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Points of Small Height on Varieties
Defined over a Function Field

Dragos Ghioca

Abstract. We obtain a Bogomolov type of result for the affine space defined over the algebraic closure

of a function field of transcendence degree 1 over a finite field.

1 Introduction

The Manin–Mumford conjecture, proved by Raynaud [8], asserts that if an irre-

ducible subvariety X of an abelian variety A defined over a number field contains
a Zariski dense subset of torsion points of A, then X is a translate of an algebraic sub-

group of A by a torsion point. Next we describe the Bogomolov conjecture, which is
a generalization of the Manin–Mumford conjecture.

Let A be an abelian variety defined over a number field K . We fix an algebraic

closure Kalg for K and we let ĥ : A(Kalg) → R≥0 be the Néron height associated to

a symmetric, ample line bundle on A. Let X be an irreducible subvariety of A. For

each n ≥ 1, we let Xn =

{
x ∈ X(Kalg) | ĥ(x) < 1

n

}
. The Bogomolov conjecture,

which was proved in a special case by Ullmo [10] and in the general case by Zhang

[12], asserts that if for every n ≥ 1, Xn is Zariski dense in X, then X is the translate of
an abelian subvariety of A by a torsion point of A. Both Ullmo and Zhang proved the

Bogomolov conjecture via an equidistribution statement for points of small height on

A. The characteristic 0 function field case of the Bogomolov conjecture was proved
by Moriwaki [7], while a generalization of the Bogomolov statement to semi-abelian

varieties was obtained by David and Philippon in [5].
The case of Bogomolov conjecture for any power G

n
m of the multiplicative group

was first proved by Zhang in [11]. Other proofs of the Bogomolov conjecture for G
n
m

were given by Bilu [1] and Bombieri and Zannier [2]. This last paper constituted our
inspiration for proving a version of the Bogomolov conjecture for the affine scheme

defined over the algebraic closure of a function field of transcendence degree 1 over

a finite field (see our Theorem 2.2).
The picture in positive characteristic for the Bogomolov conjecture is much differ-

ent due to the varieties defined over finite fields. Indeed, if A is a semi-abelian variety
defined over a finite field Fq, then every subvariety X of A defined over a finite field

contains a Zariski dense subset of torsion points (because X(F
alg
q ) ⊂ A(F

alg
q ) = Ator is

Zariski dense in X). Because all torsion points have canonical height 0, then each sub-

variety X defined over F
alg
q constitutes a counterexample to the obvious translation in
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positive characteristic of the classical Bogomolov statement. Thus, it is not true in
characteristic p that only translates of algebraic tori are accumulating subvarieties of

G
n
m for points of small height. All subvarieties of G

n
m invariant under a power of the

Frobenius are accumulating varieties for points of small height. The group structure

of the ambient space G
n
m disappears from the conclusion of a Bogomolov statement

for G
n
m. This motivated our approach to Theorem 2.2 in which the ambient space is

simply the affine space, and not an algebraic torus as in [2].

We note that Bosser [3] proved a Bogomolov statement for the additive group
scheme in characteristic p under the action of a Drinfeld module of generic char-

acteristic. His result is not yet published, but the main ingredient of his proof was
published in [4]. The author formulated in [6] an equidistribution statement for

points of small height for Drinfeld modules of generic characteristic (and we also

proved in [6] a first instance of our equidistribution statement). Our equidistribu-
tion statement is similar with the ones proved by Ullmo [10] and Zhang [12] for

abelian varieties. Finally, we note that our Theorem 2.2 can be interpreted as a Bogo-

molov type statement for Drinfeld modules defined over finite fields.

2 Statement of our Main Result

In this section we state our main result Theorem 2.2, which we prove in Section 3.

For each finite extension K of Fp(t), we construct the usual set of valuations MK

and the associated local heights hv on K . For the reader’s convenience we sketch

this classical construction (for more details, see [9, Chapter 2]). Let R := Fp[t].
For each irreducible polynomial P ∈ R we let vP be the valuation on Fp(t) given by

vP( Q1

Q2
) = ordP(Q1) − ordP(Q2) for every nonzero Q1, Q2 ∈ R, where ordP(Qi) is

the order of the polynomial Qi at P. Also, we construct the valuation v∞ on Fp(t)

given by v∞( Q1

Q2
) = deg(Q2) − deg(Q1) for every nonzero Q1, Q2 ∈ R. We let the

degree of vP be d(vP) = deg(P) for every irreducible polynomial P ∈ R and we
also let d(v∞) = 1. Then, for every nonzero x ∈ Fp(t), we have the sum formula∑

v∈MFp (t)
d(v) · v(x) = 0.

