Li coefficients and the quadrilateral zeta function

Kajtaz H. Bllaca, Kamel Mazhouda and Takashi Nakamura

Abstract

In this note, we study the Li coefficients $\lambda_{n, a}$ for the quadrilateral zeta function. Furthermore, we give an arithmetic and asymptotic formula for these coefficients. Especially, we show that for any fixed $n \in \mathbb{N}$, there exists $a>0$ such that $\lambda_{2 n-1, a}>0$ and $\lambda_{2 n, a}<0$.

1 Introduction and statement of main results

1.1 Li coefficients

The Riemann hypothesis is a critical question in analytic number theory. As such, it is interesting to examine different ways to frame it, which may shed more light on its resolution. In 1997, Xian-Jin Li has discovered a new positivity criterion for the Riemann hypothesis (RH). In [10] he defined the Li coefficients for the Riemann zeta function as

$$
\lambda_{n}=\frac{1}{(n-1)!} \frac{d^{n}}{d s^{n}}\left[s^{n-1} \log \xi(s)\right]_{s=1},
$$

where ξ is the completed Riemann zeta function defined by

$$
\xi(s)=s(s-1) \pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

which satisfies $\xi(s)=\xi(1-s)$ and gave a simple equivalence criterion for the (RH): (RH) is true if and only if these coefficients are nonnegative for every positive integer n. The Li coefficients λ_{n} can be written as follows

$$
\lambda_{n}=\sum_{\rho}^{*}\left[1-\left(1-\frac{1}{\rho}\right)^{n}\right]=\lim _{T \rightarrow \infty} \sum_{\rho ;|\operatorname{Im}(\rho)| \leq T}\left[1-\left(1-\frac{1}{\rho}\right)^{n}\right]
$$

where the sum runs over the nontrivial zeros of the Riemann zeta function counted with multiplicity. This criterion is generalized by Bombieri and Lagarias [4] for any arbitrarily multiset of numbers assuming certain convergence conditions. Voros [19, section 3.3] has proved that the (RH) true is equivalent to the growth of λ_{n} as $\frac{1}{2} n \log n$ determined by its archimedean part, while the Riemann hypothesis false is equivalent to the oscillations of λ_{n} with exponentially growing amplitude, determined by its finite part. The Li coefficients were generalized in two ways; by generalizing these coefficients to various sets of functions (the Selberg class, the class of automorphic L-functions, zeta function on function fields,... [8, 11, 17]), and by introducing new parameter in its definition (see

[^0][12]). The Li coefficients (and its generalizations) has generated a lot of research interest due to its applicability and simplicity.

1.2 Quadrilateral zeta function

Recall the definitions of Hurwitz and periodic zeta functions. The Hurwitz zeta function $\zeta(s, a)$ is defined by the series

$$
\zeta(s, a):=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}, \quad \sigma>1, \quad 0<a \leq 1
$$

The function $\zeta(s, a)$ is a meromorphic function with a simple pole at $s=1$ whose residue is 1 (see for example [1, Section 12]). The periodic zeta function $\operatorname{Li}_{s}\left(e^{2 \pi i a}\right)$ is defined by

$$
\operatorname{Li}_{s}\left(e^{2 \pi i a}\right):=\sum_{n=1}^{\infty} \frac{e^{2 \pi i n a}}{n^{s}}, \quad \sigma>1, \quad 0<a \leq 1
$$

(see for instance [1, Exercise 12.2]). Note that the function $\operatorname{Li}_{s}\left(e^{2 \pi i a}\right)$ with $0<a<1$ is analytically continuable to the whole complex plane since $\operatorname{Li}_{s}\left(e^{2 \pi i a}\right)$ does not have any pole, that is shown by the fact that the Dirichlet series of $\operatorname{Li}_{s}\left(e^{2 \pi i a}\right)$ converges uniformly in each compact subset of the half-plane $\sigma>0$ when $0<a<1$ (see for example [9, p. 20]). For $0<a \leq 1 / 2$, we define zeta functions

$$
\begin{aligned}
& Z(s, a):=\zeta(s, a)+\zeta(s, 1-a), \quad P(s, a):=\mathrm{Li}_{s}\left(e^{2 \pi i a}\right)+\mathrm{Li}_{s}\left(e^{2 \pi i(1-a)}\right), \\
& 2 Q(s, a):=Z(s, a)+P(s, a), \quad \xi_{Q}(s, a):=s(s-1) \pi^{-s / 2} \Gamma(s / 2) Q(s, a)
\end{aligned}
$$

We can see that $Q(s, a)$ is meromorphic functions with a simple pole at $s=1$. In addition, we have $Q(0, a)=-1 / 2=\zeta(0)$ and $\xi_{Q}(s, a)=\xi_{Q}(1-s, a)$ which is proved by

$$
\begin{equation*}
Q(1-s, a)=\Gamma_{\cos }(s) Q(s, a), \quad \Gamma_{\cos }(s):=\frac{2 \Gamma(s)}{(2 \pi)^{s}} \cos \left(\frac{\pi s}{2}\right) \tag{1.1}
\end{equation*}
$$

