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Abstract

Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power
set of N, including the asymptotic density, the Banach density and the analytic density. Let B ⊆ N be a
nonempty set covering o(n! ) residue classes modulo n! as n→ ∞ (for example, the primes or the perfect
powers). We show that, for each α ∈ [0, 1], there is a set A ⊆ N such that, for every arithmetic quasidensity
μ, both A and the sumset A + B are in the domain of μ and, in addition, μ(A + B) = α. The proof relies
on the properties of a little known density first considered by Buck [‘The measure theoretic approach to
density’, Amer. J. Math. 68 (1946), 560–580].
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1. Introduction

Let d be the asymptotic (or natural) density on the nonnegative integers N and dom(d)
be the family of all sets X ⊆ Nwhich possess asymptotic density, meaning that the limit
of |X ∩ [1, n]|/n as n→ ∞ exists. We are going to show that, if B ⊆ N is nonempty and
‘sufficiently small’, then there is a family of sets of the form A + B with A and A + B
both in dom(d) such that the corresponding asymptotic densities attain every value in
the interval [0, 1], where

A + B := {x + y : x ∈ A, y ∈ B}
is the sumset of A and B (see Section 2 for details and examples). Writing P :=
{2, 3, 5, . . .} for the set of primes, we obtain as a special case the following result.

THEOREM 1.1. For each α ∈ [0, 1], there exists A ∈ dom(d) such that A + P ∈ dom(d)
and d(A + P) = α.

In fact, our main result (Theorem 2.3) is much more general and stronger. It not only
allows us to show that Theorem 1.1 holds with the primes replaced by a greater variety
of sets and the asymptotic density d replaced by any in a large class of axiomatically
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defined ‘densities’ μ (including, among others, the Banach density, the analytic density
and the logarithmic density), but it also does so uniformly in the choice of μ.

The result, whose proof relies on the properties of a little known density first
considered by Buck [2], belongs to a vast literature on the interplay between sumsets
and their ‘largeness’ (see, for example, [1, 5–7, 11, 13] and [12, Sections 4 and 5]).
Most notably, an analogue of Theorem 1.1 with P replaced by a nonempty finite set
B ⊆ N (and without the additional requirement that A ∈ dom(d)) was proved by Faisant
et al. in [5, Theorem 2.2]. A previous attempt to extend the latter to an infinite set B
was made by Chu in [3, Theorem 1.5], but the proof turned out to be flawed [4]. So,
Theorem 1.1 provides the first example in this direction (and is based on completely
different ideas from [3, 5]).

1.1. Notation. We use Z for the integers and N+ for the positive integers. Given
X ⊆ N and q ∈ N, we define q · X := {qx : x ∈ X} and X + q := X + {q}. We let an
arithmetic progression (AP) be a set of the form k · N + h with k ∈ N+ and h ∈ N,
and we denote by A the family of all finite unions of APs. Finally, for each a, b ∈ Z,
we write [[a, b]] := [a, b] ∩ Z for the discrete interval from a to b.

2. Preliminaries and main result

We say that a real-valued function μ� defined on the power set P(N) of N is
an arithmetic upper density (on N) if, for all X, Y ⊆ N, the following conditions are
satisfied:

(F1) μ�(X) ≤ μ�(N) = 1;
(F2) μ� is monotone, that is, if X ⊆ Y , then μ�(X) ≤ μ�(Y);
(F3) μ� is subadditive, that is, μ�(X ∪ Y) ≤ μ�(X) + μ�(Y);
(F4) μ�(k · X + h) = μ�(X)/k for every k ∈ N+ and h ∈ N.

Moreover, we call μ� an arithmetic upper quasidensity (on N) if it satisfies (F1), (F3)
and (F4).

REMARK 2.1. While there do exist nonmonotone arithmetic upper quasidensities
[9, Theorem 1], such functions are not so interesting from the point of view of
applications. Nevertheless, it seems meaningful to understand if monotonicity is
critical to certain conclusions or can instead be dispensed with. This is our motivation
for considering arithmetic upper quasidensities in spite of our main interest lying in
the study of arithmetic upper densities (of course, the latter are a special case of the
former).

We let the conjugate of an arithmetic upper quasidensity μ� be the function
μ� : P(N)→ R : X 
→ 1 − μ�(N \ X), and we refer to the restriction μ of μ� to the set

D := {X ⊆ N : μ�(X) = μ�(X)}
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as the arithmetic quasidensity induced by μ�, or simply as an arithmetic quasidensity
(on N) if explicit reference to μ� is unnecessary. Accordingly, we call D the domain
of μ and denote it by dom(μ).

