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Li coefficients and the quadrilateral zeta
function
Kajtaz H. Bllaca, Kamel Mazhouda and Takashi Nakamura

Abstract. In this note, we study the Li coefficients 𝜆𝑛,𝑎 for the quadrilateral zeta function. Further-
more, we give an arithmetic and asymptotic formula for these coefficients. Especially, we show that
for any fixed 𝑛 ∈ N, there exists 𝑎 > 0 such that 𝜆2𝑛−1,𝑎 > 0 and 𝜆2𝑛,𝑎 < 0.

1 Introduction and statement of main results

1.1 Li coefficients

The Riemann hypothesis is a critical question in analytic number theory. As such, it is
interesting to examine different ways to frame it, which may shed more light on its res-
olution. In 1997, Xian-Jin Li has discovered a new positivity criterion for the Riemann
hypothesis (RH). In [10] he defined the Li coefficients for the Riemann zeta function as

𝜆𝑛 =
1

(𝑛 − 1)!
𝑑𝑛

𝑑𝑠𝑛

[
𝑠𝑛−1 log 𝜉 (𝑠)

]
𝑠=1 ,

where 𝜉 is the completed Riemann zeta function defined by

𝜉 (𝑠) = 𝑠(𝑠 − 1)𝜋−𝑠/2Γ(𝑠/2)𝜁 (𝑠)

which satisfies 𝜉 (𝑠) = 𝜉 (1 − 𝑠) and gave a simple equivalence criterion for the (RH):
(RH) is true if and only if these coefficients are nonnegative for every positive integer 𝑛.
The Li coefficients 𝜆𝑛 can be written as follows

𝜆𝑛 =

∗∑︁
𝜌

[
1 −

(
1 − 1

𝜌

)𝑛]
= lim

𝑇→∞

∑︁
𝜌; |Im(𝜌) |≤𝑇

[
1 −

(
1 − 1

𝜌

)𝑛]
,

where the sum runs over the nontrivial zeros of the Riemann zeta function countedwith
multiplicity. This criterion is generalized by Bombieri and Lagarias [4] for any arbitrar-
ilymultiset of numbers assuming certain convergence conditions. Voros [19, section 3.3]
has proved that the (RH) true is equivalent to the growth of 𝜆𝑛 as 1

2𝑛 log 𝑛 determined
by its archimedean part, while the Riemann hypothesis false is equivalent to the oscilla-
tions of 𝜆𝑛 with exponentially growing amplitude, determined by its finite part. The Li
coefficients were generalized in two ways; by generalizing these coefficients to various
sets of functions (the Selberg class, the class of automorphic 𝐿-functions, zeta function
on function fields,... [8, 11, 17]), and by introducing new parameter in its definition (see
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[12]). The Li coefficients (and its generalizations) has generated a lot of research interest
due to its applicability and simplicity.

1.2 Quadrilateral zeta function

Recall the definitions ofHurwitz and periodic zeta functions. TheHurwitz zeta function
𝜁 (𝑠, 𝑎) is defined by the series

𝜁 (𝑠, 𝑎) :=
∞∑︁
𝑛=0

1
(𝑛 + 𝑎)𝑠 , 𝜎 > 1, 0 < 𝑎 ≤ 1.

The function 𝜁 (𝑠, 𝑎) is a meromorphic function with a simple pole at 𝑠 = 1 whose
residue is 1 (see for example [1, Section 12]). The periodic zeta function Li𝑠 (𝑒2𝜋𝑖𝑎) is
defined by

Li𝑠 (𝑒2𝜋𝑖𝑎) :=
∞∑︁
𝑛=1

𝑒2𝜋𝑖𝑛𝑎

𝑛𝑠
, 𝜎 > 1, 0 < 𝑎 ≤ 1

(see for instance [1, Exercise 12.2]). Note that the function Li𝑠 (𝑒2𝜋𝑖𝑎) with 0 < 𝑎 < 1 is
analytically continuable to the whole complex plane since Li𝑠 (𝑒2𝜋𝑖𝑎) does not have any
pole, that is shownby the fact that theDirichlet series of Li𝑠 (𝑒2𝜋𝑖𝑎) converges uniformly
in each compact subset of the half-plane 𝜎 > 0 when 0 < 𝑎 < 1 (see for example [9,
p. 20]). For 0 < 𝑎 ≤ 1/2, we define zeta functions

𝑍 (𝑠, 𝑎) := 𝜁 (𝑠, 𝑎) + 𝜁 (𝑠, 1 − 𝑎), 𝑃(𝑠, 𝑎) := Li𝑠 (𝑒2𝜋𝑖𝑎) + Li𝑠 (𝑒2𝜋𝑖 (1−𝑎) ),
2𝑄(𝑠, 𝑎) := 𝑍 (𝑠, 𝑎) + 𝑃(𝑠, 𝑎), 𝜉𝑄 (𝑠, 𝑎) := 𝑠(𝑠 − 1)𝜋−𝑠/2Γ(𝑠/2)𝑄(𝑠, 𝑎).