(see [13, Theorem 1.1]). Moreover, the function $Q(s, a)$ has the following properties. When $a=1 / 6,1 / 4,1 / 3$ and $1 / 2$, the Riemann hypothesis holds true if and only if all non real zeros of $Q(s, a)$ are on the line $\operatorname{Re}(s)=1 / 2$ (see [15, Proposition 1.3]). Let $N_{\mathrm{Q}}^{\mathrm{CL}}(T)$ the number of the zeros of $Q(s, a)$ on the line segment from $1 / 2$ to $1 / 2+i T$. In [13, Theorem 1.2], the third author proved that for any $0<a \leq 1 / 2$, there exist positive constants $A(a)$ and $T_{0}(a)$ such that

$$
N_{\mathrm{Q}}^{\mathrm{CL}}(T) \geq A(a) T \quad \text { whenever } \quad T \geq T_{0}(a)
$$

Next, let $N_{F}(T)$ count the number of non real zeros of a function $F(s)$ having $|\operatorname{Im}(s)|<$ T. Then for any $0<a \leq 1 / 2$,

$$
N_{\zeta}(T)-N_{Q}(T)=O_{a}(T)
$$

and the third author [15, Proposition 1.8] proved that

$$
N_{Q}(T)=\frac{T}{\pi} \log T-\frac{T}{\pi} \log \left(2 e \pi a^{2}\right)+O_{a}(\log T)
$$

Furthermore, he [15, Theorem 1.1] proved that there is a unique absolute $a_{0} \in(0,1 / 2)$ such that

$$
Q(1 / 2, a)>0 \Longleftrightarrow 0<a<a_{0} .
$$

In addition, it is proved in [15, Corollary 1.2] that all real zeros of $Q(s, a)$ are simple and are located only at the negative even integers just like $\zeta(s)$ if and only if $a_{0}<a \leq 1 / 2$. Let us note by Z_{Q} the set of all non-trivial zeros ρ_{a} of $\xi_{Q}(s, a)$. Since it is an entire function of order 1 , one has

$$
\begin{equation*}
\xi_{Q}(s, a)=e^{A+B s} \prod_{\rho_{a} \in Z_{Q}}\left(1-\frac{s}{\rho_{a}}\right) e^{\frac{s}{\rho_{a}}}=\xi_{Q}(0, a) \prod_{\rho_{a} \in Z_{Q}}\left(1-\frac{s}{\rho_{a}}\right), \tag{1.2}
\end{equation*}
$$

where $e^{A}=1 / 2, B=\frac{Q^{\prime}}{Q}(0, a)-1-\frac{\gamma+\log \pi}{2}$ and γ denotes the Euler constant. Note that $Q^{\prime}(0, a)$ is given explicitly in [15, Theorem 1.5].

1.3 Main results

Recall that $\zeta(1-s)=\Gamma_{\text {cos }}(s) \zeta(s)$ and $Q(1-s, a)=\Gamma_{\text {cos }}(s) Q(s, a)$ by (1.1). However, the function $Q(s, a)$ does not have an Euler product except for $a=1 / 6,1 / 4,1 / 3$ and $1 / 2$. Hence, the function $Q(s, a)$ is a suitable object to consider the influence of not Riemann's functional equation but an Euler product to zeros of zeta functions. We show a criterion for non-vanishing of $Q(s, a)$ in terms of the positivity of the Li coefficients, an arithmetic and asymptotic formula for these coefficients in Theorems 1.1, 1.2 and 1.4, respectively. It should be emphasised that $\lambda_{n, a}$ defined in (1.3) are the first Li coefficients that we can explicitly give $n \in \mathbb{N}$ such that $\lambda_{n, a}<0$. There is a possibility that this fact would give an idea to find negative Li coefficients for $\zeta(s)$ if they would exist.

For $n \neq 0$, the Li's coefficients attached to $Q(s, a)$ non vanishing at zero is defined by the sum

$$
\lambda_{n, a}:=\sum_{\rho_{a} \in Z_{Q}}^{*}\left(1-\left(1-\frac{1}{\rho_{a}}\right)^{n}\right)=\lim _{T \mapsto \infty} \sum_{\left|\operatorname{Im}\left(\rho_{a}\right)\right| \leq T}^{*}\left(1-\left(1-\frac{1}{\rho_{a}}\right)^{n}\right) .
$$

The symmetry $\rho_{a} \longmapsto 1-\rho_{a}$ in the set Z_{Q} of non-trivial zeros of $Q(s, a)$ implies that $\lambda_{-n, a}=\overline{\lambda_{n, a}}=\lambda_{n, a}$ for all $n \in \mathbb{N}$. So, $\lambda_{n, a}$ are real. We have also

$$
\begin{equation*}
\lambda_{n, a}:=\frac{1}{(n-1)!} \frac{d^{n}}{d s^{n}}\left[s^{n-1} \log \xi_{Q}(s, a)\right]_{s=1} . \tag{1.3}
\end{equation*}
$$

Moreover, from (1.2) we have (see [4, Equations (2.3) and (2.4)] or [17, Appendix A])

$$
\sum_{n=0}^{\infty} \lambda_{n+1, a} s^{n}=\frac{d}{d s} \log \left[\xi_{Q}\left(\frac{1}{1-s}, a\right)\right] .
$$

As an analogue of Li coefficients for the Riemann zeta function, we have the following.

Theorem 1.1 The function $Q(s, a)$ does not vanish when $\operatorname{Re}(s)>1 / 2$ if and only if $\lambda_{n, a} \geq$ 0 for all $n \in \mathbb{N}$.