Let K be a finite extension of Fp(t). We normalize each valuation w from MK so

that the range of w is the entire Z. For w ∈ MK , if v ∈ MFp(t) lies below w, then e(w|v)
represents the corresponding ramification index, while f (w|v) represents the relative

residue degree. Also, we define

d(w) =

f (w|v)d(v)

[K : Fp(t)]
.

Let x ∈ K . We define the local height of x at w as hw(x) = −d(w) min{w(x), 0}.
Finally, we define the (global) height of x as h(x) =

∑
w∈MK

hw(x).

We extend the above heights to every affine space A
n defined over Fp(t)alg. Let K

be a finite extension of Fp(t) and let P = (x1, . . . , xn) ∈ A
n
K . We define the local

height of P at w as hw(P) = hw(x1, . . . , xn) = maxn
i=1 hw(xi). We define the (global)

height of P as h(P) =

∑
w∈MK

hw(P).

The following proposition contains standard results on the Weil height h.
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Proposition 2.1 For every P, Q ∈ A
n
Fp(t)alg , the following statements are true:

(i) h(P) = 0 if and only if P ∈ A
n

F
alg
p

.

(ii) h(P + Q) ≤ h(P) + h(Q) (triangle inequality). Moreover, if x1, x2 ∈ Fp(t)alg, then

h(x1 + x2) ≤ h(x1, x2).

Proof The results of Proposition 2.1 are classical, possibly with the exception of the

“moreover” part of (ii). Hence we show next how to obtain that statement. For each
place v, v(x1 + x2) ≥ min{v(x1), v(x2)}. Thus hv(x1 + x2) ≤ max{hv(x1), hv(x2)} =

hv(x1, x2). Therefore h(x1 + x2) ≤ h(x1, x2).

The following theorem is our main result.

Theorem 2.2 Let X be an affine subvariety of A
n defined over Fp(t)alg. Let Y be the

Zariski closure of the set X(F
alg
p ), i.e., Y is the largest F

alg
p -subvariety of X.

There exists a positive constant C, depending only on X, such that if P ∈ X(Fp(t)alg)

and h(P) < C, then P ∈ Y (Fp(t)alg).

Remark 2.3. The result of Theorem 2.2 extends to any closed projective subvariety

X of a projective space P
n. Indeed, we cover P

n by finitely many open affine spaces
{Ui}i , and then apply Theorem 2.2 to each X ∩ Ui (which is a closed subvariety of

the affine space Ui).

3 Proof of our Main Result

Unless otherwise stated, all our subvarieties are closed. We start with a definition.

Definition 3.1 We call reduced a non-constant polynomial f ∈ Fp[t][X1, . . . , Xn],

whose coefficients ai have no non-constant common divisor in Fp[t]. For each finite
extension K of Fp(t), we define the local height hw( f ) of f at a place w ∈ MK as

maxi hw(ai). Then we define the (global) height h( f ) of f as
∑

w∈MK
hw( f ). Note

that our definition is independent of K , as h( f ) equals the maximum of the degrees
of the coefficients ai ∈ Fp[t] of f .

Our proof of Theorem 2.2 goes through a series of lemmas.

Lemma 3.2 Let f ∈ Fp[t][X1, . . . , Xn] be a reduced polynomial of total degree d. For

every k such that pk ≥ 2 h( f ), if (x1, . . . , xn) ∈ A
n
Fp(t)alg satisfies f (x1, . . . , xn) = 0,

then either h(x1, . . . , xn) ≥ 1/2d or f (x
pk

1 , . . . , x
pk

n ) = 0.

Proof Let k satisfy the inequality from the statement of Lemma 3.2, and let
(x1, . . . , xn) ∈ A

n
Fp(t)alg be a zero of f . We let f =

∑
i aiMi , where the ai ’s are the

nonzero coefficients of f and the Mi ’s are the corresponding monomials of f . For
each i, we let mi := Mi(x1, . . . , xn).

Assume f (x
pk

1 , . . . , x
pk

n ) 6= 0.

We let K = Fp(t)(x1, . . . , xn). If ζ = f (x
pk

1 , . . . , x
pk

n ), then (because ζ 6= 0)

∑

w∈MK

d(w)w(ζ) = 0.
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Because f (x1, . . . , xn) = 0, we get ζ = ζ − f (x1, . . . , xn)pk

and so,

(1) ζ =

∑

i

(ai − a
pk

i )m
pk

i .

Claim 3.3 For every g ∈ Fp[t], (t pk

− t) | (g pk

− g).