We can see that𝑄(𝑠, 𝑎) is meromorphic functions with a simple pole at 𝑠 = 1. In addi-
tion, we have 𝑄(0, 𝑎) = −1/2 = 𝜁 (0) and 𝜉𝑄 (𝑠, 𝑎) = 𝜉𝑄 (1 − 𝑠, 𝑎) which is proved
by

𝑄(1 − 𝑠, 𝑎) = Γcos (𝑠)𝑄(𝑠, 𝑎), Γcos (𝑠) :=
2Γ(𝑠)
(2𝜋)𝑠 cos

( 𝜋𝑠
2

)
(1.1)

(see [13, Theorem 1.1]). Moreover, the function 𝑄(𝑠, 𝑎) has the following properties.
When 𝑎 = 1/6, 1/4, 1/3 and 1/2, the Riemann hypothesis holds true if and only if all
non real zeros of 𝑄(𝑠, 𝑎) are on the line Re(𝑠) = 1/2 (see [15, Proposition 1.3]). Let
𝑁CL
Q (𝑇) the number of the zeros of𝑄(𝑠, 𝑎) on the line segment from 1/2 to 1/2+ 𝑖𝑇 . In

[13, Theorem 1.2], the third author proved that for any 0 < 𝑎 ≤ 1/2, there exist positive
constants 𝐴(𝑎) and 𝑇0 (𝑎) such that

𝑁CL
Q (𝑇) ≥ 𝐴(𝑎)𝑇 whenever 𝑇 ≥ 𝑇0 (𝑎).

Next, let𝑁𝐹 (𝑇) count the number of non real zeros of a function 𝐹 (𝑠) having |Im(𝑠) | <
𝑇 . Then for any 0 < 𝑎 ≤ 1/2,

𝑁𝜁 (𝑇) − 𝑁𝑄 (𝑇) = 𝑂𝑎 (𝑇),

and the third author [15, Proposition 1.8] proved that

𝑁𝑄 (𝑇) = 𝑇

𝜋
log𝑇 − 𝑇

𝜋
log(2𝑒𝜋𝑎2) +𝑂𝑎 (log𝑇).
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Furthermore, he [15, Theorem 1.1] proved that there is a unique absolute 𝑎0 ∈ (0, 1/2)
such that

𝑄(1/2, 𝑎) > 0 ⇐⇒ 0 < 𝑎 < 𝑎0.

In addition, it is proved in [15, Corollary 1.2] that all real zeros of𝑄(𝑠, 𝑎) are simple and
are located only at the negative even integers just like 𝜁 (𝑠) if and only if 𝑎0 < 𝑎 ≤ 1/2.
Let us note by 𝑍𝑄 the set of all non-trivial zeros 𝜌𝑎 of 𝜉𝑄 (𝑠, 𝑎). Since it is an entire
function of order 1, one has

𝜉𝑄 (𝑠, 𝑎) = 𝑒𝐴+𝐵𝑠
∏

𝜌𝑎∈𝑍𝑄

(
1 − 𝑠

𝜌𝑎

)
𝑒

𝑠
𝜌𝑎 = 𝜉𝑄 (0, 𝑎)

∏
𝜌𝑎∈𝑍𝑄

(
1 − 𝑠

𝜌𝑎

)
, (1.2)

where 𝑒𝐴 = 1/2, 𝐵 =
𝑄′

𝑄
(0, 𝑎) − 1 − 𝛾+log 𝜋

2 and 𝛾 denotes the Euler constant. Note
that𝑄′ (0, 𝑎) is given explicitly in [15, Theorem 1.5].

1.3 Main results

Recall that 𝜁 (1 − 𝑠) = Γcos (𝑠)𝜁 (𝑠) and𝑄(1 − 𝑠, 𝑎) = Γcos (𝑠)𝑄(𝑠, 𝑎) by (1.1). However,
the function 𝑄(𝑠, 𝑎) does not have an Euler product except for 𝑎 = 1/6, 1/4, 1/3 and
1/2. Hence, the function 𝑄(𝑠, 𝑎) is a suitable object to consider the influence of not
Riemann’s functional equation but an Euler product to zeros of zeta functions.We show
a criterion for non-vanishing of𝑄(𝑠, 𝑎) in terms of the positivity of the Li coefficients,
an arithmetic and asymptotic formula for these coefficients in Theorems 1.1, 1.2 and 1.4,
respectively. It should be emphasised that𝜆𝑛,𝑎 defined in (1.3) are the first Li coefficients
that we can explicitly give 𝑛 ∈ N such that 𝜆𝑛,𝑎 < 0. There is a possibility that this fact
would give an idea to find negative Li coefficients for 𝜁 (𝑠) if they would exist.

For 𝑛 ≠ 0, the Li’s coefficients attached to 𝑄(𝑠, 𝑎) non vanishing at zero is defined
by the sum

𝜆𝑛,𝑎 :=
∗∑︁

𝜌𝑎∈𝑍𝑄

(
1 −

(
1 − 1

𝜌𝑎

)𝑛)
= lim

𝑇 ↦−→∞

∗∑︁
|Im(𝜌𝑎 ) |≤𝑇

(
1 −

(
1 − 1

𝜌𝑎

)𝑛)
.

