — N.

With respect to any choice of R-basis for S and E(r), the map 6 is poly-
nomial with coefficients in R. For T e M,,,(S), the differential of § at T is

(7.11) dby: vr———> VMT* + TMv* = vMT* + (vMT*)* .

Let n,e Z* U {0} so that pm4t = S*M. We claim that if 7' is primitive,
then p™4(5, r) < d6,(M,,(S)). First, suppose that r = & and T is inver-
tible. Since 4;is an S-ideal, 4tT* < 4% and 44T-* < 4% Thus, p"M(4;)
< M(S)MT*. The map df, has image {« + ea*: a € M (S)MT*}, which
contains the set of p™4(s,r). Now suppose k > r, and take a matrix U

so that (1[{) € GL(S). For ue M,_,,.(S) and ve M, .(S),

[T =1 ]
v T * yMT*
and we are finished by the first case.

Apply Corollary 1.2.1 to get

LEmMA 7.2. Lel k,reZ* so that k>r, Me E(k) N GL,(4) and Ne
E@). Let n,n,eZ* U{0} so that pym4% < MS* and py=E < A;, and put
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n=mn,+n,. Let meZ so that m > 2n + 1.

(A) If T,e P(M, N; m), then there is Te M,,, such that TMT* = N
and T = T, mod (m — n).

B) If acZ*, then

(7.13) |P(M, N; m + a)| = gq**™~*"| P(M, N; m)|.

Let k,reZ* so that k> r, Me E(k) N GL(4) and Ne E(r) N GL.(4).
As above, take n,, n,e Z* U {0} so that p~4%t < MS* and pE C A,, and
put n = n, + n,. In this case, we can reduce the computation of
|A(M, N; m)| to the computation of values |P(M, N’; 2n + 1)|. Fix Ue
GL.(S)z*. We restrict attention to values me Z* for which m > y(NU-Y)
-+ 2n.

If Te M, .(S) so that T'e A(M, N; m), then (TMT* — N)U-' ¢ p"M,(S).
By the properties of the function v, it follows that (TMT*U-") = v(NU?),
and consequently TMT* is invertible over 4. If wT = 0 for we 47, then
wTMT* = 0, and consequently w = 0. By [3; Corollary 2.3], there is C
€ ®, and a primitive matrix T, e M,.,(S) so that T = CT,. By that same
theorem, if C,e¢®, and T, is a primitive r X k matrix such that T = C,T,,
then there is @ e U, such that C, = Ca and T, = «~'T,. Thus, the right
U,-coset of C is uniquely determined by T.

Let Ce®, and Te M,,,(S) so that CTMT*C* = Nmod (m). Since
ACTMT*C*U-") = »(NU-"), and TMT*U-* e M,(S),

(7.14) m > v(NU-") > 2(C) > 0.

There is Cye M(S) so that CC, = #;'©1,. Let D = z;™(TMT* — N) e E(r).
Then

(7.15) TMT* — C-'NC-* = Car-»©DC¥ .

Thus N[C]e E(r). Conversely, suppose Ce®, so that N[Cle E(r). As
before, it follows that v(NU-') > 2/(C). Let D, .--, D, be a complete ir-
redundant list of coset representatives for C-'zlE(r)C-*/zrE(r). Then
a = ¢(C) and D, = 0mod (2n + 1) for each j. Now for Te M, (S/p™S), it
follows that

(7.16) CTMT*C* = Nmod (m) & 3j: TMT* = N[C] + D, mod (m) .

Finally, C divides zJ~'1, in M,(S). Hence, if Te M, (S) and C'T is
primitive (with respect to S), then C'T" is primitive if T’ e M, (S) and
T' = T mod (m).
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Let Ce®, so that N[C]e E(r). Let W(M, N, C; m) be the set of
elements T'e A(M, N; m) for which C-'T is primitive. Then map 7T +— CT
is an additive endomorphism of M, (S/p™S) whose kernel has order

(7.17) [C'2' M, (S); =iM,,(S)] = [M, (S): FM, (S)]
— [Sr: CSr]k — qu(C) .
The inverse image of W(M, N, C; m) is the union of the sets P(M, N[C]
+ D;;m). Thus
(118)  |W(L N, C; m)| = ¢© 5 | P(M, NIC] + D,; m)|
Jj=1

¢ (0)
= g O Y qm-tn-hre-o) P(M, N[C] + D,; 2n + 1)|
=1
= q O DerO(C)| P(M, NIC); 20+ D).
Putting everything together, we first get

THEOREM 7.3. Let k,re Z* so that k> r, Me E(k) N GL,(4) and N¢
E(r) N GL(4). Let ny,n,eZ*U{0} so that pm4% = MS* and p™E C A,
and put n = n, + n,. Then there is a number be Z* which depends only
on N with the property that if me Z* and m > b + 2n, then

(7.19) |A(M, N; m)|
— ZC q(m—Zn—1)(kra—r(r—1)a/2—m1)+(r—1—k)y(0)+y1(0)[P(M’ N[C]; 2n _|_ l)l’

where the summation is taken over a complete irredundant set of repre-
sentatives of the finite set {Ce ®@,: N[Cle E(r)}/U,. O

Remark 7.1. A choice for b is y(NU"') + 1 where Ue GL.(S)z’. Put
b = b+ 2n. For m > b/, we have

(7.20) gre-E| AM, N; m)| = g¥ -5 A(M, N; b),.

§ 8. Classification of d-modular lattices and counting arguments

Our objective is to compute value |P(M, N;1)| as defined in Section
7 when M defines an ‘“modular” lattice; in order to do this, we work with
a rather bizarre category.

In this section we fix 6eZ. Terms such as “lattice”, “rank” and
“primitive” are used with respect to S-module structure, unless explicitly
stated otherwise. Define a category % as follows. An object is a ({p, ¢)-
hermitian lattice L such that for s(L) > ¢ and (v, v) € A; every ve L. We
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say Le % is hyperbolic if L is hyperbolic of denominator —4g, and we say
L is modular if it is 6-modular. A morphism L — M is a primitives S/pS-
homomorphism 6: L/pL — M/pM such that if v, v,e L and w, w,c M,
where 6(v,) = w, mod (1) for i = 12, then
(8.1.2) (s, ) — (wy, wy) € 945,
(8.1.b) (v, V) — (wy, w;) € PA,.
Define categorical composition to be the usual composition. Denote the
set of morphisms L — M by P(L, M).