An arithmetic formula for $\lambda_{n, a}$ is stated in the following theorems.

Theorem 1.2 We have

$$
\lambda_{n, a}=1-\frac{n}{2}(\log (4 \pi)+\gamma)+\sum_{k=2}^{n}(-1)^{k}\binom{n}{k}\left(1-2^{-k}\right) \zeta(k)+\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)
$$

where $\gamma_{Q}(n)$ are defined as follows

$$
\frac{Q^{\prime}}{Q}(s+1, a)+\frac{1}{s}=\sum_{n=0}^{\infty} \gamma_{Q}(n) s^{n}
$$

Theorem 1.3 For $a=1 / 2,1 / 3,1 / 4,1 / 6$, under the $R H$ we have

$$
\lambda_{n, a}=\frac{n}{2} \log n+\frac{n}{2}(\gamma-1-\log 2 \pi)+O(\sqrt{n} \log n)
$$

For a fixed $l \in \mathbb{N}$, we have the following asymptotic formula of $\lambda_{l, a}$ when $a \rightarrow+0$. We can see that there exists $n \in \mathbb{N}$ such that $\lambda_{n, a}<0$ by Theorem 1.1 and the fact that $Q(s, a)$ does not satisfy an analogue of the Riemann hypothesis when $a \in \mathbb{Q} \cap(0,1 / 2) \backslash$ $\{1 / 6,1 / 4,1 / 3\}$ (see [15, Proposition 1.4]). Clearly, this argument gives no information on the frequency of $n \in \mathbb{N}$, the smallest $n \in \mathbb{N}$ such that $\lambda_{n, a}<0$ and so on. However, the next theorem implies that $\lambda_{2 n, a}<0$ if we fix any $n \in \mathbb{N}$ and then we take $a>0$ sufficiently small.

Theorem 1.4 Fix $l \in \mathbb{N}$. Then it holds that

$$
\lambda_{l, a}=\frac{(-1)^{l+1}}{(2 a)^{l}}+O_{l}\left(a^{1-l}|\log a|\right), \quad a \rightarrow+0
$$

Especially, for any fixed $n \in \mathbb{N}$, there are $a>0$ such that

$$
\lambda_{2 n-1, a}>0 \quad \text { and } \quad \lambda_{2 n, a}<0
$$

2 Proofs

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Since $\lambda_{-n, a}=\overline{\lambda_{n, a}}=\lambda_{n, a}$ for all $n \in \mathbb{N}$, then $\operatorname{Re}\left(\lambda_{-n, a}\right)=$ $\operatorname{Re}\left(\lambda_{n, a}\right)=\lambda_{n, a}$. Using that $\xi_{Q}(s, a)$ is an entire function of order 1 , and its zeros lie in the critical strip $0<\operatorname{Re}(s)<1$, we obtain that the series $\sum_{\rho \in Z_{Q}} \frac{1+|\operatorname{Re}(\rho)|}{(1+|\rho|)^{2}}$ is convergent. Application of [4, Theorem 1] to the multiset Z_{Q} of zeros of $Q(s, a)$ gives that $\operatorname{Re}(\rho) \leq$ $1 / 2$ if and only if $\lambda_{n, a} \geq 0$ for all $n \in \mathbb{N}$. Now, the application of the same theorem to the multiset $1-Z_{Q}=Z_{Q}$ gives $\operatorname{Re}(\rho) \geq 1 / 2$ if and only if $\lambda_{n, a} \geq 0$. This completes the proof.

Theorem 1.1 can be also proved by the same argument used in [5, Theorem 1] which is due to Oesterlé.

2.2 Proof of Theorem 1.2

Proof of Theorem 1.2 From the expression of $\xi_{Q}(s, a)$, one has

$$
\frac{\xi_{Q}^{\prime}}{\xi_{Q}}(s, a)=\frac{1}{s}+\frac{1}{s-1}-\frac{1}{2} \log \pi+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}(s / 2)+\frac{Q^{\prime}}{Q}(s, a)
$$

which is rewritten as

$$
\begin{equation*}
\frac{\xi_{Q}^{\prime}}{\xi_{Q}}(s+1, a)=\frac{1}{s+1}+\frac{1}{s}-\frac{1}{2} \log \pi+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}((s+1) / 2)+\frac{Q^{\prime}}{Q}(s+1, a) . \tag{2.1}
\end{equation*}
$$

Note that $Q(s, a)$ is a meromorphic function on the whole complex plane, which is holomorphic everywhere except for a simple pole at $s=1$ with residue 1 (see [13, Section 2.1]). Let define the coefficients $\gamma_{Q}(n)$ and $\tau_{Q}(n)$ as follows

$$
\begin{equation*}
\frac{Q^{\prime}}{Q}(s+1, a)+\frac{1}{s}=\sum_{n=0}^{\infty} \gamma_{Q}(n) s^{n} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{1}{2} \log \pi+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}((s+1) / 2)=\sum_{n=0}^{\infty} \tau_{Q}(n) s^{n} . \tag{2.3}
\end{equation*}
$$

By Equation (1.2), one has

$$
\log \xi_{Q}(s, a)=\log \xi_{Q}(0, a)-\sum_{\rho_{a} \in Z_{Q}} \sum_{m=1}^{\infty} \frac{1}{m \rho^{m}} s^{m}
$$