The symmetry 𝜌𝑎 ↦−→ 1 − 𝜌𝑎 in the set 𝑍𝑄 of non-trivial zeros of𝑄(𝑠, 𝑎) implies that
𝜆−𝑛,𝑎 = 𝜆𝑛,𝑎 = 𝜆𝑛,𝑎 for all 𝑛 ∈ N. So, 𝜆𝑛,𝑎 are real. We have also

𝜆𝑛,𝑎 :=
1

(𝑛 − 1)!
𝑑𝑛

𝑑𝑠𝑛

[
𝑠𝑛−1 log 𝜉𝑄 (𝑠, 𝑎)

]
𝑠=1. (1.3)

Moreover, from (1.2) we have (see [4, Equations (2.3) and (2.4)] or [17, Appendix A])
∞∑︁
𝑛=0

𝜆𝑛+1,𝑎𝑠
𝑛 =

𝑑

𝑑𝑠
log

[
𝜉𝑄

(
1

1 − 𝑠
, 𝑎

)]
.

As an analogue of Li coefficients for the Riemann zeta function, we have the follow-
ing.

Theorem 1.1 The function𝑄(𝑠, 𝑎) does not vanish whenRe(𝑠) > 1/2 if and only if𝜆𝑛,𝑎 ≥
0 for all 𝑛 ∈ N.
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An arithmetic formula for 𝜆𝑛,𝑎 is stated in the following theorems.

Theorem 1.2 We have

𝜆𝑛,𝑎 = 1 − 𝑛

2
(log(4𝜋) + 𝛾) +

𝑛∑︁
𝑘=2

(−1)𝑘
(
𝑛

𝑘

) (
1 − 2−𝑘

)
𝜁 (𝑘) +

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1),

where 𝛾𝑄 (𝑛) are defined as follows

𝑄′

𝑄
(𝑠 + 1, 𝑎) + 1

𝑠
=

∞∑︁
𝑛=0

𝛾𝑄 (𝑛)𝑠𝑛.

Theorem 1.3 For 𝑎 = 1/2, 1/3, 1/4, 1/6, under the RH we have

𝜆𝑛,𝑎 =
𝑛

2
log 𝑛 + 𝑛

2
(𝛾 − 1 − log 2𝜋) +𝑂 (

√
𝑛 log 𝑛).

For a fixed 𝑙 ∈ N, we have the following asymptotic formula of 𝜆𝑙,𝑎 when 𝑎 → +0.
We can see that there exists 𝑛 ∈ N such that 𝜆𝑛,𝑎 < 0 by Theorem 1.1 and the fact that
𝑄(𝑠, 𝑎) does not satisfy an analogue of the Riemann hypothesis when 𝑎 ∈ Q∩(0, 1/2) \
{1/6, 1/4, 1/3} (see [15, Proposition 1.4]). Clearly, this argument gives no information
on the frequency of 𝑛 ∈ N, the smallest 𝑛 ∈ N such that 𝜆𝑛,𝑎 < 0 and so on. However,
the next theorem implies that 𝜆2𝑛,𝑎 < 0 if we fix any 𝑛 ∈ N and then we take 𝑎 > 0
sufficiently small.

Theorem 1.4 Fix 𝑙 ∈ N. Then it holds that

𝜆𝑙,𝑎 =
(−1)𝑙+1
(2𝑎)𝑙

+𝑂𝑙

(
𝑎1−𝑙 | log 𝑎 |

)
, 𝑎 → +0.

Especially, for any fixed 𝑛 ∈ N, there are 𝑎 > 0 such that

𝜆2𝑛−1,𝑎 > 0 and 𝜆2𝑛,𝑎 < 0.

2 Proofs

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Since 𝜆−𝑛,𝑎 = 𝜆𝑛,𝑎 = 𝜆𝑛,𝑎 for all 𝑛 ∈ N, then Re(𝜆−𝑛,𝑎) =

Re(𝜆𝑛,𝑎) = 𝜆𝑛,𝑎 . Using that 𝜉𝑄 (𝑠, 𝑎) is an entire function of order 1, and its zeros lie in
the critical strip 0 < Re(𝑠) < 1, we obtain that the series

∑
𝜌∈𝑍𝑄

1+|Re(𝜌) |
(1+|𝜌 | )2 is convergent.

Application of [4, Theorem 1] to the multiset 𝑍𝑄 of zeros of𝑄(𝑠, 𝑎) gives that Re(𝜌) ≤
1/2 if and only if 𝜆𝑛,𝑎 ≥ 0 for all 𝑛 ∈ N. Now, the application of the same theorem to
the multiset 1 − 𝑍𝑄 = 𝑍𝑄 gives Re(𝜌) ≥ 1/2 if and only if 𝜆𝑛,𝑎 ≥ 0. This completes
the proof.

