
21

Majorana neutrinos

Majorana fields were introduced in Section 6.6. If neutrino fields are Majorana,

then there is no distinction to be made between neutrinos and antineutrinos. As

explained in Section 6.7, the smallness of neutrino masses makes the differences

between Dirac and Majorana neutrinos difficult to discern experimentally.

In this chapter we elaborate on the theory of Majorana neutrinos and show

how they can be accommodated within the Standard Model. Finally we describe

experiments on ‘double β decay’ that may determine the nature of neutrinos.

21.1 Majorana neutrino fields

We shall denote left-handed and right-handed Majorana neutrino fields by νL(x)

and νR(x). From (6.28 and 6.29), making the identifications

bp+ = dp+, bp− = dp−

we have for a Majorana neutrino field carrying mass m

νL = 1√
V

∑
p

√
m

2E p

[(
bp+e−θ/2 |+〉) + bp−eθ/2 |−〉 ei(p·r−Et)

+ (
b∗

p+eθ/2 |−〉 − b∗
p−e−θ/2 |+〉) ei(−p·r+Et)

]
,

(21.1)

νR = 1√
V

∑
p

√
m

2E p

[(
bp+eθ/2 |+〉) + bp−e−θ/2 |−〉 ei(p·r−Et)

+ (−b∗
p+e−θ/2 |−〉 + b∗

p−eθ/2 |+〉) ei(−p·r+Et)
]
.

(21.2)

The fields νL(x) and νR(x) are not independent. It is easily shown, using Problem

6.5, that (
iσ 2

) |−〉∗ = |+〉 ,
(
iσ 2

) |+〉∗ = − |−〉 ,
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and then that

νR = (iσ 2)ν∗
L and νL = −(iσ 2)ν∗

R. (21.3)

Thus either field may be derived from the other. As a consequence, only left-handed

Majorana fields or only right-handed Majorana fields need appear in any theory.

The charge conjugate field νc
L was defined in (7.11b) by

νc
L = −(iσ 2)ν∗

R.

But by the results above −(iσ 2)ν∗
R = νL, so that

νc
L = νL. (21.4)

Thus the charge conjugate of a Majorana field is identical to the field. There is no

room in the theory of Majorana neutrinos for a distinguishable antineutrino. For

a given momentum, there are two basic particle states, which we may take to be

one with helicity +1/2, the other with helicity −1/2. (In these respects, Majorana

neutrinos are somewhat similar to photons, but with photons having helicities ±1).

21.2 Majorana Lagrangian density

The Majorana field is constructed from solutions of the Dirac equation. We saw in

Section 5.2 that the Lagrangian density for a free Dirac particle of mass m is

LDirac = iψ
†
Lσ̃ μ∂μψL + iψ

†
Rσμ∂μψR − m

(
ψ

†
LψR + ψ

†
RψL

)
.

In the case of a Majorana field, νR is determined by νL, and given by (21.3) above.

We choose to work with νL, and therefore take the Majorana Lagrangian density to

be

LM = 1

2

[
iν†σ̃ μ∂μν + i(iσ 2ν∗)†σμ∂μ(iσ 2ν∗) − m

{
ν†(iσ 2)ν∗ + νT(−iσ 2)ν

}]
,

where ν = νL. For the remainder of this chapter we shall drop the subscript L,

for clarity of notation. ν is a two component left-handed neutrino field. We have

introduced a factor of 1/2 to compensate for double counting.

The second dynamical term in LM is equivalent to the first (Problem 21.1), so

that the Lagrangian density may be written

LM = iν†σ̃ μ∂μν − m

2

{
ν† (

iσ 2
)
ν∗ + νT

(−iσ 2
)
ν
}
. (21.5)

It is interesting and important to note that, with finite mass m and with the

Majorana constraints, we lose the U(1) symmetry that gave neutrino number
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conservation in the Dirac case (Section 7.1). We shall see that with Majorana

neutrinos the overall lepton number is no longer conserved.

Noting the factor 1/2 in the Lagrangian density, the Hamiltonian operator H and

momentum operator P for Majorana neutrinos are (see Section 6.5)

H = 1

2

∑
p,ε

(
b∗

pεbpε − bpεb∗
pε

)
Ep =

∑
p,ε

(
b∗

pεbpε

)
Ep,

P = 1

2

∑
p,ε

(
b∗

pεbpε − bpεb∗
pε

)
p =

∑
p,ε

(
b∗

pεbpε

)
p,

(21.6)

where ε = ±1 is the helicity index.