From the functional equation for the function $\xi_{Q}(s, a)$, in the neighborhood of $s=0$, we have

$$
\begin{equation*}
\frac{\xi_{Q}^{\prime}}{\xi_{Q}}(s+1, a)=-\frac{\xi_{Q}^{\prime}}{\xi_{Q}}(-s, a)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{\rho_{a} \in Z_{Q}} \frac{1}{\rho^{m+1}} s^{m} . \tag{2.4}
\end{equation*}
$$

Comparing Equations (2.1), (2.2), (2.3) and (2.4), we get

$$
(-1)^{m} \sum_{\rho_{a} \in Z_{Q}} \frac{1}{\rho^{m+1}}=(-1)^{m}+\gamma_{Q}(m)+\tau_{Q}(m)
$$

for $m \geq 0$. Hence, the definition of $\lambda_{n, a}$ yields

$$
\lambda_{n, a}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} \sum_{\rho_{a} \in Z_{Q}} \frac{1}{\rho^{k}}=1+\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)+\sum_{k=1}^{n}\binom{n}{k} \tau_{Q}(k-1)
$$

where

$$
\tau_{Q}(0)=-\frac{1}{2} \log \pi+\frac{1}{2} \psi(1 / 2) \text { and } \tau_{Q}(k-1)=(-1)^{k} \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k}}
$$

using that $\psi(z)=-\gamma-\frac{1}{z}+\sum_{k=1}^{\infty} \frac{z}{k(k+z)}$. Here $\psi(s)=\frac{\Gamma^{\prime}}{\Gamma}(s)$ is the logarithmic derivative of the Gamma function. Since $\psi(1 / 2)=-\gamma-2 \log 2$, we obtain

$$
\begin{aligned}
\lambda_{n, a} & =1-\frac{n}{2}(\log (4 \pi)+\gamma)+\sum_{k=2}^{n}(-1)^{k}\binom{n}{k} \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{k}}+\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1) \\
& =1-\frac{n}{2}(\log (4 \pi)+\gamma)+\sum_{k=2}^{n}(-1)^{k}\binom{n}{k}\left(1-2^{-k}\right) \zeta(k)+\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)
\end{aligned}
$$

The equality above implies Theorem 1.2.

2.3 Proof of Theorem 1.3

Proof of Theorem 1.3 Let us note that

$$
\sum_{k=2}^{n}(-1)^{k}\binom{n}{k}\left(1-2^{-k}\right) \zeta(k)=\sum_{k=2}^{n}(-1)^{l}\binom{n}{k} \frac{\zeta(k, 1 / 2)}{2^{k}}
$$

where $\zeta(s, a)$ is the Hurwitz zeta function defined in Section 1.2. With notation of Flajolet and Vespas [7, Lines 2-4 page 70], this is $A_{n}(1,2)$ and which equal to

$$
\frac{n}{2} \psi(n)+n\left(\gamma-\frac{1}{2}+\frac{1}{2} \log 2\right)+o(1)
$$

where the o(1) error term above is exponentially small and oscillating and equal to

$$
\frac{1}{2}\left(\frac{n}{\pi}\right)^{1 / 4} \exp (-\sqrt{2 \pi n}) \cos \left(\sqrt{2 \pi n}-\frac{5 \pi}{8}\right)+O\left(n^{-1 / 4} e^{-\sqrt{2 \pi n}}\right)
$$

Then we have

$$
\lambda_{n, a}=\frac{n}{2} \log n+\frac{n}{2}(\gamma-1-\log 2 \pi)+\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)+O(1) .
$$

It remain to prove that

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)=O(\sqrt{n} \log n) \tag{2.5}
\end{equation*}
$$

To do so, we follows very closely the lines of the proof of the corresponding result in [8, Theorem 6.1] or [16, Lemma 3.3] and it will be shortened. We use the following kernel function

$$
k_{n}(s):=\left(1+\frac{1}{s}\right)^{n}-1=\sum_{k=1}^{n}\binom{n}{k} \frac{1}{s^{k}} .
$$

The residue theorem gives

$$
\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)=\frac{1}{2 i \pi} \int_{C} k_{n}(s)\left(-\frac{Q^{\prime}}{Q}(s+1, a)\right) d s
$$

where C is a contour enclosing the point $s=0$ counterclockwise on a circle of small enough positive radius. The residue comes entirely from the singularity at $s=0$, as no
other singularities lie inside the contour. Let $T=\sqrt{n}+\epsilon_{n}$, for some $0<\epsilon_{n}<1$. Now we follow very closely the lines in [16, p. 1106 and p. 1107] using that the function $\frac{Q^{\prime}}{Q}(s, a)$ satisfies the properties *

$$
\frac{Q^{\prime}}{Q}(s, a)=\sum_{\rho_{a} ;\left|\operatorname{Im}\left(\rho_{a}-s\right)\right|<1} \frac{1}{s-\rho_{a}}+O(\log (1+|s|))
$$

for $-2<\operatorname{Re}(s)<2$ and

$$
\left|\frac{Q^{\prime}}{Q}(s+1, a)\right|=O\left(\log ^{2} T\right)
$$

for $-2 \leq \operatorname{Re}(s) \leq 2$, and we get

$$
\sum_{k=1}^{n}\binom{n}{k} \gamma_{Q}(k-1)=\lambda_{-n, a, T}+O(\sqrt{n} \log n)
$$