For a lattice, L, let ¢ = ¢,: L — L/pL. If e P(L, M), then a lift of
6 is a form-preserving S-homomorphism 6,: L — M for which @8, = < ¢.
By Lemma 7.1, if 6 e P(L, M) and M is modular, then ¢ has a lifting.
We let “= " refer to congruence module pL, pd; pA, etc.. For zel,
put 2 =24 pL. Also let @ = Q, denote the map Q(z) = (z,z). We
regard @ as mapping into the R-module, A, so equations “@Q(z) = b”
refer to congruence mod pA,. Note that the [ function factors to
(4; — 94;)[p4;, and we adopt the convention that [ of the 0-coset is I(p)
+ 0. Using Lemma 7.1 and Theorem 6.3.A, it is simple to show that if M
is modular lattice and x—M such that @(x) = 0, then there is x’ ¢ M such
that x’ = x and Q(x) = 0.

Lemma 8.1. Let L, M, Ne ¥ and suppose that L and M are modular.
Then

8.2) |P(L L N,L | M)|=|P(L, L | M)|P(N,M)|.

Proof. Each 6 e P(L | N,L | M) is determined by 6, = ¢,.,, and
Oyon- We must show that for each 6,e¢ P(L,L | M) there are exactly
| P(N, M)| choices for 6.

Let 6, be a lift of an element in P(L,L | M). Then L | M = 6,L)
| 6(L)+ where M = 6,(L)* by Theorem 6.3. If we6(L) is primitive and
7 e S, then I((rw, 6,(L)) = Ur) + 6. Consquently, for w e 6,(L)

(8.3) (w, 0,(L)) < pds = we pd(L) + 6(L)*.
If0,®6,e P(L | N,L | M), then
(8.4) O(N/pN) < 0.(L)*/po,(L)* .

It follows that 6, ® 6, P(L | N, L | M) if and only if 6, P(N, 0(L)*". O
Lemma 8.2. If L, Me ¥, then |P(L, M) = |P(—L, —M)|.

https://doi.org/10.1017/5S0027763000001252 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001252

68 PAUL FEIT

Proof. Trivial. O

Let M be a modular lattice and let L be a lattice such that P(L, M)
% @. Express L = L, | L, where L; is modular and s(L,) > 5. By Lemma
8.1, there is M’ modular such that |P(L, M)| = |P(L,, M)||P(L,, M")|. We
proceed by first classifying the isomorphism classes of modular lattices,
computing |[P(L, M)| for L and M modular, and then by computing
|P(L, M)| in the case when I(L, L)) > 4. For ke Z*, let H, denote a hy-
perbolic lattice of rank 2k.

Consider the factoring 6: 4,/pd, — A;/pA, of the R-homomorphism a
—a + ea’. The map is surjective, so the kernel has order ¢°-°. In this
section, we define ¢, by

(85) q” = |ker (0145“/»45)!
and then ¢ — ¢, > 0,. For convenience, we also put ¢ = ¢/s,.

DeriniTION 8.1. A modular lattice M is called anisotropic if P(H,, M)
= . Equivalently, a modular lattice M is anisotropic if and only if there
does not exist a primitive x ¢ M such that Q(x) = 0.

We regard the zero lattice {0} as an anisotropic space. It follows that
every modular lattice is the orthogonal sum of a hyperbolic space and an
anisotropic space.

We begin with a technical refinement of Lemma 7.1. For ne Z and
ke Z*, let 4, , be the additive group of matrices IV in X(k, ¢) such that

(8.6) N, e 4, for each pair i,j and
N,;e A, for eachj.

Equivalently,

8.7 Ao ={T + eT*: Te M,(4,)}.

Suppose n,, r, ke Z* so that k>r, Me 4,, N GL(S)z’, Ne 4,,, and Te
M, (S) is a primitive matrix for which TMT* — Ne 4,,,,,. Let G be
the set of cosets [U] e M, (S)/m" "M, (S) such that

(8.8 U = 0 mod (m™), (T+ UMT + U)* — Ne Ay, npiryrs

for every representative U in the coset. The number of such cosets is
non-zero and depends only on n + n,. Thus, for n,e Z*, the number of
m™M, (S) cosets of primitive matrices 7' which satisfy the condition
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TMT* — Ne A,,,,,, is the product of a non-zero constant that depends
only on n and n, with the number of solutions when n, = 1.
Observe that

(8‘9) pAn,k = An+l(p),k .

In terms of lattices, the above remarks imply

LEmMA 8.3. Let M, N and N’ be objects in € of ranks k, r and r
respectively, where k> r. Suppose that M is modular and that there is an
S-isomorphism ¢: N — N’ such that for all x,ye N,

(8.10.2) Qe(x)) — Q(x) e A,, 4,
(8.10.b) (p(x), () — (x,¥) € 45,1 .
Then | P(N, M)| = |P(N', M)\.

CoroLLARY 8.3.1. Let M be an anisotropic space. If ve M is primitive,
then Q) e A; — A;, ..

Proof. Apply Lemma 8.3 to the choices N == (0) and N’ = (Q(v)). [1
We begin our counting arguments.

ToEOREM 8.4. Let r,ke Z*.
(A) If Ne % is an anisotropic space of rank r over S, then the order
of PH,H, | N) is

(8.11) q(1+2k—1)a—01(qko‘ _ qka'—ka'3) (q(r+k)a-—a-1 + q(r+k—l)(a—03)+oz) .
(B) The order of P(H,, H,) is

(8.12) qr{(zk_r)(za_mwz—aq fl:[1 {(q(k—j—l)03+o‘—al—ﬂg + 1)(q(k—j)a3 _ 1)} .
7=0

Proof. (B) is an tedious consequence of an induction based on
Lemma 8.1 and (A).