Proof of Claim 3.3 Let g :=
∑m

j=0 b jt
j . Then g pk

=

∑m
j=0 b jt

j pk

. The proof of

Claim 3.3 is immediate because for every j ∈ N, (t pk

− t) | (t j pk

− t j).

Using the result of Claim 3.3 and equation (1), we get

ζ = (t pk

− t)
∑

i

bim
pk

i ,

where bi =

ai−a
pk

i

tpk −t
∈ Fp[t]. Let S be the set of valuations w ∈ MK such that w lies

above an irreducible factor (in Fp[t]) of t pk

− t . For each w ∈ S,

(2) d(w) · w(ζ) ≥ d(w) · w(t pk

− t) − dpk hw(x1, . . . , xn),

because for each i, w(bi) ≥ 0 (as bi ∈ Fp[t] and w does not lie over v∞) and also,

d(w) · w(m
pk

i ) ≥ −dpk hw(x1, . . . , xn),

as the total degree of Mi is at most d.

For each w ∈ MK \ S, because ζ =

∑
i aim

pk

i ,

(3) d(w) · w(ζ) ≥ − hw( f ) − dpk hw(x1, . . . , xn).

Adding all inequalities from (2) and (3) we obtain

(4) 0 =

∑

w∈MK

d(w) ·w(ζ) ≥ − h( f )−dpk h(x1, . . . , xn)+
∑

w∈MK

w(tpk
−t)>0

d(w) ·w(t pk

−t).

By the coherence of the valuations on Fp(t)alg,

∑

w∈MK

w(tpk
−t)>0

d(w) · w(t pk

− t) =

∑

v∈MFp (t)

v(tpk
−t)>0

d(v) · v(t pk

− t) = −v∞(t pk

− t) = pk.

Thus, inequality (4) yields 0 ≥ − h( f ) − dpk h(x1, . . . , xn) + pk, so

h(x1, . . . , xn) ≥
1

d
−

h( f )

dpk
.

Because k was chosen such that pk ≥ 2 h( f ), we conclude h(x1, . . . , xn) ≥ 1/2d.
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Lemma 3.4 Let k be a positive integer. Let K be a finite field extension of Fp(t) and let

f ∈ K[X1, . . . , Xn] be an irreducible polynomial. If f (X1, . . . , Xn) | f (X
pk

1 , . . . , X
pk

n ),

then there exists a ∈ K \ {0} such that a f ∈ Fpk [X1, . . . , Xn].

Proof Let Z be the zero set for f . Let F be the Frobenius on Fp . The hypothesis on

f shows that for every P ∈ Z(Kalg), FkP ∈ Z(Kalg). Hence FkZ ⊂ Z. Because Z

is irreducible (as f is irreducible) and dim(FkZ) = dim(Z), we conclude FkZ = Z.
Therefore Z is defined over the fixed field Fpk of Fk. Moreover, Z is defined over

Fpk ∩ K . Thus there exists a polynomial g ∈ Fpk [X1, . . . , Xn] such that g = a · f , for

some nonzero a ∈ K .

Lemma 3.5 Let X ⊂ A
n be an affine variety of dimension less than n defined over

Fp(t)alg. There exists a positive constant C, depending only on X, and there exists an

affine F
alg
p -variety Z ⊂ A

n of dimension less than n, which also depends only on X, such

that for every P ∈ X(Fp(t)alg), either P ∈ Z(Fp(t)alg) or h(P) ≥ C.

Remark 3.6. The only difference between Lemma 3.5 and Theorem 2.2 is that we do

not require Z be contained in X.

Proof of Lemma 3.5 Let K be the smallest field extension of Fp(t) such that X is

defined over K . Let pm be the inseparable degree of the extension K/Fp(t) (m ≥ 0).

Let

X1 =

⋃
σ

Xσ,

where σ denotes any field morphism K → Fp(t)alg over Fp(t). The variety X1 is an

Fp(t)1/pm

-variety. Also, X1 depends only on X. Thus, if we prove Lemma 3.5 for X1,

then our result will hold also for X ⊂ X1. Hence we may and do assume that X is
defined over Fp(t)1/pm

.