Arithmetic upper (quasi)densities and arithmetic (quasi)densities were introduced
in [9] and further studied in [8, 10, 11], though we are adding here the adjective
‘arithmetic’ to emphasise that they assign precise values to APs (see Proposition
3.1(iv) below).

Notable examples of arithmetic upper densities include the upper asymptotic, upper
Banach, upper analytic, upper logarithmic, upper Pólya and upper Buck densities (see
[9, Section 6 and Examples 4, 5, 6 and 8]). In particular, we recall that the upper Buck
density (on N) is the function

b� : P(N)→ R : X 
→ inf
A∈A , X⊆A

d�(A),

where d� is the upper asymptotic density (on N), that is, the function

P(N)→ R : X 
→ lim sup
n→∞

|X ∩ [1, n]|
n

.

We will write b� and b, respectively, for the conjugate of and the density induced
by b�.

REMARK 2.2. The asymptotic density d in Theorem 1.1 is just the density induced
by d�.

We are ready to state the main theorem of the paper, whose proof we postpone to
Section 3.

THEOREM 2.3. Let B ⊆ N be a nonempty set such that b(B) = 0. Then, for each α ∈
[0, 1], there exists A ⊆ N such that A ∈ dom(μ) and μ(A + B) = α for all arithmetic
quasidensities μ.

Note that the analogous statement to Theorem 2.3 may not hold for a set B with a
nonzero upper Buck density and a real number α ∈ [b�(B), 1]. For example, if B ∈ A ,
then the upper Buck density of A + B takes only a finite number of values as A varies
over the subsets of N.

The sets B ⊆ N such that b(B) = 0 have been studied in [10], where they are called
small sets. Since b is monotone and subadditive, it is clear that the family of small sets
is closed under finite unions and subsets. Examples of small sets include the finite sets,
the factorials, the perfect powers and the primes. One may be tempted to conjecture
that a set B ⊆ N is small if (and only if) it is, in some sense, ‘sufficiently sparse’.
However, the property of being small depends on the distribution of B through the
APs of N (see Proposition 3.1(v)), so much so that the set {n!+n : n ∈ N} is not small
(its upper Buck density is 1), in spite of being sparse, by any standards.

To date, it is not known whether nonmonotone arithmetic quasidensities exist (see
Remark 2.1). However, arithmetic quasidensities satisfy a weak form of monotonicity
(implicit in the proof of Proposition 3.1) that will be enough for our goals.
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3. Proofs

To start with, we collect some basic properties of (upper and lower) quasidensities
that will be used, possibly without further comment, in the proof of Theorem 2.3.

PROPOSITION 3.1. Let μ� be the conjugate of an arithmetic upper quasidensity μ� on
N, and μ be the density induced by μ�. Then the following hold:

(i) b�(X) ≤ μ�(X) ≤ μ�(X) ≤ b�(X) for every X ⊆ N;
(ii) if X ⊆ Y ⊆ N, then b�(X) ≤ b�(Y);
(iii) A ⊆ dom(b) ⊆ dom(μ) and μ(X) = b(X) for every X ∈ dom(b);
(iv) if k ∈ N+ and H ⊆ [[0, k − 1]], then k · N + H ∈ dom(b) and b(k · N + H) =

|H|/k;
(v) b(X) = 0 if and only if X covers o(n! ) residue classes modulo n! as n→ ∞;
(vi) if X ∈ A , then X + Y ∈ A for every Y ⊆ N.

PROOF. See [11, Proposition 2.1] for items (i)–(iv) and [10, Proposition 2.6] for item
(v). As for item (vi), let X ∈ A and Y ⊆ N. There then exist k ∈ N+ and H ⊆ [[0, k − 1]]
such that X = k · N + H, and hence

X + Y =
⋃

y∈Y
(X + y) =

⋃

h∈H+Y

(k · N + h) = k · N + H′,

where H′ is the finite set
⋃

i{min((H + Y) ∩ (k · N + i)} and the union is extended over
all i ∈ [[0, k − 1]] such that (H + Y) ∩ (k · N + i) � ∅ (with the understanding that an
empty union is the empty set). �

We are ready for the proof of our main result. Note that the special case of a
nonempty finite B ⊆ N was settled in [11, Theorem 1.2] by a different argument.