21.3 Majorana field equations

A variation δν∗ in the Majorana action yields the field equation

iσ̃ μ∂μν = m
(
iσ 2

)
ν∗.

(Note that there are two contributions from the mass term in the Lagrangian density.)

In a frame K ′ in which the Majorana neutrino is at rest, p′
iν

′ = −i∂ ′
iν

′ = 0 (i =
1, 2, 3), and the field equation reduces to

i
∂ν ′

∂t ′ = m
(
iσ 2

)
ν ′∗ (21.7)

It is easy to verify that this equation has two solutions of the form

ν ′
1 = be−iEt ′

(
1

0

)
+ b∗eiEt ′

(
0

1

)
and ν ′

2 = be−iEt ′
(

0

1

)
− b∗eiEt ′

(
1

0

)
,

with E = m. (21.8)

We may then, as in Section 6.3, transform to a frame K in which the Majorana

neutrino is moving with velocity ν > 0 in the Oz direction:

ν1 = M−1ν ′
1 =

(
e−θ/2 0

0 eθ/2

) [
be−imt ′

(
1

0

)
+ b∗eimt ′

(
0

1

)]

= be−mt ′
e−θ/2

(
1

0

)
+ b∗eimt ′

eθ/2

(
0

1

)
.

Substituting t ′ = t cosh θ − z sinh θ ,

ν1 = be−θ/2

(
1

0

)
ei(pz−Et) + b∗eθ/2

(
0

1

)
ei(−pz+Et). (21.9)
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Similarly there are solutions of the form

ν2 = beθ/2

(
0

1

)
ei(pz−Et) − b∗e−θ/2

(
1

0

)
ei(−pz+Et). (21.10)

All other plane wave solutions may be generated from these by rotations, and

we recover the general field (21.1).

21.4 Majorana neutrinos: mixing and oscillations

The most general Lorentz invariant Majorana mass term that can be introduced into

a Lagrangian density is

Lmass(x) = −1

2

∑
α,β

νT
α

(−iσ 2
)
νβmαβ + Hermitian conjugate. (21.11)

α and β run over the three neutrino types, e, μ and τ; να, νβ are left-handed Majo-

rana fields; mαβ is an arbitrary complex matrix. In contrast to the case of Dirac

neutrinos, mαβ can be taken to be symmetric. This is because fermion fields anti-

commute, so that νT
α

(−iσ 2
)
νβ is symmetric on the interchange of α and β (see

Problem 21.2).

A general symmetric complex matrix can be transformed into a real diagonal

matrix with positive diagonal elements by means of a single unitary matrix U (see,

for example, Horn and Johnson (1985)). If mαβ = mβα, we can write

mαβ =
3∑

i=1

Uαi mi Uβi , (21.12)

where the mi are three positive masses. Note that U has no phase ambiguities,

whereas Dirac neutrinos have phase ambiguities (see (19.2)).

If we now define the fields

νi (x) =
∑

α

Uαiνα(x), (21.13)

the mass term takes the standard Majorana form:

Lmass = −1

2

∑
i

miν
T
i

(−iσ 2
)
νi + Hermitian conjugate.

The dynamical terms in the Lagrangian density keep the same form under the

transformation:

Ldyn =
∑

α

iν†
ασ̃

μ∂μνα =
∑

i

iν
†
i σ̃

μ∂μνi .
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(Ldyn + Lmass) is the Lagrangian density of free Majorana neutrinos of masses

m1, m2, m3. Inverting equation (21.13), the neutrino fields να(x) appear as mix-

tures of the neutrino fields of definite mass:

να(x) =
∑

i

U ∗
αiνi (x). (21.14)

This is of the same form as equation (19.6) for Dirac neutrinos. The consequences

for the weak currents and neutrino oscillations are the same as in Section 19.2 and

Section 19.3 for Dirac neutrinos but antineutrinos are interpreted as the neutrinos

that accompany a negative charge lepton in weak interaction decays.

21.5 Parameterisation of U

A 3 × 3 unitary matrix U is specified by nine real parameters, but by absorbing

phase factors into the definition of the lepton fields, as in Section 19.6, Uαi can be

redefined as

U ′
αi = eiθαUαi ,

without changing the physical content of the theory. Thus U can be characterised

by 9 − 3 = 6 parameters. The Dirac neutrino mixing matrix (Section 19.6) is deter-

mined by four parameters, and requires extension, to include two more parameters.