where

$$
\lambda_{-n, a, T}=\sum_{\rho_{a} \in Z_{Q} ; \mid \operatorname{Im}\left(\rho_{a} \mid \leq T\right.}^{*}\left(1-\left(1-\frac{1}{\rho_{a}}\right)^{n}\right)
$$

with $T=\sqrt{n}+\epsilon_{n}$. For $a=1 / 2,1 / 3,1 / 4,1 / 6$, under the RH, since $\left|1-\frac{1}{\rho_{a}}\right|=1$ and using formula of $N_{Q}(T)$ given in Section 1.2, we obtain $\lambda_{n, a, T}=O(T \log T+1)$. Therefore, equation (2.5) follows from that $\lambda_{-n, a, \sqrt{n}}=\lambda_{-n, a, \sqrt{n}}=O(\sqrt{n} \log n)$.
Remark. Since $2 Q(s, a):=Z(s, a)+P(s, a)$, from Corollary 2.3 below and [6, Equation (1.18)], we obtain

$$
\gamma_{Q}(n)=\frac{1}{2}\left(\delta_{n}(a)+\frac{(-1)^{n}}{n!}\left(l_{n}(a)+l_{n}(1-a)\right)\right)
$$

where $\delta_{n}(a)=\frac{|\log a|^{n}}{a n!}+O(1)$ and $l_{n}(a)$ are the coefficients in the expansion of $\operatorname{Li}_{s}\left(e^{2 \pi i a}\right)$ at $s=1$; for $a \notin \mathbb{Z}$ one has

$$
\mathrm{Li}_{s}\left(e^{2 \pi i a}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} l_{n}(a)(s-1)^{n}
$$

2.4 Proof of Theorem 1.4

To show Theorem 1.4, we quote the following lemmas from [2] and [3].
Lemma 2.1 ([3, Theorem 1]) We set

$$
(s-1) \zeta(s, a)=1+\sum_{n=0}^{\infty} \gamma_{n}(a)(s-1)^{n+1}, \quad 0<a \leq 1
$$

[^1]Then it holds that

$$
\gamma_{n}(a)=\frac{(-1)^{n}}{n!} \lim _{m \rightarrow \infty}\left(\sum_{k=0}^{m} \frac{\log ^{n}(k+a)}{k+a}-\frac{\log ^{n+1}(m+a)}{n+1}\right)
$$

Lemma $2.2([2,(26)]) \quad$ Let $0<a \leq 1$ and n be a non-negative integer. Then one has

$$
\begin{aligned}
& \zeta^{(n)}(0, a)=\left(\frac{1}{2}-a\right)|\log a|^{n}-n!+n!a \sum_{m=n}^{\infty} \frac{|\log a|^{m}}{m!} \\
& \quad+(-1)^{n} n \int_{0}^{\infty} \frac{\varphi(x) \log ^{n-1}(x+a)}{(x+a)^{2}} d x-(-1)^{n} n(n-1) \int_{0}^{\infty} \frac{\varphi(x) \log ^{n-2}(x+a)}{(x+a)^{2}} d x
\end{aligned}
$$

where $\varphi(x)=\int_{0}^{x}(y-\lfloor y\rfloor-1 / 2)$ dy is periodic with period 1 and satisfies $2 \varphi(x)=x(x-1)$ if $0 \leq x \leq 1$.

By using the Lemmas above, we immediately obtain the following.
Corollary 2.3 When $a>0$ is sufficiently small,

$$
\begin{gathered}
(s-1) Z(s, a)=2+\sum_{n=0}^{\infty} \delta_{n}(a)(s-1)^{n+1}, \quad \delta_{n}(a)=\frac{|\log a|^{n}}{a n!}+O(1) \\
Z(s, a)=\sum_{n=1}^{\infty} \epsilon_{n}(a) s^{n}, \quad \epsilon_{n}(a)=O\left(|\log a|^{n}\right)
\end{gathered}
$$

Proof The first formula and estimation are easily proved by Lemma 2.1 (see also [3, Theorem 2]). For the first integral in the Lemma 2.2, one has

$$
\begin{aligned}
& \int_{0}^{1} \frac{\varphi(x) \log ^{n-1}(x+a)}{(x+a)^{2}} d x \ll \int_{0}^{1} \frac{\log ^{n-1}(x+a)}{x+a} d x=O\left(|\log a|^{n}\right) \\
& \int_{1}^{\infty} \frac{\varphi(x) \log ^{n-1}(x+a)}{(x+a)^{2}} d x \ll \int_{1}^{\infty} \frac{\log ^{n-1}(x+a)}{(x+a)^{2}} d x=O(1)
\end{aligned}
$$

from $x<x+a$ when $x, a>0$. In addition, we have

$$
a \sum_{m=n}^{\infty} \frac{|\log a|^{m}}{m!} \leq a \sum_{m=0}^{\infty} \frac{|\log a|^{m}}{m!}=a e^{|\log a|}=a e^{-\log a}=1, \quad 0<a<1 / 2
$$

Hence, we obtain

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{\zeta^{(n)}(0, a)}{n!} s^{n}, \quad \zeta^{(n)}(0, a)=O\left(|\log a|^{n}\right)
$$

Therefore, we have $\epsilon_{n}(a)=O\left(|\log a|^{n}\right)$ and the second formula in this corollary by the definition of $Z(s, a)$ and $Z(0, a)=\zeta(0, a)+\zeta(0,1-a)=0$ (see [14, (4.11)]).