We let F be the Frobenius on Fp . The variety X ′
= FmX is an Fp(t)-variety, which

depends only on X. Assume we proved Lemma 3.5 for X ′ and let C ′ and Z ′ be the

positive constant and the F
alg
p -variety, respectively, associated to X ′, as in the conclu-

sion of Lemma 3.5. Let P ∈ X(Fp(t)alg). Then P ′ := Fm(P) ∈ X ′(Fp(t)alg). Thus,

either h(P ′) ≥ C ′ or P ′ ∈ Z ′(Fp(t)alg). In the former case, because h(P) =
1

pm h(P ′),

we obtain a lower bound for the height of P, depending only on X (note that m de-

pends only on X). In the latter case, if we let Z be the F
alg
p -subvariety of A

n, obtained

by extracting the pm-roots of the coefficients of a set of polynomials (defined over

F
alg
p ) which generate the vanishing ideal for Z ′, we get P ∈ Z(Fp(t)alg). By its con-

struction, Z depends only on X and so, we obtain the conclusion of Lemma 3.5.

Thus, from now on in this proof, we assume X is an Fp(t)-variety. We proceed by

induction on n. The case n = 1 is obvious, because any subvariety of A
1, different

from A
1, is a finite union of points. Thus we may take Z = X(F

alg
p ), (which is also

a finite union of points) and C := minP∈(X\Z)(Fp(t)alg) h(P). By construction, C > 0

(there are finitely many points in (X \Z)(Fp(t)alg) and they all have positive height by

Proposition 2.1(i)). If there are no points in X(Fp(t)alg) \ X(F
alg
p ), then we may take

C = 1, say.
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Remark 3.7. The above argument proves the case n = 1 for Theorem 2.2 because the
variety Z that we chose is a subvariety of X.

We assume Lemma 3.5 holds for n−1 and we prove it for n (n ≥ 2). We fix a set of
defining polynomials for X which contains polynomials Pi ∈ Fp[t][X1, . . . , Xn] for

which maxi deg(Pi) is the minimum among all possible sets of defining polynomials

for X (where deg Pi is the total degree of Pi). We may assume all of the polynomials
we chose are reduced. If all of them have coefficients from a finite field, i.e., Fp, then

Lemma 3.5 holds with Z = X and C any positive constant.
Assume there exists a reduced polynomial f /∈ Fp[X1, . . . , Xn] in the fixed set of

defining equations for X. Let { fi}i be the set of all the Fp(t)-irreducible factors of f .

For each i let Hi be the zero set of fi . Then X is contained in the finite union ∪iHi .
The polynomials fi depend only on f . Thus it suffices to prove Lemma 3.5 for each

Hi . Hence we may and do assume X is the zero set of a reduced Fp(t)-irreducible

polynomial f /∈ Fp[X1, . . . , Xn].
Let P = (x1, . . . , xn) ∈ X(Fp(t)alg). We apply Lemma 3.2 to f and P and conclude

that either

(5) h(P) ≥
1

2 deg( f )

or there exists k depending only on h( f ) such that

(6) f (x
pk

1 , . . . , xpk

n ) = 0.

If (5) holds, then we obtained a good lower bound for the height of P (depending

only on the degree of f ).
Assume (6) holds. Because f is an irreducible and reduced polynomial, whose

coefficients are not all in Fp , Lemma 3.4 yields that f (X1, . . . , Xn) cannot divide

f (X
pk

1 , . . . , X
pk

n ). We know f has more than one monomial because it is reduced
and not all of its coefficients are in Fp . Without loss of generality, we may assume

f has positive degree in Xn. Because f is irreducible, the resultant R of the polyno-

mials f (X1, . . . , Xn) and f (X
pk

1 , . . . , X
pk

n ) with respect to the variable Xn is nonzero.

Moreover, R depends only on f (we recall that k depends only on h( f )).

The nonzero polynomial R ∈ Fp(t)[X1, . . . , Xn−1] vanishes on (x1, . . . , xn−1).
Applying the induction hypothesis to the hypersurface R = 0 in A

n−1, we conclude

there exists an F
alg
p -variety Z, strictly contained in A

n−1, depending only on R (and
so, only on X) and there exists a positive constant C, depending only on R (and so,

only on X) such that either

h(x1, . . . , xn−1) ≥ C or(7)

(x1, . . . , xn−1) ∈ Z(Fp(t)alg).(8)

If (7) holds, then h(x1, . . . , xn−1, xn) ≥ h(x1, . . . , xn−1) ≥ C and we have a height
inequality as in the conclusion of Lemma 3.5. If (8) holds, then (x1, . . . , xn) ∈ (Z ×

A
1)(Fp(t)alg) and Z × A

1 is an F
alg
p -variety, strictly contained in A

n, as desired in

Lemma 3.5. This proves the inductive step and concludes the proof of Lemma 3.5.
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The following result is an immediate corollary of Lemma 3.5.