Theorem 1.1 can be also proved by the same argument used in [5, Theorem 1] which
is due to Oesterlé.
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2.2 Proof of Theorem 1.2

Proof of Theorem 1.2 From the expression of 𝜉𝑄 (𝑠, 𝑎), one has

𝜉′
𝑄

𝜉𝑄
(𝑠, 𝑎) = 1

𝑠
+ 1
𝑠 − 1

− 1
2
log 𝜋 + 1

2
Γ′

Γ
(𝑠/2) + 𝑄′

𝑄
(𝑠, 𝑎)

which is rewritten as

𝜉′
𝑄

𝜉𝑄
(𝑠 + 1, 𝑎) = 1

𝑠 + 1
+ 1
𝑠
− 1
2
log 𝜋 + 1

2
Γ′

Γ
((𝑠 + 1)/2) + 𝑄′

𝑄
(𝑠 + 1, 𝑎). (2.1)

Note that 𝑄(𝑠, 𝑎) is a meromorphic function on the whole complex plane, which is
holomorphic everywhere except for a simple pole at 𝑠 = 1with residue 1 (see [13, Section
2.1]). Let define the coefficients 𝛾𝑄 (𝑛) and 𝜏𝑄 (𝑛) as follows

𝑄′

𝑄
(𝑠 + 1, 𝑎) + 1

𝑠
=

∞∑︁
𝑛=0

𝛾𝑄 (𝑛)𝑠𝑛 (2.2)

and

−1
2
log 𝜋 + 1

2
Γ′

Γ
((𝑠 + 1)/2) =

∞∑︁
𝑛=0

𝜏𝑄 (𝑛)𝑠𝑛. (2.3)

By Equation (1.2), one has

log 𝜉𝑄 (𝑠, 𝑎) = log 𝜉𝑄 (0, 𝑎) −
∑︁

𝜌𝑎∈𝑍𝑄

∞∑︁
𝑚=1

1
𝑚𝜌𝑚

𝑠𝑚.

From the functional equation for the function 𝜉𝑄 (𝑠, 𝑎), in the neighborhood of 𝑠 = 0,
we have

𝜉′
𝑄

𝜉𝑄
(𝑠 + 1, 𝑎) = −

𝜉′
𝑄

𝜉𝑄
(−𝑠, 𝑎) =

∞∑︁
𝑚=0

(−1)𝑚
∑︁

𝜌𝑎∈𝑍𝑄

1
𝜌𝑚+1 𝑠

𝑚. (2.4)

Comparing Equations (2.1), (2.2), (2.3) and (2.4), we get

(−1)𝑚
∑︁

𝜌𝑎∈𝑍𝑄

1
𝜌𝑚+1 = (−1)𝑚 + 𝛾𝑄 (𝑚) + 𝜏𝑄 (𝑚),

for 𝑚 ≥ 0. Hence, the definition of 𝜆𝑛,𝑎 yields

𝜆𝑛,𝑎 =

𝑛∑︁
𝑘=1

(−1)𝑘−1
(
𝑛

𝑘

) ∑︁
𝜌𝑎∈𝑍𝑄

1
𝜌𝑘

= 1 +
𝑛∑︁

𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1) +

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
𝜏𝑄 (𝑘 − 1),

where

𝜏𝑄 (0) = −1
2
log 𝜋 + 1

2
𝜓(1/2) and 𝜏𝑄 (𝑘 − 1) = (−1)𝑘

∞∑︁
𝑚=0

1
(2𝑚 + 1)𝑘
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using that𝜓(𝑧) = −𝛾− 1
𝑧
+∑∞

𝑘=1
𝑧

𝑘 (𝑘+𝑧) . Here𝜓(𝑠) =
Γ′

Γ
(𝑠) is the logarithmic derivative

of the Gamma function. Since 𝜓(1/2) = −𝛾 − 2 log 2, we obtain

𝜆𝑛,𝑎 = 1 − 𝑛

2
(log(4𝜋) + 𝛾) +

𝑛∑︁
𝑘=2

(−1)𝑘
(
𝑛

𝑘

) ∞∑︁
𝑚=0

1
(2𝑚 + 1)𝑘

+
𝑛∑︁

𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1),

= 1 − 𝑛

2
(log(4𝜋) + 𝛾) +

𝑛∑︁
𝑘=2

(−1)𝑘
(
𝑛

𝑘

) (
1 − 2−𝑘

)
𝜁 (𝑘) +

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1).

The equality above implies Theorem 1.2.

2.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Let us note that
𝑛∑︁

𝑘=2
(−1)𝑘

(
𝑛

𝑘

) (
1 − 2−𝑘

)
𝜁 (𝑘) =

𝑛∑︁
𝑘=2

(−1)𝑙
(
𝑛

𝑘

)
𝜁 (𝑘, 1/2)

2𝑘
,

where 𝜁 (𝑠, 𝑎) is the Hurwitz zeta function defined in Section 1.2. With notation of
Flajolet and Vespas [7, Lines 2-4 page 70], this is 𝐴𝑛 (1, 2) and which equal to

𝑛

2
𝜓(𝑛) + 𝑛

(
𝛾 − 1

2
+ 1
2
log 2

)
+ 𝑜(1),

where the o(1) error term above is exponentially small and oscillating and equal to

1
2

( 𝑛
𝜋

)1/4
exp(−

√
2𝜋𝑛) cos

(√
2𝜋𝑛 − 5𝜋

8

)
+𝑂

(
𝑛−1/4𝑒−

√
2𝜋𝑛

)
.

Then we have

𝜆𝑛,𝑎 =
𝑛

2
log 𝑛 + 𝑛

2
(𝛾 − 1 − log 2𝜋) +

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1) +𝑂 (1).