Proof of Theoreom 1.4 Recall the functional equation

$$
Z(1-s, a)=\Gamma_{\cos }(s) P(s, a), \quad \Gamma_{\cos }(s):=\frac{2 \Gamma(s)}{(2 \pi)^{s}} \cos \left(\frac{\pi s}{2}\right)
$$

(see [14, Lemma 4.11]). By using $\Gamma_{\text {cos }}(s) \Gamma_{\text {cos }}(1-s)=1$, we have

$$
2 Q(s, a)=Z(s, a)+P(s, a)=Z(s, a)+\Gamma_{\cos }(1-s) Z(1-s, a)
$$

Let $|s-1|$ be sufficiently small. Then by $\lim _{s \rightarrow 1}(s-1) Q(s, a)=1$, the equation above and the definitions of $Q(s, a)$ and $\xi_{Q}(s, a)$, we have

$$
\begin{aligned}
& \frac{d^{l}}{d s^{l}}\left[s^{l-1} \log \xi_{Q}(s, a)\right]_{s=1}=\frac{d^{l}}{d s^{l}}\left[s^{l-1} \log ((s-1) Q(s, a))+s^{l-1} \log \left(s \pi^{-s / 2} \Gamma(s / 2)\right)\right]_{s=1} \\
& =\frac{d^{l}}{d s^{l}}\left[s^{l-1} \log \left(\frac{s-1}{2}\left(Z(s, a)+\Gamma_{\cos }(1-s) Z(1-s, a)\right)\right)\right]_{s=1}+O_{l}(1) \\
& =\frac{d^{l}}{d s^{l}}\left[s^{l-1} \log \left(1+\sum_{n=0}^{\infty}\left(\delta_{n}^{\prime}(a)+\epsilon_{n}^{\prime}(a)\right)(s-1)^{n+1}\right)\right]_{s=1}+O_{l}(1)
\end{aligned}
$$

where $\delta_{n}^{\prime}(a)$ and $\epsilon_{n}^{\prime}(a)$ are defined by

$$
\delta_{n}^{\prime}(a):=\frac{\delta_{n}(a)}{2}, \quad(s-1) \Gamma_{\cos }(1-s) Z(1-s, a)=2 \sum_{n=0}^{\infty} \epsilon_{n}^{\prime}(a)(s-1)^{n+1}
$$

Clearly, the second estimation in Corollary 2.3 implies

$$
Z(1-s, a)=\sum_{n=1}^{\infty} \epsilon_{n}(a)(1-s)^{n}, \quad \epsilon_{n}(a)=O\left(|\log a|^{n}\right)
$$

Thus we can see that $\epsilon_{n}^{\prime}(a)=O\left(|\log a|^{n+1}\right)$ from $\lim _{s \rightarrow 1}(s-1) \Gamma_{\cos }(1-s)=-2$ and the fact that the function $(s-1) \Gamma_{\mathrm{cos}}(1-s)$ does not depend on a. Put $\eta_{n}(a):=\delta_{n}^{\prime}(a)+\epsilon_{n}^{\prime}(a)$. Then, for $n \geq 0$, we have

$$
\begin{equation*}
\eta_{n}(a)=\frac{1}{n!} \frac{|\log a|^{n}}{2 a}+O\left(|\log a|^{n+1}\right), \quad a \rightarrow+0 \tag{2.6}
\end{equation*}
$$

by Corollary 2.3. By virtue of

$$
\begin{gathered}
\left(a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots\right)^{m}=a_{0}^{m} x^{m}+\binom{m}{1} a_{0}^{m-1} a_{1} x^{m+1}+\cdots \\
\left(a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots\right)^{m-1}=a_{0}^{m} x^{m-1}+\binom{m-1}{1} a_{0}^{m-2} a_{1} x^{m}+\cdots \\
\vdots \\
\left(a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots\right)^{1}=\cdots+a_{m} x^{m}+\cdots
\end{gathered}
$$

where $m \in \mathbb{N}$ and $a_{m}, x \in \mathbb{C}$, the coefficient of $(s-1)^{l}$ in the function

$$
f(s, a):=\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m}\left(\sum_{n=0}^{\infty} \eta_{n}(a)(s-1)^{n+1}\right)^{n}
$$

is expressed as

$$
\begin{equation*}
\frac{(-1)^{l+1}}{l}\left(\eta_{0}(a)\right)^{l}+\frac{(-1)^{l}}{l-1}\binom{l-1}{1} \eta_{0}(a)^{l-2} \eta_{1}(a)+\cdots+\frac{(-1)^{1+1}}{1} \eta_{l-1}(a) \tag{2.7}
\end{equation*}
$$