Fix ae 4 so that l(a) = 0. Express H, = M, ® M, where (M, M) =
(M, M,) = {0} and put M = H, | N. Let us first classify the classes of
primitive elements ze M/pM such that @(z) = 0. First, suppose that ve
H, and we N so that Qv+ w)=0. If w is primitive then (w, w) =
— (v, v), and Corollary 8.3.1 implies that v must be primitive. Thus, we
need only consider elements whose projection to H, is primitive.

For the next step, fix v, ¢ M, be primitive and choose v,¢ M, such
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that (v, v;) = a. Decompose M, = 4v,® Y where Y = {ue M,: (v,, u) = {0}}.

Put

(8.13) D={we(M, + N)/p(M, + N): Qv, + w) = 0}.

For each w,c Y + N, there are exactly q°~ " values b e 4 such that bv, +
w,e D. Thus

(8.14) |D| = Ut +ameso-an — qUriio-or

If ye Y+ N is not primitive, then @(y)e A,,, and there is at least one
aem such that Q(v; + av, + y) = 0. It is now easy to check such that

(8.15) {we D: w not primitive}| = gV *-Desl-Drez = gUr+k-ho-(r+k-Dostos

A similar argument also holds for fixed v, e M,. The number of primitive

x e M/pyM such that @(x) = 0 is computed as

(8_16) 2(qu — qu—ktrs)q(ﬂk)a-al _ (qu _ qka—kas)(q(r+k)a—¢71 _ q(r+k—1)a—(r+k-l)a3+ag)
— (qka . qka—kas)(q(r+k)y—al + q(r+k—1)a—(r+k—l)03+az) .

Next fix xe M so Q(x) =0. Without changing pM coset, we may
assume that @Q(x) = 0. There exists ye M such that (x,y) = a¢ and Q(»)
=0. For we M, (x,w) =a and Q(w) = 0 if and only if
8.17) w=bx +cy+ u where b,ceS, uelx,ypt, c=1

and ba + ¢(ba)’ = — Qu) .
Thus, the number of hyperbolic pairs in M/pM is
(818) q("*z’““)”"’l(qk” — q’w—kvs)(q(f’f’ﬂ)v—n + q(r+k—1)a—(r+k_s)a3+gz) . 0

DerFiNiTION 8.2. For ke Z*, put

(8.19) Q.= A N GL(S)z.

The group GL.(S) acts on 2, by u-M = ulMu*.
We divide tuples (4, p; d, ¢) into types.

Type I: I(A;) =06 and ¢ > o, + gy,

Type II:  I(A;) =6 and ¢ = g, + 0y,

Type III: I(A,) %6 and ¢ > g, + o,

Type IV: I(A,) % ¢ and ¢ = o, + 0,.

TaHEOREM 8.5 (Quantitative structure theorem of modular lattices).
We work in the category € as defined above. Let g, g,, and o, be the
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quantities defined in (5.8) and (5.9), and let o, be as defined in (8.5). By
“rank”, we mean rank as an S-lattice.
(A) There does not exist an anisotropic lattice of rank greater than 2.
B) If M and N are modular lattices and rk(N) <rk (M), then
P(N, M) + @.
(C) The isomorphism classes of modular lattices are classified as follows.
Type 1: For reZ*, there exists a modular lattice of rank r. Any two
modular lattices of the same rank are isomorphic. A modular lattice
is an orthogonal sum of rank 1 lattices.
There are anisotropic lattices of ranks 0 and 1.
Type II: Let re Z*. There exists a modular lattice of rank r, There are
two distinct isomorphism classes of modular lattices of rank r. If
L and M are modular lattices of rank r, then L | L~ M | M.
A modular lattice is an orthogonal sum of rank 1 lattices.
There are anisotropic lattices of ranks 0, 1 and 2.
Type III: A lattice is modular if and only if it is hyperbolic.
Type IV: There exists a modular lattice of rank re Z* if and only if r is
even. If r is even, there are two isomorphism classes of modular
lattices of rank r.
There is an anisotropic lattice of rank 2.
(D) Let M be a modular lattice. Express tk (M) = 2g + 2 where g¢
Z* U {0} and 2€{0,1}. Put (M) =1 unless g is even and M is not hy-
perbolic; in this case, put (M) = — 1. Then |P(M, M) is

-1 +2-1
(8.20) qg((g+2)(247—a3)~61)+(g+1)az{(qgaz _ 7](1‘4-)) gI;[l (qaos _ 1)} gﬂo (qb,3+g_al..g2 + 1),

with the convention that {(g¢"* — p(M)) [1¢21(g** — D} is 1 if g = 0.

CororLARY 8.5.1 (Context of Theorem 8.5). For keZ*, 2, is non-
empty if k is (4, p;0,¢) is of Type I or II, or k is even. If Q.= &, then
the number of orbits under conjugation by GL.(S) is 1 if (4, p; 4, ¢) is of
Type I or III and 2 if (4, p; 6,¢) is of Type IL or IV. If (4, p; 5, ¢) is of
Type 1 or II, then each orbit contains a diagonal matrix.

CoroLrARY 8.5.2 (Context of Theorem 8.5). Let M and N be modular
lattices. If M@, F and NQy F are isomorphic as hermitian spaces over 4,
then M and N are isomorphic as lattices over S.

Proof. The corollaries are simple consequences of Theorem 8.5. Their
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verifications are left to the reader.
For ke Z*, define ~ on 2, by

(8.21) M~ N & M = Nmod (pM,(4;)) and
M;; = N,;mod (pA;) for each j.

Put 9, =92./~. If M~ N, then M and N lie in the same GL,(S)-orbit
by Lemma 7.2. Thus, the action by GL,(S) on 2, factors to an action by
G = GL(S/pS) on 2].

We must classify the modular spaces of (4, p;d,¢). We do so by
giving a laborious analysis of anisotropic spaces when k = 1,2, and then
deducing all other results from these two cases. In particular, Theorem
8.4 determines the order of the |P(N, V)| in general once we give formulas
for anisotropic lattices. The number of isomorphism classes of modular
lattices of rank % is the number of G-orbits of 2.