It remain to prove that
𝑛∑︁

𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1) = 𝑂 (

√
𝑛 log 𝑛). (2.5)

To do so, we follows very closely the lines of the proof of the corresponding result in [8,
Theorem 6.1] or [16, Lemma 3.3] and it will be shortened. We use the following kernel
function

𝑘𝑛 (𝑠) :=
(
1 + 1

𝑠

)𝑛
− 1 =

𝑛∑︁
𝑘=1

(
𝑛

𝑘

)
1
𝑠𝑘

.

The residue theorem gives
𝑛∑︁

𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1) = 1

2𝑖𝜋

∫
𝐶

𝑘𝑛 (𝑠)
(
−𝑄

′

𝑄
(𝑠 + 1, 𝑎)

)
𝑑𝑠,

where 𝐶 is a contour enclosing the point 𝑠 = 0 counterclockwise on a circle of small
enough positive radius. The residue comes entirely from the singularity at 𝑠 = 0, as no
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Li coefficients and the quadrilateral zeta function 7

other singularities lie inside the contour. Let𝑇 =
√
𝑛+𝜖𝑛, for some 0 < 𝜖𝑛 < 1. Nowwe

follow very closely the lines in [16, p. 1106 and p. 1107] using that the function 𝑄′

𝑄
(𝑠, 𝑎)

satisfies the properties *

𝑄′

𝑄
(𝑠, 𝑎) =

∑︁
𝜌𝑎 ; |Im(𝜌𝑎−𝑠) |<1

1
𝑠 − 𝜌𝑎

+𝑂 (log(1 + |𝑠 |)),

for −2 < Re(𝑠) < 2 and ����𝑄′

𝑄
(𝑠 + 1, 𝑎)

���� = 𝑂 (log2 𝑇),

for −2 ≤ Re(𝑠) ≤ 2, and we get
𝑛∑︁

𝑘=1

(
𝑛

𝑘

)
𝛾𝑄 (𝑘 − 1) = 𝜆−𝑛,𝑎,𝑇 +𝑂 (

√
𝑛 log 𝑛),

where

𝜆−𝑛,𝑎,𝑇 =

∗∑︁
𝜌𝑎∈𝑍𝑄 ; |𝐼𝑚(𝜌𝑎 | ≤𝑇

(
1 −

(
1 − 1

𝜌𝑎

)𝑛)
,

with 𝑇 =
√
𝑛 + 𝜖𝑛. For 𝑎 = 1/2, 1/3, 1/4, 1/6, under the RH, since

���1 − 1
𝜌𝑎

��� = 1 and
using formula of 𝑁𝑄 (𝑇) given in Section 1.2, we obtain𝜆𝑛,𝑎,𝑇 = 𝑂 (𝑇 log𝑇 +1). There-
fore, equation (2.5) follows from that 𝜆−𝑛,𝑎,

√
𝑛 = 𝜆−𝑛,𝑎,

√
𝑛 = 𝑂 (

√
𝑛 log 𝑛).

Remark. Since 2𝑄(𝑠, 𝑎) := 𝑍 (𝑠, 𝑎) + 𝑃(𝑠, 𝑎), from Corollary 2.3 below and [6,
Equation (1.18)], we obtain

𝛾𝑄 (𝑛) = 1
2

(
𝛿𝑛 (𝑎) +

(−1)𝑛
𝑛!

(𝑙𝑛 (𝑎) + 𝑙𝑛 (1 − 𝑎))
)
,

where 𝛿𝑛 (𝑎) =
| log 𝑎 |𝑛
𝑎𝑛! + 𝑂 (1) and 𝑙𝑛 (𝑎) are the coefficients in the expansion of

Li𝑠 (𝑒2𝜋𝑖𝑎) at 𝑠 = 1; for 𝑎 ∉ Z one has

Li𝑠 (𝑒2𝜋𝑖𝑎) =
∞∑︁
𝑛=0

(−1)𝑛
𝑛!

𝑙𝑛 (𝑎) (𝑠 − 1)𝑛.

2.4 Proof of Theorem 1.4

To show Theorem 1.4, we quote the following lemmas from [2] and [3].

Lemma 2.1 ([3, Theorem 1]) We set

(𝑠 − 1)𝜁 (𝑠, 𝑎) = 1 +
∞∑︁
𝑛=0

𝛾𝑛 (𝑎) (𝑠 − 1)𝑛+1, 0 < 𝑎 ≤ 1.

*These properties are well known for the Riemann zeta-function. The proof for the function𝑄 (𝑠, 𝑎) is
exactly the same since the Riemann-von Mangoldt formula holds for 𝑄 (𝑠, 𝑎) (see [15, Proposition 2.5] or
[18, Page 217]).
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8 K. H. Bllaca, K. Mazhouda and T. Nakamura

Then it holds that

𝛾𝑛 (𝑎) =
(−1)𝑛
𝑛!

lim
𝑚→∞

(
𝑚∑︁
𝑘=0

log𝑛 (𝑘 + 𝑎)
𝑘 + 𝑎

− log𝑛+1 (𝑚 + 𝑎)
𝑛 + 1

)
.

Lemma 2.2 ([2, (26)]) Let 0 < 𝑎 ≤ 1 and 𝑛 be a non-negative integer. Then one has

𝜁 (𝑛) (0, 𝑎) =
(
1
2
− 𝑎

)
| log 𝑎 |𝑛 − 𝑛! + 𝑛!𝑎

∞∑︁
𝑚=𝑛

| log 𝑎 |𝑚
𝑚!