One may take

UMajorana = UDirac ×
⎛
⎝ ei
1 0 0

0 ei
2 0

0 0 1

⎞
⎠ . (21.15)

Potentially we have two more CP violating parameters. However 
1 and 
2 make

no contribution to the CP violation of the oscillation phenomena of Chapters 19

and 20 (see (19.19) and Problem 21.3)

21.6 Majorana neutrinos in the Standard Model

To bring Majorana neutrinos carrying mass into the Standard Model, we must

maintain the SU(2) symmetry of the weak interaction. As in the case of Dirac

neutrinos, a suitable SU(2) invariant expressions that we can construct from the

Higgs doublet field � and a lepton doublet Lα is (�T ε Lα) (See Section 19.5). On

symmetry breaking, this becomes (�T ε Lα) = −(φ0 + h/
√

2)να.

φ0 ≈ 180 GeV is the Higgs field vacuum expectation value and h(x) is the Higgs

boson field.
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From these SU(2) invariant expressions we can construct an SU(2) invariant

Lagrangian density that on symmetry breaking becomes

Lmass = −1

2
(φ0 + h/

√
2)2 νT

α (−iσ 2)νβ Kαβ + Hermitian conjugate.

(21.16)

The matrix Kαβ couples the neutrino fields to the Higgs field, and we can identify

the mass term

mαβ = φ2
0 Kαβ. (21.17)

Hence the coupling matrix K has dimension (mass)−1, which implies (see Section

8.4) that it is an ‘effective’ Lagrange density. Coupling terms such as this render

the theory unrenormalisable.

21.7 The seesaw mechanism

To address the question of renormalisability consider the Lagrangian density

L = iν
†
Lσ̃ μ∂μνL + iR†σμ∂μ R − M

2

(
iRTσ 2 R − iR†σ 2 R∗) − μν

†
L R − μR†νL.

(21.18)

M and μ are mass parameters; νL and R are two component left-handed and right-

handed spinor fields respectively. Discarding the terms coupling νL and R, the

Lagrangian density is that of a massless left-handed neutrino field νL, and a right-

handed Majorana neutrino field carrying mass M.

We now suppose that M is so large that the dynamical term iR†σμ∂μ R may be

neglected, to leave

L = iν
†
Lσ̃ μ∂μνL − M

2
(RT (iσ 2)R − R†(iσ 2)R∗) − μν

†
LR−μR†νL. (21.19)

A variation δR∗ in the action gives the field equation for R:

M iσ 2 R∗ − μνL = 0.

And multiplying by iσ 2/M we obtain

R = −(μ/M)iσ 2ν∗
L. (21.20)

Substituting back into (21.19) gives the effective Lagrangian density

L = iν
†
Lσ̃ μ∂μνL + (μ2/2M)

(
ν
†
Liσ 2ν∗

L + νT
L(−iσ 2)νL

)
. (21.21)
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The sign of the mass term can be changed by making the phase change νL →
ν ′

L = iνL. The effective L is then a free neutrino field of mass m = μ2/M. Taking

for μ a typical lepton mass, say the mass of the muon (102 MeV), we can make

m the magnitude of a neutrino mass by taking M sufficiently large, >107 GeV.

The generalisation of the seesaw mechanism to include three neutrino types is

straightforward.

Taking R to be an SU(2) singlet, the Lagrangian density (21.19) can be made

compatible with the Standard Model by replacing μν
†
L R with the SU(2) invariant

C(L†
Lφ)R, and similarly replacing μR†ν, where C is a dimensionless coupling

constant. After symmetry breaking, μν
†
L R becomes C

(
φO + h (x)/

√
2
)

ν
†
L R and

setting aside the coupling to the Higgs boson, the mass μ = Cφ0. It should be

noted though that although there are no dimensioned coupling constants the mass

M is not generated by the Higgs mechanism.

21.8 Are neutrinos Dirac or Majorana?

The principal feature that distinguishes massive Majorana neutrinos from massive

Dirac neutrinos is that Majorana neutrinos do not conserve lepton number. As

pointed out in Section 21.2, in the Majorana case the U(1) symmetry that gives

lepton number conservation in the Dirac case is lost. The experimental observation

of a lepton number violating process would therefore be of great interest. ‘Double

β decay’ is the most promising phenomenon for investigation.