Case 1: I(A;) =3¢

First, put 2 = 2,. Let H be a hyperbolic plane and let {e,, e;} be a
hyperbolic pair of H. Let aec Q. If ve H and Q(v) = a, then v is primi-
tive—in fact, if v = Ze, + pe,, then 2 and g must be S-units. For each
S-unit 2, there exists pe S such that Q(%e, + pe,) = a, and the number of
such values mod (p) is ¢°~"*. Hence,

(8.22) |P((@), H)| = q"~(¢" — ") .
Now H = (a) | (—a), and so
(8.23) |P((@), (@) = |P((—a), (—a))| = |P(H, H)||P((a), H)| = ¢°~"* + q™.

Note that |P((a), (a))| does not depend on a.
Define c e Z* by

(8.24) g = |{be A;: I(b) > d}/pA,|.
Each G-orbit of £’ contains |G|/(q°~** 4+ q°%) points. The number of orbits
is

(8.25) (@ — @)@ ™+ a)a —q ")
= 1 + {qv1+az + qa—as — qa+r—al — qf+02}/(qa . qq_as).

First, suppose that the number of orbits is 1. Now if d,e,fe Z and d >
e, f, then ¢* > q° + ¢’. Hence either

(8.26.a) oo+, =0c+7—0, and ¢ —0, =17 + 0;, OF
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(8.26.b) o+, =7+9, and ¢ —0;,=0¢+7—o0,.
Since ¢, > z, the latter equations do not hold. The conditions of (8.26.a)
are equivalent to ¢, = 2(o, — 7) and ¢ = g, + 0, + (0:/2).

Next, suppose that the number of orbits is greater than 1. First,
suppose that g, + ¢, < ¢. Then we have

(827) q01+ﬂz + qa-—aa > qa —q° e,
_‘;‘Sq""l > q"'—:}q = 9.
Substituting ¢ = 2 into (8.25), we quickly see that o, = 1. It follows that

(8.28) (2014'02 — Qotr-or __ 2f+472)/2¢—1 eZ* U {0} .
From ¢, + 0, < 0 — 1, we get
(829) Qoitor . Qotr-a1 + Qrtor — 2t+02<2a—ﬂ1—02+1) .

But ¢ — ¢, — 6, € Z", so the last equation is impossible.
Assume ¢ = ¢, + 0,. The number of orbits is

(8.30) 2+ {2¢°7 — 207}/ (" — ")

The righthand ratio is 0 if and only if 0, = 0, — . Reasoning as above,
we find that the ratio is a positive integer only if ¢ =2, 0, = 1 and ¢ =
g, — 2. If (4, p) produces these parameters, then 4 = F or 4 is a ramified
quadratic extension of F. But r > 0 and so ¢, = 2, which is not true in
either case. Hence, the number of orbits must be 2.

We need a special remark in the Type II case. Let b and ¢ represent
the distinct orbits of 2. We claim that (b) | (b) = (¢) | (c). Suppose that
ve (b) | (b) such that Q(v) =c. Then (Sv)! = Sw where (c) | (Q(w)) =
(b) | (b). Now (Q(w)) is not isomorphic to (b), and we are done. Suppose
ceIm(Q,, ). Under this assumption,

(8.31) Im Q) = Im(Qy1 ) -

But now a simple induction implies that Im(Q,) = Im(Q,) where N is a
finite orthogonal sum of spaces isomorphic to (b). The sum N, of g copies
contains a primitive v’ such that @(v') = 0, which implies that H imbeds
into IV,. But then velIm(Q,,), which leads to a contradiction.

Still assuming that (a) = J, suppose that N is a modular space of
rank 2> 1. Then N contains a fundamental lattice of rank 1 or 2. In
either case, it is easy to show that N must contain a primitive element
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v such that I(Q(v)) = §. By induction, we see that N is an orthogonal
sum of rank 1 lattices. In the Type I case, this implies that the iso-
morphism class of IV is determined by its rank. In the Type Il case, our
special remark implies that there are two isomorphism classes for each
rank. For either type, we can also conclude that if N and IV are two
modular lattices and rank (V) < rank (IV’), then P(V, N’) & @.

Let N be an anisotropic rank 2 lattice in the Type II situation. Let
ac and put g = |P((a), (@))]. Now N = (a) | (b) for some be 2, and so

(8.32) |P((a), N)| = | P(N, N)|| P((b), ()| = |P(N, N)|/g -
Now > ,colP((a), N)| is the number of primitive elements of N/pN. Thus,

(8.33) 2(Glg)(P(N, N)|/g) = ¢ — g,
= [P(N, N)| = 2¢""**"*(q"* + 1).

The remaining claims for the Types I and II situations follow easily.

Case 2: UA;) > 6.
Let N be an anisotropic lattice with matrix (fa" z) over a basis f, f..

We compute |P(N, N)| by studying |P(N, H,)|.

Express H, = M, ® M, where (M,, M,) = (M,, M,) = {0}. Ifv,e M, and
v, € M, so that Q(v, + v,) = b, then v, and v, must be primitive (because
be A;,). For v,e M, primitive, there is v,e M, such that M, = 4v,®
((4v)* N M,). Thus, the number of y e M,/pM, such that @v, + y) = b is
g**-°s. Next, suppose e, ¢ M so that Q(e;) = b, and put & = Q(e,). There

!’
is y € H, so that the matrix of the form with respect to {e,, ¥} is (ga" Z)
b «a

a? c’)' Thus, we can choose e, M so

bl

Now {e;, ¥>* is isomorphic to ——(

that the matrix with respect to {e, e} is ( a)' Hence, there are e, ¢,

ea® 0
such that the matrix with respect to e, e, ¢, e, is
¥ a 0 0
[o 0 0 a j )
0 0 e O

Let y = ae, + Be, + u where ue {e,e,y. Then
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(8.35) (epy)=a&= p=1—cabar,

Q) =c&= Qu) =c — aba® — aaf’ — (aap’) .
The two equations imply that @.,(w) e Qy(f. — af) + As,,. If (a, u) solves
the two equations, then uw = Ze, + pe, where 1, p are S-units. The number

of solutions is ¢**~"(q° — ¢°~*). Now — N is also anisotropic and N |
— N = H,, so

(8.36) |P(N, H)| = ¢"~*(@" — ¢ ") (@ — ¢,
|P(N, N)| = | P(H,, H)|[|P(—N, H)|
— qu+zaz-da(qua+d—n—02 + 1)(qa—01—az + ]_) .