PROOF OF THEOREM 2.3. If α = 1, then the conclusion is obvious (by taking A = N).
So, we assume from now on that 0 ≤ α < 1. We divide the remainder of the proof into
a series of three claims.

Claim 1. There exist a sequence (Hn)n≥1 of (nonempty) subsets of N with Hn ⊆
[[0, n!−1]] and a sequence (hn)n≥1 with hn ∈ Hn such that, for all n ≥ 1, the following
hold:

(i) b�(n! ·N + H′n + B) ≤ α < b�(n! ·N + Hn + B), where H′n := Hn \ {hn};
(ii) n! ·N + H′n ⊆ Hn+1 + (n + 1)! ·N ⊆ n! ·N + Hn.

To prove Claim 1(i), we proceed by induction. The base case is clear by taking
H1 := {0} and h1 := 0.

As for the inductive step, fix m ≥ 1 and suppose we have already found a set Hm ⊆
[[0, m!−1]] and an integer hm ∈ Hm such that the claimed inequality holds for n = m.
Since

m! ·N + Hm = (m! ·N + H′m) ∪ ((m + 1)! ·N + hm + m! · [[0, m]])
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and b�(m! ·N + H′m + B) ≤ α < b�(m! ·N + Hm + B), there is a minimal km+1 ∈ [[0, m]]
such that

b�((m! ·N + H′m) ∪ ((m + 1)! ·N + hm + m! · [[0, km+1]]) + B) > α. (3.1)

Consequently, we define

Hm+1 := (H′m + m! · [[0, m]]) ∪ (hm + m! · [[0, km+1]]) and hm+1 := hm + km+1 · m!.

It is thus clear from (3.1) and the minimality of km+1 that the claimed inequality is also
true for n = m + 1. By induction, this is enough to complete the proof.

(ii) This is now a straightforward consequence of the recursive construction of the
sequences (Hn)n≥1 and (hn)n≥1, as given in the inductive step of the proof of item (i).
This proves our claim.

Claim 2. Set A :=
⋂

n≥1 An, where An := n! ·N + Hn. Then, A ∈ dom(b).

To prove our claim, pick n ∈ N+. It follows from Claim 1(ii) that
An \ (n! ·N + hn) ⊆ A ⊆ An. Considering that An and An \ (n! ·N + hn) are both in
A , and A is contained in dom(b), we obtain

b(An) − 1
n!
≤ b�(A) ≤ b�(A) ≤ b(An). (3.2)

However, Claim 1(ii) gives An+1 ⊆ An. Since b is monotone, it follows that b(An) tends
to a limit as n→ ∞. So, (3.2) implies that b�(A) = b�(A) = limn b(An) and hence, A ∈
dom(b). This proves our claim.

Claim 3. A + B ∈ dom(b) and b(A + B) = α.

To prove our claim, fix n ∈ N+. We gather from Claim 1(ii) that

An \ (n! ·N + hn) + B ⊆ A + B ⊆ An + B.

Considering that, by Proposition 3.1(vi), X ∈ A yields X + B ∈ A and A ⊆ dom(b),
it follows that

b(An \ (n! ·N + hn) + B) ≤ b�(A + B) ≤ b�(A + B) ≤ b(An + B). (3.3)

Now, fix ε > 0. Since b(B) = 0, there exists nε ∈ N+ such that B covers at most
ε · n! residue classes modulo n! for all n ≥ nε. Consequently, we obtain from the
subadditivity of b� and Claim 1(i) that

b(Anε + B) ≤ b(Anε \ (nε! ·N + hnε) + B) + b(nε! ·N + hnε + B) ≤ α + ε.

However, the first inequality in the last display and Claim 1(i) imply

b(Anε \ (nε! ·N + hnε) + B) ≥ b(Anε + B) − b(nε! ·N + hnε + B) > α − ε. (3.4)

Therefore, (2) and (3) imply that α − ε < b�(A + B) ≤ b�(A + B) ≤ α + ε for every ε >
0, which suffices to conclude that A + B ∈ dom(b) and b(A + B) = α. This proves our
claim.
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By Proposition 3.1(iii) and Claims 2 and 3, this is enough to finish the proof of the
theorem.

PROOF OF THEOREM 1.1. This is now straightforward from Theorem 2.3 and Remark
2.2, when considering that the Buck density of the set of primes is zero (as already
noted in Section 2). �

As a final remark, we point out that, mutatis mutandis, all the results of this paper
carry over to arithmetic (upper) quasidensities on Z, in the same spirit of [8–11].
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