Corollary 3.8 Let X be a proper subvariety of A
n defined over Fp(t)alg. There exists

a positive constant C and a proper subvariety Z ⊂ A
n defined over F

alg
p , such that the

pair (C, Z) satisfies the conclusion of Lemma 3.5, and moreover Z is minimal with this

property (with respect to the inclusion of subvarieties of A
n).

Proof Let (C1, Z1) and (C2, Z2) be two pairs of a positive constant and a proper

subvariety of A
n defined over F

alg
p , such that both pairs satisfy the conclusion

of Lemma 3.5. Clearly, (min{C1,C2}, Z1 ∩ Z2) also satisfies the conclusion of

Lemma 3.5. Using the fact that there exists no infinite descending chain (with respect

to the inclusion) of subvarieties of A
n, we obtain the conclusion of Corollary 3.8.

We are ready now to prove Theorem 2.2.

Proof of Theorem 2.2 If X = A
n, the conclusion is immediate. Therefore, assume

from now on in this proof that X is strictly contained in A
n.

We prove Theorem 2.2 by induction on n. The case n = 1 was already proved
during the proof of Lemma 3.5 (see Remark 3.7).

We assume Theorem 2.2 holds for n − 1 and we will prove that it also holds for n

(n ≥ 2). Let C and Z be as in the conclusion of Corollary 3.8 for X. Also, we recall

that Y , as defined in the statement of Theorem 2.2, is the largest F
alg
p -subvariety of X.

Our goal is to show that Z ⊂ X, because this would mean that Z ⊂ Y , as Y is the

largest subvariety of X defined over F
alg
p .

Assume Z is not a subvariety of X. Thus there exists an F
alg
p -irreducible subvariety

W of Z, such that W ∩ X is a finite union of proper Fp(t)alg-irreducible subvarieties
{W j}

l
j=1 of W . Let j ∈ {1, . . . , l}. Note that both W and W j depend only on X

(because Z and W ∩ X have finitely many geometrically irreducible components).

Assume P := (x1, . . . , xn) ∈ W j(Fp(t)alg). According to Lemma 3.5, dim Z < n

and so, dim W =: d < n. Moreover, dim W j < dim W , because both W and W j are

irreducible and W j is a proper subvariety of W . Without loss of generality, we may
assume the projection π : A

n → A
d, when restricted to W is generically finite-to-one.

(After relabelling the n coordinates of A
n we can achieve this anyway.)

Let U j be the Zariski closure of π(W j). Because W j is a closed subvariety of W

of smaller dimension, dim U j < d. Because W j depends only on X, U j depends
only on X. Because d < n and U j is a subvariety strictly contained in A

d, we may

apply the inductive hypothesis to U j . Let U j,0 be the largest F
alg
p -subvariety of U j . We

conclude there exists a positive constant C j depending only on the variety U j (and
so, depending only on the variety X) such that either

h(x1, . . . , xd) ≥ C j or(9)

(x1, . . . , xd) ∈ U j,0(Fp(t)alg).(10)

If (9) holds, then h(x1, . . . , xn) ≥ h(x1, . . . , xd) ≥ C j . If (10) holds, then

(x1, . . . , xn) ∈ (U j,0 × A
n−d)(Fp(t)alg).
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 The F
a
p

lg
-variety U j,0 × A

n−d intersects W in a subvariety of smaller dimension be-

cause

dim(π(U j,0 × A
n−d)) = dim(U j,0) < d = dim(π(W )).

Let V j := (U j,0 × A
n−d) ∩W . Then P lies on V j , and V j is an F

alg
p -variety (both U j,0

and W are F
alg
p -varieties) which is properly contained in W . Moreover, V j depends

only on X because both W and U j,0 × A
n−d depend only on X.

Hence, for each P ∈ W ∩X, there exists j ∈ {1, . . . , l} such that P ∈ W j(Fp(t)alg).

Then either

h(P) ≥ C j or(11)

P ∈ V j(Fp(t)alg).(12)

Let C ′ := min{C,C1, . . . ,Cl}. Then C ′ is a positive constant which depends only

on X. Let Z ′ be the proper subvariety of Z obtained by replacing the irreducible

component W of Z by
⋃l

i=1 Vi . Then Z ′ is also a closed subvariety of A
n defined

over F
alg
p . Moreover, because the pair (C, Z) satisfies Lemma 3.5, using also (11) and

(12), we conclude that the pair (C ′, Z ′) also satisfies the conclusion of Lemma 3.5.
This contradicts the minimality of Z which satisfies the conclusion of Corollary 3.8.

This contradiction shows that Z ⊂ X (and so, Z ⊂ Y ), which concludes the proof of
Theorem 2.2.
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