Put 2’ = 2;. Inspection shows that

(8.37) 19/ = g*(q" — q""*).
The orbit of hyperbolic matrices in 2’ contains
(8.38) getramo(gte — (g7 4+ 1)

elements. Suppose that ¢, <<¢ — ¢, —0,. Then ¢ — 0, —0, > 1, g7
+ 1 is prime to ¢, and (8.38) implies that 2¢, > ¢ — ¢, — 6,. Moreover,
g’ -2 + 1 divides

(8.39) ans + qa-—al-—az — qu—al—vg(q2as—a+al+az + 1) .

But then 2¢, > 2(¢ — ¢, — 0,), which is a contradiction.
If 6, = ¢ — 0, — a,, then (8.38) equals (8.37) and there is one orbit.
Suppose ¢, > ¢ — ¢, — g,. The number of anisotropic orbits is com-
puted to be

(8.40) q—¢+d1+m(qcs—a+n+az . 1)(qa3+a—-v1—-az + 1)/(q203 . 1) .

This is a g-adic integer only if ¢ = 0, + 0,, and in this case there is only
one anisotropic orbit.

Let N be an anisotropic lattice of rank 2. Then — N=N. If N'is
another anisotropic lattice, then N is an orthogonal sum of anisotropic
fundamental lattices. But the sum of two such lattices is isomorphic to
N ] —N=H, and so N’ = N or N’ = {0}.

All claims concerning Types IIT and IV follow. O

We turn to the second problem—compute | P(L, M)| when M is modular
and s(L) > 5. We write N ~ N’ if there is an S-isomorphism ¢: N —> N’
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which fulfills the hypothesis of Lemma 8.3. For the moment, fix L a
non-trivial hermitian lattice and consider .# the class of lattices L, such
that L ~ L, | D for some trivial hermitian lattice D.

Let L,e #. First, suppose ve L, such that Q(v)e A,,,, and (v, L,)
= s(L,). If I((v,v)) = s(L,), then L, = (Sv) | L’ for some L’, and L, ~ (0)
1 L’ If (v, v)) > s(L,), then there exists w so that {v, w} is fundamental
and L, = (v, w) | L’. The matrix of the form with respect to {v, w} is

(?ap Z) and so L, ~ (8 2) | L’. Next, observe that if L, = A | B where
b a

A is a rank 2 fundamental lattice given by (Eap c), then L, ’”(8 S)J_B.

We conclude that there is an element L,e.% which is given by a
diagonal matrix and with the property that Q(v) ¢ A,,, for v e L, primitive.
Formally, we have

DEeriniTION 8.3. Let
(8.41) V= {xeA;: l(x) > d5}/A,,,.
Then V becomes an S/m-module under an action with the property that
(8.42) VYaeS, VxeA,, @ %=axa’,

where “~ 7 denotes the equivalence class of an element in A,;/A,,, or
S/m. If Le % so that s(L) > 4, then the function @, composed with ¢:
A; — V is an S-homomorphism. Define the defect of L to be

(8.43) def (L) = rankg,, Im(¢-Q,) .

LeEmMA 8.6. Let Le % such that s(L) > m. Then there exists L e €
(possibly of rank 0) such that L ~ L, | D for a trivial lattice D, and ¢o
Q., induces an injection on L,/mL,. Moreover rankg(L,) = def (L).

Let us compute d = dimg,(V) for each of the Types. The space
A;,,/pA; is the image of 6 of (8.5) restricted to 4;,,/pd;. Thus,

(844 AvloAsl = o,
and

(8.45) g o ortios = | A,lpA,| — |91
Hence,

(8.46) d =0 for Types I, II and III, and d =1 for Type IV.
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Let M be a modular lattice, De %, and let S, denote the lattice S
with the trivial form. The number of ve M/pM for which Q(v) = 0 is
computed in (8.16). If ve M so that Q) = 0, we may express M =
{v,w) | M’ where {v, w} is a hyperbolic pair. An extension of 1+ v to
a S-homomorphism ¢: S, | D— M is determined by its projections ¢,: D
— M’ and ¢,: D— (v, w). It follows that if NNV is anisotropic of rank r
and ke Z*, then

(847) IP(SO LD’ Hk J_N)I — q(r+2k—l)(zr—ﬂa)+02+rk(D)a(qk03 _ 1)

X (q(7‘+k71)qa+v—al—n2 + I)IP(D, H,_, _LN)I
Next we make a special comment in the Type IV situation. Fix be A4,
— A;,,. Let Me% be modular of rank 2k. Now rk V=1, so if ce A,
— A, ,, there exists ue S — m such that ce ubu® + A,,,. Consequently,
|P((c), M)| = |P((b, M). The number of primitive members of M is

(8.48) [(A; — As )[PALIP((b, M)| + | As,s[pAd| PO, M)].
Thus,
(8.49) [P((b), M)| = g*mr-"(gPes — (M) .

Computation produces

THEOREM 8.7 (Context of Theorem 8.5). Let D, Me ¥. Suppose M is
modular lattice, tk(D) >0 and s(D) > . Put d=rk(D), p= def(D),
n = (M), and express rk (M) =2g + 1 for geZ and 2¢{0, 1}. Then
P(D,M) > @ if and only if d=p=1 or P(H,_,, M) > @». If P(D, M)
= 5, then it has order

(8.50) qd{(2g+1—d)(a‘—va)+a'2+(d—l)17/2)

a-1
X {(q(g—di—l)aai—a—-al—az + (1 _— #)77) Hl(q(g»a+1)ug+a——ol—m + 7])

1

d—
X (g — 7).

0

with the convention that the second term {*} is 1 if d = 0.