Note that the function above is estimated by

$$
\begin{equation*}
\frac{(-1)^{l+1}}{l}\left(\eta_{0}(a)\right)^{l}+O_{l}\left(\eta_{0}(a)^{l-2} \eta_{1}(a)\right)=\frac{(-1)^{l+1}}{l}(2 a)^{-l}+O_{l}\left(a^{1-l}|\log a|\right) \tag{2.8}
\end{equation*}
$$

from (2.6) when $a \rightarrow+0$. We can find that

$$
(s-1)\left(Z(s, a)+\Gamma_{\cos }(1-s) Z(1-s, a)\right)=1+\sum_{n=0}^{\infty} \eta_{n}(a)(s-1)^{n+1}
$$

is analytic when $|s-1|<1$ form the poles of $Z(s, a)$ and $\Gamma_{\cos }(1-s)$. So we can choose $|s-1|>0$ such that

$$
\sum_{n=0}^{\infty}\left|\eta_{n}(a)\right||s-1|^{n+1}<\frac{1}{2}
$$

Then, from (2.7), the Leibniz product rule, the definition of $\eta_{n}(a)$, and the Taylor expansion of $\log (1+x)$ with $|x|<1$, one has

$$
\begin{align*}
& \frac{d^{l}}{d s^{l}}\left[s^{l-1} \log \xi_{Q}(s, a)\right]_{s=1}=\frac{d^{l}}{d s^{l}}\left[s^{l-1} f(s, a)\right]_{s=1}+O_{l}(1) \\
& =\binom{l}{l} \frac{(-1)^{l+1}}{l} l!\left(\eta_{0}(a)\right)^{l}+O_{l}\left(\eta_{0}(a)^{l-2} \eta_{1}(a)\right) \tag{b}\\
& \quad+\binom{l}{l-1}(l-1) \frac{(-1)^{l}}{l-1}(l-1)!\left(\eta_{0}(a)\right)^{l-1}+O_{l}\left(\eta_{0}(a)^{l-3} \eta_{1}(a)\right) \tag{দ}\\
& \quad+\cdots+\binom{l}{1}(l-1)!\frac{(-1)^{1+1}}{1}\left(\eta_{0}(a)\right)^{1}+O_{l}(1)
\end{align*}
$$

Note that (b) comes from $f^{(l)}(s, a)$, (\downarrow) is deduced by $f^{(l-1)}(s, a)$, and (\sharp) derives from $f^{(1)}(s, a), f^{(0)}(s, a)$ and $O_{l}(1)$ in the left-hand side of the formula above. Therefore, by (2.8), we obtain

$$
\begin{aligned}
\frac{d^{l}}{d s^{l}}\left[s^{l-1} \log \xi_{Q}(s, a)\right]_{s=1} & =(-1)^{l+1}(l-1)!\left(\eta_{0}(a)\right)^{l}+O_{l}\left(\eta_{0}(a)^{l-2} \eta_{1}(a)\right) \\
& =(-1)^{l+1} \frac{(l-1)!}{(2 a)^{l}}+O_{l}\left(a^{1-l}|\log a|\right)
\end{aligned}
$$

which implies Theorem 1.4.
At the end of the paper, we give numerical computation for $\lambda_{n, a}$ by Mathematica 13.0. Let

$$
\lambda_{n, a}^{[k]}:=\frac{1}{(n-1)!} \frac{d^{n}}{d s^{n}}\left[s^{n-1} \log \xi_{Q}(s, a)\right]_{s=1-10^{-k}}, \quad \lambda_{n, a}^{*}:=\frac{(-1)^{n+1}}{(2 a)^{n}}
$$

Then, we have the following:

For $n=1$, we have

$$
\begin{aligned}
& a:=2^{-17} \quad \lambda_{1, a}^{[10]}=65537 \ldots \lambda_{1, a}^{[10]} / \lambda_{1, a}^{*}=1.00001 \ldots \\
& a:=2^{-18} \quad \lambda_{1, a}^{[10]}=131074 \ldots \lambda_{1, a}^{[10]} / \lambda_{1, a}^{*}=1.00002 \ldots \\
& a:=2^{-19} \quad \lambda_{1, a}^{[10]}=262151 \ldots \lambda_{1, a}^{[10]} / \lambda_{1, a}^{*}=1.00003 \ldots \\
& a:=2^{-17} \lambda_{1, a}^{[11]}=65536.6 \ldots \lambda_{1, a}^{[11]} / \lambda_{1, a}^{*}=1.00001 \ldots \\
& a:=2^{-18} \quad \lambda_{1, a}^{[11]}=131073 \ldots \lambda_{1, a}^{[11]} / \lambda_{1, a}^{*}=1.00001 \ldots \\
& a:=2^{-19} \lambda_{1, a}^{[11]}=262145 \ldots \lambda_{1, a}^{[11]} / \lambda_{1, a}^{*}=1.00000 \ldots \\
& a:=2^{-17} \quad \lambda_{1, a}^{[12]}=655365 \ldots \lambda_{1, a}^{[12]} / \lambda_{1, a}^{*}=1.00001 \ldots \\
& a:=2^{-18} \quad \lambda_{1, a}^{[12]}=131073 \ldots \lambda_{1, a}^{[12]} / \lambda_{1, a}^{*}=1.00000 \ldots \\
& a:=2^{-19} \lambda_{1, a}^{[12]}=262145 \ldots \lambda_{1, a}^{[12]} / \lambda_{1, a}^{*}=1.00000 \ldots
\end{aligned}
$$