The first direct laboratory observation of double β decay was made in 1987, with

the decay

82

34
Se → 82

36
Kr + e− + e− + ν̄e + ν̄e + 3.03 MeV.

The mean lifetime for this decay has been measured to be (9.2 ± 1) 1019 yrs.

If neutrinos are Dirac particles, ν̄e is the appropriate symbol in this decay.

If neutrinos are Majorana particles, ν and ν̄ are identical. The observed decay

does not distinguish between the two interpretations. The process is illustrated in

Fig. 21.1a. An electron and a ν̄ in the Dirac case, or a ν in the Majorana case, are

created at each interaction point at which a d quark is transformed into a u quark.

The nucleus becomes 82
35

Br, possibly in an excited state, between the interaction

points.

If neutrinos are Majorana, the decay might be a neutrinoless double β decay, as

envisaged in Fig. 21.1b. The neutrino created at X1 is annihilated at X2, giving a

change of 2 in lepton number. This process is not available if neutrinos are Dirac

particles. In the absence of neutrinos to share the energy, the sum of the energies of
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Figure 21.1 (a) Illustrates the two neutrino double β decay of 82
34Se. The decay

occurs at the second order of perturbation theory in the weak interaction and
involves a sum over many states of 82

35Br (denoted by 82
35Br∗).

(b) Illustrates the neutrinoless double β decay, a Majorana neutrino created in the
transition 82

34Se → 82
35Br∗ is annihilated in the transition 82

35Br∗ → 82
36Kr. In pertur-

bation theory this involves a sum over all momentum states of the neutrino as well
as many states of 82

35Br.

the two electrons emitted would be sharply peaked at the decay energy. (The recoil

energy of the nucleus would be small.)

Double β decay and neutrinoless double β decay occur at the second order

of perturbation theory in the effective weak interaction of equation (14.22). For

Majorana neutrinos, double β decay and neutrinoless double β decay are competing

processes. Neutrinoless decays are heavily suppressed. From the field equation
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Table 21.1. From Elliot and Vogel hep/ph/0202264 Feb 2002

Nucleus T 2ν
1/2 (years) Estimate T 0ν

1/2 (years)
Measured 0υ half life
Lower limit (years)

48 Ca (4.2 ± 1.2) 1019 (2.2 ± 1.3) 1025 > 9.5 × 1021

76 Ge (1.3 ± 0.1) 1021 (3.2 ± 2.4) 1025 > 1.9 × 1025

82 Se (9.2 ± 1.0) 1019 (1.3 ± 1.0) 1025 > 2.7 × 1022

100 Mo (8.0 ± 0.6) 1018 (8.4 ± 7.2) 1026 > 5.5 × 1022

116 Cd (3.2 ± 0.3) 1019 (1.0 ± 0.9) 1025 > 7.0 × 1022

(21.1), the decay amplitude for the neutrinoless mode, with an intermediate neutrino

of mass mi and energy Eν , is proportional to

(mi/2Eν)
⌊

e−θ/2 eθ/2 + eϑ/2 e−θ/2
⌋ = (m i/Eν) .

The two terms come from the two helicity states. The corresponding factors in two

neutrino β decay are dominated by the term (mi/2Eν) eθ , and eθ ≈ 2 cosh θ =
(2Eν/mi ), giving unity.

With three neutrino mass eigenstates the decay rate will be proportional to

(1/Ē2
ν)|∑i miUei|2 where Ēν is some mean neutrino energy that can be expected

to be a nuclear excitation energy.

Table 21.1. gives some measured two neutrino β decay half lives, and corre-

sponding estimates of the half lives of the neutrinoless decays. These theoretical

estimates are sensitive to the nuclear model used.

Problems

21.1 Show that (iσ 2ν∗)†σμ∂μ(iσ 2ν∗) = ν†σ̃ μ∂μν.

21.2 Show that, taking account of the anticommuting spinor fields,

νT
ασ 2νβ = νT

β σ 2να.

21.3 Denoting the Majorana and Dirac mixing matrices by UM and UD, show that

U M
β jU

M∗
α j = U D

β jU
D∗
α j and hence that the phenomenology of mixing is the same for

both Majorana and Dirac neutrinos.
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