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Silicon is regarded as one of the most promising anode materials for high-energy density Li-ion batteries
because of its exceptional theoretical specific capacity of 4200 mAh g-1, which is more than 10 times the

capacity of graphite (372 mAh/g'l) [1,2]. However, alloying silicon with lithium is fundamentally
different from classical Li intercalation into graphite. Significant microstructural changes and volume
expansion up to 400 % during alloying can cause degradation, pulverization, loss of electrical contact and
consequently rapid capacity fading [1,2]. Many studies have attempted to address these issues via
nanoscale structural modification of anodes using high surface-to-volume ratio nanostructured Si that
better accommodates strain, while allowing shorter diffusion lengths for Li ions and faster
charge/discharge rates. In recent years, stable specific capacities over 1200 mAhg-1 for more than 1000
cycles have been realized with nanostructured Si-based anodes, suggesting a great potential for application
in batteries [2]. Affirmative description of lithium kinetics and understanding of its evolution mechanisms
in Si nanostructures are still quite limited [3]. In this work, we report on the solid-state lithiation of electron
transparent single crystalline c-Si anodes by thermal evaporation of metal lithium foil in a vacuum. The
average thickness of evaporated films was monitored by controlling evaporation rates of Li. We used p-
doped 35 nm-thick window < 100 >-oriented single crystalline planar c-Si membranes as a planar model
system suitable for characterization with high-resolution analytical probe-corrected scanning and
transmission electron microscopy (S/TEM). Such direct solid-state lithiation is a dry process without
complications caused by side reactions under wet electrochemical processing. After lithiation, the
membranes were transferred for examination in a S/TEM using a vacuum transfer TEM holder to prevent
the samples from being exposed to an ambient environment. Controlled-dose bright/dark-field (BF-/DF)-
TEM, selected-area electron diffraction (SAED), high-resolution TEM (HRTEM), STEM, and electron
energy-loss spectroscopy (EELS) were employed to characterize the morphology, crystallinity and
chemical compositions of the lithiated membranes (Figs. 1 and 2). In the absence of an applied external
electric field, lithiation of a < 100 >- single crystalline c-Si membranes is driven primarily by the
concentration gradient and occurs as a fast Li-consuming chemical process, closely analogous to diffusive
solid-state amorphization [4]. Determining local phase and chemical compositions of the samples from
analyses of low-loss and core-loss EEL spectra (Fig. 2), we found highlylithiated metastable Li-Si glass

with an atomic ratio of Li/Si ~ 2.2, close to a Li7Si3 phase [5], that could coexist with c-Si since the
crystallization of equilibrium intermetallic phases is frustrated during lithiation at room temperature.
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Figure 1. Chemically lithiated 35 nm-thick window Si membrane with a 38 nm evaporated Li film: (a)
BF-TEM, bending contours from the remaining c-Si phase. SAED pattern (bottom inset) shows diffuse
rings from a Li-Si glass and point Bragg reflections from c-Si, near zone axis B = [001]. (b) HRTEM,
barely visible lattice fringes through predominantly amorphous Li-Si glass. FFT pattern (top inset) reveals
diffuse rings and point (220) reflections. (c) (220) c-Si lattice fringes distorted due to local strain were
derived by Fourier-filtering from image (b) using spot reflections selected in the inset.
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Figure 2. STEM-EELS of a lithiated Si membrane. (a) High-angle annular DF (HAADF) STEM, large-
area view reveals weak contrast variations over a randomly distributed Li-Si glass film. (b) Low-loss EEL
spectrum (black) acquired from the area marked by red box in (a) shows a shoulder at 13.7 eV assigned
to a Li7Si3 glass in addition to the bulk Si plasmon at 16.8 eV. A single scattering distribution (green) is
derived by a Fourier-log deconvolution of the initial spectrum. (c) Core-loss spectrum from the same
region with an estimated atomic ratio Li/Si = 2.2. Fitted extrapolated power law backgrounds for the LiK
and the SiL2,3 edges shown in red were used to extract the net edges (blue). The calculated Hartree-Slater
scattering cross-sections for Li and Si are shown in orange.
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