+ (−1)𝑛𝑛
∫ ∞

0

𝜑(𝑥) log𝑛−1 (𝑥 + 𝑎)
(𝑥 + 𝑎)2 𝑑𝑥 − (−1)𝑛𝑛(𝑛 − 1)

∫ ∞

0

𝜑(𝑥) log𝑛−2 (𝑥 + 𝑎)
(𝑥 + 𝑎)2 𝑑𝑥,

where 𝜑(𝑥) =
∫ 𝑥

0 (𝑦− ⌊𝑦⌋ −1/2)𝑑𝑦 is periodic with period 1 and satisfies 2𝜑(𝑥) = 𝑥(𝑥−1)
if 0 ≤ 𝑥 ≤ 1.

By using the Lemmas above, we immediately obtain the following.

Corollary 2.3 When 𝑎 > 0 is sufficiently small,

(𝑠 − 1)𝑍 (𝑠, 𝑎) = 2 +
∞∑︁
𝑛=0

𝛿𝑛 (𝑎) (𝑠 − 1)𝑛+1, 𝛿𝑛 (𝑎) =
| log 𝑎 |𝑛
𝑎𝑛!

+𝑂 (1),

𝑍 (𝑠, 𝑎) =
∞∑︁
𝑛=1

𝜖𝑛 (𝑎)𝑠𝑛, 𝜖𝑛 (𝑎) = 𝑂 ( | log 𝑎 |𝑛).

Proof The first formula and estimation are easily proved by Lemma 2.1 (see also [3,
Theorem 2]). For the first integral in the Lemma 2.2, one has∫ 1

0

𝜑(𝑥) log𝑛−1 (𝑥 + 𝑎)
(𝑥 + 𝑎)2 𝑑𝑥 ≪

∫ 1

0

log𝑛−1 (𝑥 + 𝑎)
𝑥 + 𝑎

𝑑𝑥 = 𝑂 ( | log 𝑎 |𝑛),∫ ∞

1

𝜑(𝑥) log𝑛−1 (𝑥 + 𝑎)
(𝑥 + 𝑎)2 𝑑𝑥 ≪

∫ ∞

1

log𝑛−1 (𝑥 + 𝑎)
(𝑥 + 𝑎)2 𝑑𝑥 = 𝑂 (1)

from 𝑥 < 𝑥 + 𝑎 when 𝑥, 𝑎 > 0. In addition, we have

𝑎

∞∑︁
𝑚=𝑛

| log 𝑎 |𝑚
𝑚!

≤ 𝑎

∞∑︁
𝑚=0

| log 𝑎 |𝑚
𝑚!

= 𝑎𝑒 | log 𝑎 | = 𝑎𝑒− log 𝑎 = 1, 0 < 𝑎 < 1/2.

Hence, we obtain

𝜁 (𝑠, 𝑎) =
∞∑︁
𝑛=0

𝜁 (𝑛) (0, 𝑎)
𝑛!

𝑠𝑛, 𝜁 (𝑛) (0, 𝑎) = 𝑂 ( | log 𝑎 |𝑛).

Therefore, we have 𝜖𝑛 (𝑎) = 𝑂 ( | log 𝑎 |𝑛) and the second formula in this corollary by the
definition of 𝑍 (𝑠, 𝑎) and 𝑍 (0, 𝑎) = 𝜁 (0, 𝑎) + 𝜁 (0, 1 − 𝑎) = 0 (see [14, (4.11)]). ■

Proof of Theoreom 1.4 Recall the functional equation
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𝑍 (1 − 𝑠, 𝑎) = Γcos (𝑠)𝑃(𝑠, 𝑎), Γcos (𝑠) :=
2Γ(𝑠)
(2𝜋)𝑠 cos

( 𝜋𝑠
2

)
(see [14, Lemma 4.11]). By using Γcos (𝑠)Γcos (1 − 𝑠) = 1, we have

2𝑄(𝑠, 𝑎) = 𝑍 (𝑠, 𝑎) + 𝑃(𝑠, 𝑎) = 𝑍 (𝑠, 𝑎) + Γcos (1 − 𝑠)𝑍 (1 − 𝑠, 𝑎).

Let |𝑠 − 1| be sufficiently small. Then by lim𝑠→1 (𝑠 − 1)𝑄(𝑠, 𝑎) = 1, the equation above
and the definitions of𝑄(𝑠, 𝑎) and 𝜉𝑄 (𝑠, 𝑎), we have

𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log 𝜉𝑄 (𝑠, 𝑎)

]
𝑠=1 =

𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log

(
(𝑠 − 1)𝑄(𝑠, 𝑎)

)
+ 𝑠𝑙−1 log

(
𝑠𝜋−𝑠/2Γ(𝑠/2)

) ]
𝑠=1

=
𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log

(
𝑠 − 1
2

(
𝑍 (𝑠, 𝑎) + Γcos (1 − 𝑠)𝑍 (1 − 𝑠, 𝑎)

))]
𝑠=1

+𝑂𝑙 (1)

=
𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log

(
1 +

∞∑︁
𝑛=0

(
𝛿′𝑛 (𝑎) + 𝜖 ′𝑛 (𝑎)

)
(𝑠 − 1)𝑛+1

)]
𝑠=1

+𝑂𝑙 (1),

where 𝛿′𝑛 (𝑎) and 𝜖 ′𝑛 (𝑎) are defined by

𝛿′𝑛 (𝑎) :=
𝛿𝑛 (𝑎)
2

, (𝑠 − 1)Γcos (1 − 𝑠)𝑍 (1 − 𝑠, 𝑎) = 2
∞∑︁
𝑛=0

𝜖 ′𝑛 (𝑎) (𝑠 − 1)𝑛+1.