§9. Hermitian lattices and the power series
Fix 6 = (2) for this section. For re Z* and nc Z, put
(9.1) 2X(r;n) ={TeX(r,e?): UT;,) > n for each pair of indices (i, j)},
2(r;n)* ={Te(r,¢: (T -2(r; n)) = {1}},
2, ={ded:vbed, I(b) > n—>Ubd + b°d) = 1}.
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Clearly 2, = 4,_,. For Te M,(4), also let
9.2) JAT) = [TS" + 4 47].
We begin with a Gauss Integral.
THEOREM 9.1. Let r,keZ*, neZ, and Ne 3(r,¢’). Let H be a 2k X
2k matrix which represents a hyperbolic lattice of type (o, &) and denomi-

nator n — 4, and let p be the Haar measure on M, ,(S) for which
(M, (S) = 1. Then

(9.3) f W(HxNx¥)dp(x) = g~

L€ Mapxr(S)

Prooﬁ When we apply this lemma later, the “N” term here will
correspond to a variable on 3(r,e¢?). For that reason, we have written
the hypothesis so that IV has type (o, ¢’) and H has type (p, ¢). In this
argument, however, we apply lemmas from previous sections to the matrix
N regarded as a (p, ¢’)-hermitian lattice.

Clearly we are free to replace H by any matrix of the form uwHu*
for ue GL,(S). Let de 4 so that I(d) = § — n, and put

9.4) H, — diag{[g eg"], [g E‘g"]} ¢ M,(4) .

We do the proof in three steps.

Step I: k=1 and N[E,,I;p (é] where ae 4%, b =¢b’, ¢ =ec’, and
1(b), l(c) > Ua).
Using coordinates (L; g) on M,S), the integrand becomes
(9.5) X(edrybw? 4+ ed’yax® + d°za*w® + ed’zex® + dwby® + dwaz’
+ e!dxa’y® -+ dxcz?).

Composing the integrand with the measure preserving map (w, x,y, 2) —
(w, x,v, 2z — ybra~*), we get

(9.6) X(edryax® + drzctx? — deybfa=fctx® + edxa’y® + dxcz’ — dxca™'by’)
X Kdrzatw’ + dwaz’) .

Fix x,y,2. The map w — X(d’za’w’ 4+ dwaz’) is a character. Thus, the
integral over w vanisheds unless d’za® ¢ @—that is, unless I(2) > n — I(2).
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Note that when I(z) > n — l(a), then X(d’zc?x* + d’xcz’) = 1 as well. Thus,
the integral equals

9.7 g @ j Uedryax® — drybra~rcPx? + efdxa’y® — dxca='by*)du(x, y) .
z,y€S

The argument is

9.8) dx(efa® — ca'b)y’ + d*{x(efa® — ca~'b)y ),

where l(¢’a® — ca™'b) = l(a). Reasoning as before, we conclude that the
integral is g%, By (6.3), j,(IV) = 2j,.(a).

Step II: k=1 and N = (b), where b = ¢b°

We allow b = 0. In terms of the variable matrix (;), the integrand
is
(9.9) xX(deybex? + dxby) .
Reasoning as in Step I, we deduce that the integral is g-/»®,

Step TII: General situation

Let Ne M,(4) so that N = ¢ N*. Put H= H,. The matrix N deter-
mines a hermitian form on S”. By Remark 6.1, there is u e GL,(S) such
that

(9.10) ulNu* = diag {N,, - - -, N,}

where each N, is a b, X b; matrix which satisfies the hypothesis of Step
I or Il. Conjugation by u affects neither the j factor nor the integral,
so it suffices to prove the theorem when N = diag{N, ---, N,}.

The integrand becomes

(9.1 X0 20 Hx No(x%),) = Tl X(Hx, Ny(x*),5)
where x;; varies over M,,(S). The integral becomes
& -Jjn(Ng)k __ —Jjn(N)k
(9.12) s1:[161 =q . O

For neZ and ke Z*, let H, , be a 2k X 2k matrix which determines
a hyperbolic (p, ¢)-hermitian lattice of denominator n — . For m, k,rez*
so 2k > r and Ne X(r: n), put

(9.13) Ak, n,N;m) = {Te M, (S): Tmod(m)e A(H,,,, N; m)}
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where A(H,,,, N;m) is defined in (7.10) with respect to E(r) = 3(r; n).
Then |A(H;,,, N; m)| is the measure of the set Ay(k, n, N; m) with respect
to the Haar measure p/ on M, ,(S) such that p/(p"M, ,.(S)) = 1. Clearly
#l — q2mrka#'

Let v denote the Haar measure on 2(r, ¢’) such that v(2(r;n)) = 1.
For Ee 2(r:n),
0 if Eepmd(r; n)t,

014 | rmdaw= {0, L pehiin

p=mE(rin)

Then
(9.15) |A(H,,., N; m)|
— ginrke-me j j X(TH,,, T* — N)x)dv(x)du(T) .

TE€My,2x(S) x€p= ™I (rin)
Interchanging the order of integration and invoking Theorem 9.1, we get
(9.16) qma(r)—zmml A(Hk,m N; m)l — f X(——Nx)q‘““”"dy(x) .
p=mE (r,m)

Define formal power series in an indeterminate ¢ by

an(N, t) = > A — Nx)t-n( |
9.17) z€p=mE (rim)/ 2 (r3m)
) = 3 A Nepe

T€ I (r,eP)/Z (15m)

It is routinely verified that «,(V,t) is a properly defined power series,
and that for ¢, e C with |¢| sufficiently small, we have lim,,, . .ac™N,t) =
a,(—N, t). Observe that o™, t) = a,(—N, £) and a,(N, t) = a,(—N, ?).

LEMMA 9.2. Let neZ*, reZ*, and Ne 3(r; n)* N GL,(4). Then there
exists be Z* such that o™(N, t) = o, (N, t) for each m > b.

Proof. Let beZ* be the bound in Theorem 7.3 for 4§, = I(2,) and
E =2(1;n). Remark 7.1 and equation (9.16) imply that o™V, ¢°%) =
a’(N, q°") for all M > b and k > r/2. Thus, for m > b we have o™, {)
= (N, t). It follows that a,(IV, ) = a4, o). O

CoroLLARY 9.2.1. For ne Z,
(9.18) X1, n)t={d+ed: de2,},

where 2, and 2(1; n)* are given in (9.1). Equivalently,
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(9.19) A, ={de3(1, o ud-3(1; n) = (1)}.