For $n=2$, we have

$$
\begin{array}{lll}
a:=2^{-17} & \lambda_{2, a}^{[10]}=-4.29352 \ldots \times 10^{9} & \lambda_{2, a}^{[10]} / \lambda_{2, a}^{*}=0.999663 \ldots \\
a:=2^{-18} & \lambda_{2, a}^{[10]}=-1.7177 \ldots \times 10^{10} & \lambda_{2, a}^{[10]} / \lambda_{2, a}^{*}=0.999836 \ldots \\
a:=2^{-19} & \lambda_{2, a}^{[10]}=-6.87162 \ldots \times 10^{10} & \lambda_{2, a}^{[10]} / \lambda_{2, a}^{*}=0.999952 \ldots \\
a:=2^{-17} & \lambda_{2, a}^{[11]}=-4.29478 \ldots \times 10^{9} & \lambda_{2, a}^{[11]} / \lambda_{2, a}^{*}=0.999956 \ldots \\
a:=2^{-18} & \lambda_{2, a}^{[11]}=-1.71753 \ldots \times 10^{10} & \lambda_{2, a}^{[11]} / \lambda_{2, a}^{*}=0.999736 \ldots \\
a:=2^{-19} & \lambda_{2, a}^{[11]}=-6.87149 \ldots \times 10^{10} & \lambda_{2, a}^{[11]} / \lambda_{2, a}^{*}=0.999933 \ldots \\
a:=2^{-17} & \lambda_{2, a}^{[12]}=-4.29477 \ldots \times 10^{9} & \lambda_{2, a}^{[12]} / \lambda_{2, a}^{*}=0.999955 \ldots \\
a:=2^{-18} & \lambda_{2, a}^{[12]}=-1.6911 \ldots \times 10^{10} & \lambda_{2, a}^{[12]} / \lambda_{2, a}^{*}=0.984353 \ldots \\
a:=2^{-19} & \lambda_{2, a}^{[12]}=-6.87187 \ldots \times 10^{10} & \lambda_{2, a}^{[12]} / \lambda_{2, a}^{*}=0.999989 \ldots
\end{array}
$$

Acknowledgments

The third author was partially supported by JSPS grant 22K03276. The authors want to thank the anonymous referees for their many insightful comments and suggestions.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York, 1976.
[2] T. M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp. 44 (1985), no. 169, 223-232.
[3] B. C. Berndt, On the Hurwitz zeta-function, Rocky Mountain J. Math. 2 (1) (1972) 151-157.
[4] E. Bombieri and J. Lagarias, Complements to Li's Criterion for the Riemann Hypothesis, J. Number Theory 77 (1999), 274-287.
[5] F. Brown, Li's criterion and zero-free regions of L-functions, J. Number Theory 111 (2005), 1-32.
[6] M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. Volume 44, Number 2 (2014), 443-477.
[7] P. Flajolet and L. Vepstas, On differences of zeta values, J. Comput. Appl. Math. 220 (2008), no. 1-2, 58-73.
[8] J. C. Lagarias, Li Coefficients for automorphic L-functions, Ann. Inst. Fourier (Grenoble) 57 (2007) 1689-1740.
[9] A. Laurinčikas and R. Garunkštis, The Lerch zeta-function. Kluwer Academic Publishers, Dordrecht, 2002.
[10] X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325-333.
[11] K. Mazhouda, L. Smajlović, Evaluation of the Li coefficients on function fields and applications, Eur. J. Math. 5 (2019), no. 2, 540-550.
[12] K. Mazhouda, B. Sodaïgui, The Li-Sekatskii coefficients for the Selberg class, Internat. J. Math. 33 (2022), no. 12, Paper No. 2250075, 23 pp.
[13] T. Nakamura, The functional equation and zeros on the critical line of the quadrilateral zeta function. J. Number Theory 233 (2022), 432-455.
[14] T. Nakamura, On zeros of bilateral Hurwitz and periodic zeta and zeta star functions.. Rocky Mountain Journal of Mathematics 53 (2023), no. 1, 157-176.
[15] T. Nakamura, On Lerch's formula and zeros of the quadrilateral zeta function. preprint, arXiv:2001.01981.
[16] S. Omar and K. Mazhouda, The Li criterion and the Riemann hypothesis for the Selberg class II, J. Number Theory 130(4) (2010) 1109-1114.
[17] L. Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory 130 (2010), no. 4, 828-851.
[18] E. C. Titchmarsh, Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, Oxford, 1986.
[19] A. Voros, Sharpenings of Li's criterion for the Riemann hypothesis, Math. Phys. Anal. Geom. 9 (2006), 53-63.
Department of Mathematics, University of Prishtina, Mother Theresa, no. 5, Kosovo, 10000 Prishtina e-mail: kajtaz.bllaca@uni-pr.edu.

Higher Institute of Applied Sciences and Technology, University of Sousse, Tunisia, 4003 Sousse and INSA Hauts-DeFrance, Univ. Polytechnique Hauts-De-France, FR CNRS 2037, CERAMATHS, France, F-59313 Valenciennes e-mail: kamel.mazhouda@fsm.rnu.tn.

Department of Liberal Arts, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Japan, Noda-shi, Chiba-ken, 278-8510
e-mail: nakamuratakashi@rs.tus.ac.jp.

[^0]: 2020 Mathematics Subject Classification: Primary 11M26, 11M35.
 Keywords: Li's coefficients, the quadrilateral zeta function.

[^1]: ${ }^{*}$ These properties are well known for the Riemann zeta-function. The proof for the function $Q(s, a)$ is exactly the same since the Riemann-von Mangoldt formula holds for $Q(s, a)$ (see [15, Proposition 2.5] or [18, Page 217]).