Clearly, the second estimation in Corollary 2.3 implies

𝑍 (1 − 𝑠, 𝑎) =
∞∑︁
𝑛=1

𝜖𝑛 (𝑎) (1 − 𝑠)𝑛, 𝜖𝑛 (𝑎) = 𝑂 ( | log 𝑎 |𝑛).

Thuswe can see that 𝜖 ′𝑛 (𝑎) = 𝑂 ( | log 𝑎 |𝑛+1) from lim𝑠→1 (𝑠−1)Γcos (1−𝑠) = −2 and the
fact that the function (𝑠−1)Γcos (1−𝑠) does not depend on 𝑎. Put 𝜂𝑛 (𝑎) := 𝛿′𝑛 (𝑎)+𝜖 ′𝑛 (𝑎).
Then, for 𝑛 ≥ 0, we have

𝜂𝑛 (𝑎) =
1
𝑛!

| log 𝑎 |𝑛
2𝑎

+𝑂 ( | log 𝑎 |𝑛+1), 𝑎 → +0 (2.6)

by Corollary 2.3. By virtue of

(𝑎0𝑥 + 𝑎1𝑥
2 + 𝑎2𝑥

3 + · · · )𝑚 = 𝑎𝑚0 𝑥
𝑚 +

(
𝑚

1

)
𝑎𝑚−1
0 𝑎1𝑥

𝑚+1 + · · ·

(𝑎0𝑥 + 𝑎1𝑥
2 + 𝑎2𝑥

3 + · · · )𝑚−1 = 𝑎𝑚0 𝑥
𝑚−1 +

(
𝑚 − 1
1

)
𝑎𝑚−2
0 𝑎1𝑥

𝑚 + · · ·

...

(𝑎0𝑥 + 𝑎1𝑥
2 + 𝑎2𝑥

3 + · · · )1 = · · · + 𝑎𝑚𝑥
𝑚 + · · · ,

where 𝑚 ∈ N and 𝑎𝑚, 𝑥 ∈ C, the coefficient of (𝑠 − 1)𝑙 in the function

𝑓 (𝑠, 𝑎) :=
∞∑︁

𝑚=1

(−1)𝑚+1

𝑚

( ∞∑︁
𝑛=0

𝜂𝑛 (𝑎) (𝑠 − 1)𝑛+1
)𝑚
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is expressed as

(−1)𝑙+1
𝑙

(
𝜂0 (𝑎)

) 𝑙 + (−1)𝑙
𝑙 − 1

(
𝑙 − 1
1

)
𝜂0 (𝑎)𝑙−2𝜂1 (𝑎) + · · · + (−1)1+1

1
𝜂𝑙−1 (𝑎). (2.7)

Note that the function above is estimated by

(−1)𝑙+1
𝑙

(
𝜂0 (𝑎)

) 𝑙 +𝑂𝑙

(
𝜂0 (𝑎)𝑙−2𝜂1 (𝑎)

)
=

(−1)𝑙+1
𝑙

(2𝑎)−𝑙 +𝑂𝑙

(
𝑎1−𝑙 | log 𝑎 |

)
(2.8)

from (2.6) when 𝑎 → +0. We can find that

(𝑠 − 1)
(
𝑍 (𝑠, 𝑎) + Γcos (1 − 𝑠)𝑍 (1 − 𝑠, 𝑎)

)
= 1 +

∞∑︁
𝑛=0

𝜂𝑛 (𝑎) (𝑠 − 1)𝑛+1

is analytic when |𝑠 − 1| < 1 form the poles of 𝑍 (𝑠, 𝑎) and Γcos (1− 𝑠). So we can choose
|𝑠 − 1| > 0 such that

∞∑︁
𝑛=0

��𝜂𝑛 (𝑎)��|𝑠 − 1|𝑛+1 < 1
2
.

Then, from (2.7), the Leibniz product rule, the definition of 𝜂𝑛 (𝑎), and the Taylor
expansion of log(1 + 𝑥) with |𝑥 | < 1, one has

𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log 𝜉𝑄 (𝑠, 𝑎)

]
𝑠=1

=
𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 𝑓 (𝑠, 𝑎)

]
𝑠=1

+𝑂𝑙 (1)

=

(
𝑙

𝑙

)
(−1)𝑙+1

𝑙
𝑙!
(
𝜂0 (𝑎)

) 𝑙 +𝑂𝑙

(
𝜂0 (𝑎)𝑙−2𝜂1 (𝑎)

)
(♭)

+
(

𝑙

𝑙 − 1

)
(𝑙 − 1) (−1)

𝑙

𝑙 − 1
(𝑙 − 1)!