Proof. Clearly (9.18) implies (9.19). Let be 2(1; n)* — {0}, and put
N = (b). By Lemma 9.2, «,(N, ?) is a polynomial whose constant term is
obviously 1. It follows that there is ke Z* for which A(H, ., N;m) is
not empty for all m greater than some bound. The reasoning of Section
7 (Lemma 7.2 and Theorem 7.8) implies that there is a primitive form-
preserving injection of (c~'bc~*) into H, for some ce S — {0}. Thus, ¢ 'be~*
€ A;_,, and our claim follows. 0

We can now prove half of the claims in Section 5.

Proof of Lemma 5.1. Let 7 be a generator of the maximal ideal of S.
Then ¢+ cr* induces an additive isomorphism 2(z) = 2(1; 1)/2(1; 2). By
Lemma 9.2, the character group of X(1; 1)/2(1;2) is A, ,/A,_,. The latter

space is isomorphic to A,;/A;,, under ¢ — zcr*. Now
(9.20) q* = [A;: pA)] = [A,, ][4, pAL],
where we have established that [A,: A;,,] = ¢°*. The map # used in (5.9)

is surjective, and so [A;, : pA;] = g'~ s~ O

Proof of Theorem 5.3 when r = m. We use the formulas in (8.20),
(8.50) and (7.19) with the convention “M” is hyperbolic of denominator
— ¢ and of rank 2k and n, =n, = 0. For g,heZ* U {0}, 2, p€{0,1} and
n€{—1,1} such that

(9.21) p<h, =1 if 2=1, and p=1onlyif 1=0,
let R(g, h, 2,7, p; t) be the polynomial

g+h-1
{(1 + ,0(1 . #)q(g+ll)as+cl+02—0tds) UO (1 + qzxo‘3+al+02—at03)}

g+h+a-1

1 —qt),

7=0

(9.22)

with the convention that the bracketed product is 1 if g + A = 0. Sup-
pose Ce @, such that N[Cle 2(r; S)". Express the lattice determined by
NI[C] as L | D where L is unramified and s(D) > . Then the summand in
(7.19) corresponding to the coset of Cis R(g, rank (D), 6, y(L), def(D); ¢=*)
where 2g + 1 =rk(L). Consequently, a(lV,t) = (N, ) agrees with the
sum of polynomials R(g, rank (D), 2, (L), def(D); t) taken over cosets C.
Some simple identities are

https://doi.org/10.1017/50027763000001252 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001252

82 PAUL FEIT

(9.23) R(g,hAnu)|RE—LA+247, 450,
R(g, h, 2,1, 1; )| R(g, h, 2,7, 05 9),
R(g,0,0,7,0; )| R(g — 1,1,1,1,0; )| R(g — 1,2,0, %, p; 1),
R(g,0,0,7,0;8|R(g, 1,0,1,0;f)| R(g — 1,2,1,1,0; 2) .

The expression in Theorem 5.3 divides every term. If N determines a 4-
modular lattice, then a(N, t) equals the term corresponding to C=1. [J

Once we find «(0, {) for 0 any square zero matrix, the remainder of
Theorem 5.3 follows by direct calculation. For the rest of this paper, fix
n a generator of the ideal m, and recall that ¢, = |S/zS|. For re Z*, let
I(r) be the set of all tuples (a,, ---, a;; b, - -+, b,) € Z* such that

(9.24.a) teZ",

(9.24.b) a; > 0 for each index j,

(9.24.¢) 0<Hh << ---<b,,

(9.24.d) Laa;=Tr.

Put d(al’ R b“ cee, b‘) — dlag {nbl’ e, n.bl’ n.bz’ ceey, n.bz, n.bz, ceey, n.bt},

where the term z’/ appears a; times. Also, put

(9.25) f(n) = [17-.Q — q57) for neZ*, and
f(al’ cey Qg bb M) bz) = rl.s‘:If(at) .

Let é=(ay, ---,a,; b, ---,b)ellr). If ke Z sothat b, > k(b, k), we write
&> k(&> k) and let & — k denote (a, ---,a,;6,— &k, ---,b, — k).
We need

THEOREM 9.3. Let reZ*, £ =(a,, ---,a,; b, ---,b)eI(r), and put 6
= d(é).
(A) The additive group Endg (S7/S6) has order

k
(9.26) qe where &, = Y b,aj + > 2ba.a,
i=1 i<j

and the group Autg (S7/S™6) has order f(§)|Endg (S7/S76)|.
(B) The sets UNU,0U, and U,0U,|U, are finite and share the common
order

(9.27) ; Eg gs  where r = 3 (b, — b)ag,.
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(C) As formal Dirichlet series in the variable q=*°, we have the equality

(9.2 5 g =Ta—- gy
DeEUNPr j=0
Proof. The results are well-known when 4 = F. The classical proofs

apply to the non-commutative case, so we omit them. O

Let me Z*. Define a diagonal matrix of order m to be a diagonal
matrix 6 such that each diagonal entry i satisfies Q) =m. If r,keZ*
and 6 and ¢ are diagonal matrices of order m of sizes r X r and % X &,
respectively, then
(9.29) OM, (S)0'~' = 6-'M, (S)§ = M, (S).

In what follows, we freely identity § € 4 with a matrix of the form 61..
From [3; (4.4), (4.5)] with the choice T = 0, we see that

(9.30) ( 25 90, q7°) = (Defujm R(D)g—®»).

DEeTNOr -

Again, although the proof of this fact is given under the assumptions
char(F) = 0 and ee{l, —1}, the argument holds in general. We next
turn to the quantities 2(D) and R(D) for De ®,. If «, fe U, then R(aDp)
= R(D). Let r,reZ*, D,e®,,D,e®,, and §e S — {0} such that 6D;!
€®, and D,f'e®,,. Letr=r + r, and decompose any matrix Ce M,(S)
by
(9.31) C = [Cu sz] where Cie M, (S), C.eM,,.(S),

G Ca CueM,,.(S) CyeM,(S).