(
𝜂0 (𝑎)

) 𝑙−1 +𝑂𝑙

(
𝜂0 (𝑎)𝑙−3𝜂1 (𝑎)

)
(♮)

+ · · · +
(
𝑙

1

)
(𝑙 − 1)! (−1)

1+1

1
(
𝜂0 (𝑎)

)1 +𝑂𝑙 (1). (♯)

Note that (♭) comes from 𝑓 (𝑙) (𝑠, 𝑎), (♮) is deduced by 𝑓 (𝑙−1) (𝑠, 𝑎), and (♯) derives from
𝑓 (1) (𝑠, 𝑎), 𝑓 (0) (𝑠, 𝑎) and 𝑂𝑙 (1) in the left-hand side of the formula above. Therefore,
by (2.8), we obtain

𝑑𝑙

𝑑𝑠𝑙

[
𝑠𝑙−1 log 𝜉𝑄 (𝑠, 𝑎)

]
𝑠=1

= (−1)𝑙+1 (𝑙 − 1)!
(
𝜂0 (𝑎)

) 𝑙 +𝑂𝑙

(
𝜂0 (𝑎)𝑙−2𝜂1 (𝑎)

)
= (−1)𝑙+1 (𝑙 − 1)!

(2𝑎)𝑙
+𝑂𝑙

(
𝑎1−𝑙 | log 𝑎 |

)
which implies Theorem 1.4.
At the end of the paper, we give numerical computation for 𝜆𝑛,𝑎 by Mathematica 13.0.
Let

𝜆
[𝑘 ]
𝑛,𝑎 :=

1
(𝑛 − 1)!

𝑑𝑛

𝑑𝑠𝑛

[
𝑠𝑛−1 log 𝜉𝑄 (𝑠, 𝑎)

]
𝑠=1−10−𝑘 , 𝜆∗𝑛,𝑎 :=

(−1)𝑛+1
(2𝑎)𝑛 .

Then, we have the following:
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For 𝑛 = 1, we have

𝑎 := 2−17 𝜆
[10]
1,𝑎 = 65537... 𝜆

[10]
1,𝑎 /𝜆∗1,𝑎 = 1.00001...

𝑎 := 2−18 𝜆
[10]
1,𝑎 = 131074... 𝜆

[10]
1,𝑎 /𝜆∗1,𝑎 = 1.00002...

𝑎 := 2−19 𝜆
[10]
1,𝑎 = 262151... 𝜆

[10]
1,𝑎 /𝜆∗1,𝑎 = 1.00003...

𝑎 := 2−17 𝜆
[11]
1,𝑎 = 65536.6... 𝜆[11]

1,𝑎 /𝜆∗1,𝑎 = 1.00001...
𝑎 := 2−18 𝜆

[11]
1,𝑎 = 131073... 𝜆

[11]
1,𝑎 /𝜆∗1,𝑎 = 1.00001...

𝑎 := 2−19 𝜆
[11]
1,𝑎 = 262145... 𝜆

[11]
1,𝑎 /𝜆∗1,𝑎 = 1.00000...

𝑎 := 2−17 𝜆
[12]
1,𝑎 = 655365... 𝜆

[12]
1,𝑎 /𝜆∗1,𝑎 = 1.00001...

𝑎 := 2−18 𝜆
[12]
1,𝑎 = 131073... 𝜆

[12]
1,𝑎 /𝜆∗1,𝑎 = 1.00000...

𝑎 := 2−19 𝜆
[12]
1,𝑎 = 262145... 𝜆

[12]
1,𝑎 /𝜆∗1,𝑎 = 1.00000...

For 𝑛 = 2, we have

𝑎 := 2−17 𝜆
[10]
2,𝑎 = −4.29352... × 109 𝜆

[10]
2,𝑎 /𝜆∗2,𝑎 = 0.999663...

𝑎 := 2−18 𝜆
[10]
2,𝑎 = −1.7177... × 1010 𝜆

[10]
2,𝑎 /𝜆∗2,𝑎 = 0.999836...

𝑎 := 2−19 𝜆
[10]
2,𝑎 = −6.87162... × 1010 𝜆

[10]
2,𝑎 /𝜆∗2,𝑎 = 0.999952...

𝑎 := 2−17 𝜆
[11]
2,𝑎 = −4.29478... × 109 𝜆

[11]
2,𝑎 /𝜆∗2,𝑎 = 0.999956...

𝑎 := 2−18 𝜆
[11]
2,𝑎 = −1.71753... × 1010 𝜆

[11]
2,𝑎 /𝜆∗2,𝑎 = 0.999736...

𝑎 := 2−19 𝜆
[11]
2,𝑎 = −6.87149... × 1010 𝜆

[11]
2,𝑎 /𝜆∗2,𝑎 = 0.999933...

𝑎 := 2−17 𝜆
[12]
2,𝑎 = −4.29477... × 109 𝜆

[12]
2,𝑎 /𝜆∗2,𝑎 = 0.999955...

𝑎 := 2−18 𝜆
[12]
2,𝑎 = −1.6911... × 1010 𝜆

[12]
2,𝑎 /𝜆∗2,𝑎 = 0.984353...

𝑎 := 2−19 𝜆
[12]
2,𝑎 = −6.87187... × 1010 𝜆

[12]
2,𝑎 /𝜆∗2,𝑎 = 0.999989...
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