0

Put D= (OD ! D)‘ Our assumptions imply that if Te M, ,.(S) then
2

1,72

(9.32) D,TD;* = Dg-0T9-*)(¢*D;**) e M,,.(S) .

Direct calculation shows that for a choice of submatrices (C,;, Cy, Cy),
either there is no Ce Q(D) with the assigned parts, or

(9.33-3-) Cye ‘Q(Dl) ’
(9.33.b) Cne Dy,
and then there is exactly one such C. We get an obvious isomorphism

(9.34) 2(D)/D3(r, S) —> 2(D,)|D,2(r,, S)
X Q(DZ)/DZZ("Q’ S)Mn,rg(s)/D!Mn,m(S) ’
= R(D) = R(D))-R(D,)-q">» .
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Equation (9.34) is true if r, =0 or r, = 0. A simple induction implies
that if we S — {0}, then R(al,) = R(a)’q"""*" for all r.

Let reZ*, De®,, and let ¢ be an r X r diagonal matrix of order m.
The map C+~ 6*C6H induces an isomorphism

(9.35) 2(6D6*)[(6D6*)2(r, S) —> 2(D)/D(6*2(r, S)6)
== R(6D6*) = R(D)c(6) .

From Defirition 7.1, we get «(f) = g™ —mos*rmos,
For k,re Z*, define

(9.36) Bilr,s) = eelé?EZkR(d(g))l UN\U, (&)U, | g @,

We use the convention that B(0,s) =1 for all k. Then B(r,s) is the
righthand side of (9.30). Note that for k, r,me Z*,

©.37) Buvie(r, 8) = g DRt (1, o)
since
(9.38) w(d (¢ + 2k)) = v(d(8)) + 2rka,,

[UNUA(E + 2RU,| = |UN\Ud@U,]|,
R(d(¢ + 2k)) = R(z"d() (p*)*) = q"" =P sk sR(d(8)) .
We get recursive formulas involving p, and 8, by relating the relevant

quantities for & e I(r) with the analogous quantities for a shorter tuple
& e I(r') where r’ <r.

Let éE=(a,---; -+, b)eI(r). We assume that ¢ > 1. Express b, =
2k + 2 where ke Z and 1€{0,1}. Let & =(ay ---; b, — 2k, ---, b, — 2k).
To simplify the formulas which follow, put a = a,. Note that & > A

Then
(9.39)  w(d(8)) = 2rka, + 2as, + v(d(£)),
UV, d@U,| = P qracrse-on UNUa@U,

R(d(e)) — q'r(r—1)kn3+1‘kq5+2aas(27‘-a—l}/z+Ian.R(d(§/)> i

With obvious conventions on “0 X 0” matrices, the formulas are true
when ¢ = 1.

Let re Z*. Let us introduce some more notation. Put f(0) = 1. If
&= (a, -+, a)e(Z* U {0}) so that > ,a, < r, then put
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(9.40) Pt = f(n){f(a)---fla)-fr — Z,a)} .
Reducing each &€ I(r) to & ¢ I(r'), we get

r o 1
‘80(7', S) — ZZ XZ_(:)qu1b54+k(r—1)as+705—27038)+1bn3[(b—1/2)~s}‘81+1(r . b, s — b)

b=1k=0
(9.41) — (1 _ qr((r-l)g3+q5-2ass))-1 ZT]PQ{,BI(I‘ - b, s — b)
b=1

+ qbu+(r—b)nr5+n((7—b)(7'+b—1)+(b(b—1)/2)—(27—b)3)‘80(r — b, s — b)}
, .

Decompose {£eI(r): £>1} into {éel(r): £>2} and U, éel(r): € =
(a’ s, )}.

r
(9_42) [31(,.’ S) — bz:_‘:lpgqbuw‘(r—b)aa)(r—b)(r+b—1)+(b(b—1)/2)—(27—b)8}ﬁ0(r — b, s — b) .

Substitute (9.42) into (9.41). Multiply both sides by (1 — g"!¢-1os*es-tash)
and then add q"!¢-Vestes-Pasig(r ) to each side. Note that P/P; ¢ =
P;, P+ for e, b,re Z* U{0} such that r > e + b. We get

(9.43) By(r, s

—_ bio{Perqasl(r-e)(r+e_1)—2(r—e)3)+(r—e)as[80(r —e, 8 — e) Ze: quas{b(e—-b)s)+b(b_1)/2+b,‘}.
= b=0
We now cite the classical identity
(9.44) 7ﬁl(]_ + ) = Z"‘l Yryrn-nroe-nmgp
=0 =0
where y and ¢t are indeterminates and

1 -y

1

1=

(9.45) Yr=1

I lo
e

.

1 -y

S|y

<.
)

Put t = g+ ** and y = ¢°*. We have

(9.46)  Bi(r, 5)
3 e—-1
= Z‘:){Perqaa((r—e)(r+e—1)—2(r—e)s}+(7—e)a5‘80(r —e, 8 — e)bl;lo(l + qbn3+“-,as)} .

Divine inspiration suggests the substitution

m—1
947 B(m,s) = ﬁ0<m, s+ -1+ m) T (1 4 qerizmestoumoum-ow)-1,
b=0

T3

where the new functions satisfy
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(9.48.2) B0,s) =1,

(9.48b) B(m,s) = 3 Prp-*6-0-%9B(k s)  for each me Z".
%=0

Clearly (9.48.a,b) uniquely determine the family of functions {B(m, s);
meZ*'}. We claim that

(9.49) B(m, s) — mﬁl(l _ q-aa(b+23))—-l i
=0

With the substitution y = ¢=* and ¢ = ¢~%*, and after dividing by the
expression B(m, s) given in (9.49), we may derive (9.48.b) from

LemmA 9.4. Regard Y? given in (9.45) as a rational function in the
variable y. For t,y indeterminates,

(9.50) 1= 3 Yiy e T (1 — ).
k=0 i

=k

Proof. Tt suffices to verify (9.50) for substitutions y = g where ¢ is a
positive integral power of a prime. But this follows from (7) in [4; Pro-
position 1 of Section 5] after substituting x = 1/¢, z = 0, and then multi-
plying both sides by ¢". d

The remaining work is straightforward computation.
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