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Abstract. We present a streamlined proof of a result essentially presented by the author in
[Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys. 28(4) (2008),
1291–1322], namely that for every set S = {s1, s2, . . .} ⊂ N of zero Banach density
and finite set A, there exists a minimal zero-entropy subshift (X, σ) so that for every
sequence u ∈ AZ, there is xu ∈ X with xu(sn) = u(n) for all n ∈ N. Informally, minimal
deterministic sequences can achieve completely arbitrary behavior upon restriction to a set
of zero Banach density. As a corollary, this provides counterexamples to the polynomial
Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R.
Math. Acad. Sci. Paris 353(7) (2015), 569–572] which are significantly more general than
some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem
for analytic skew products. Ann. of Math. (2) 199 (2024), 591–705] and by Lian and Shi
[A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math. 384 (2021),
Paper no. 107765] and shows that no similar result can hold under only the assumptions of
minimality and zero entropy.
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1. Introduction
The well-known Sarnak conjecture states that the Möbius function μ is uncorrelated with
all deterministic sequences. A sequence is called deterministic if it is the image under a
continuous function of the trajectory of a point in a topological dynamical system with zero
entropy (see §2 for definitions of this and other concepts not defined in this introduction).
More formally, we state the Sarnak conjecture.

Conjecture 1.1. (Sarnak conjecture) If (X, T ) is a topological dynamical system with zero
entropy, x0 ∈ X, and f ∈ C(X), then

1
N

N∑
n=1

μ(n)f (T nx0) → 0.
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Although this problem is still open, there are many recent works on the topic, which
have made significant progress and resolved it for some classes of dynamical systems.
In [1], a potential stronger ‘polynomial’ (meaning that only polynomial iterates of x0 are
taken rather than all) version of the Sarnak conjecture was conjectured. To rule out some
degenerate examples, the assumption of minimality was added on (X, T ), meaning that for
every x ∈ X, the set {T nx} is dense.

Conjecture 1.2. (Polynomial Sarnak conjecture [1, Conjecture 2.3]) If (X, T ) is a minimal
topological dynamical system with zero entropy, x0 ∈ X, f ∈ C(X), and p : N → N0 is a
polynomial, then

1
N

N∑
n=1

μ(n)f (T p(n)x0) → 0.

This conjecture is now known to be false; recently, Kanigowski, Lemańczyk, and
Radziwiłł[4] and Lian and Shi [6] have separately provided counterexamples. The coun-
terexamples from [6] are symbolically defined dynamical systems called Toeplitz subshifts,
are specific to the case p(n) = n2 (though they could perhaps be generalized), and attain
correlation with μ arbitrarily close (but not equal to) 1. The counterexamples from [4]
are skew products on manifolds, and although stated explicitly only for p(n) = n2, they
can be applied to a much larger class called ‘almost sparse sequences’ (which includes
the primes). Both constructions make strong usage of arithmetic properties of the Möbius
function, but can be generalized to other arithmetic functions.

The purpose of this note is to show that even much weaker versions of Conjecture 1.2
are false, because minimal zero entropy systems can achieve any possible behavior (that is,
not just correlation with μ) along any prescribed set S ⊂ N of zero Banach density (that is,
not just the image of a polynomial). One such result had already been proved by the author
in [7], which already immediately refutes the polynomial Sarnak conjecture.

THEOREM 1.3. [7, Corollary 5.1] Assume that d ∈ N, (wn) is an increasing sequence
of positive integers where wn+1 < (wn+1 − wn)

d+1 for large enough n, and (zn) is any
sequence in T := Z/N. Then there exists a totally minimal, totally uniquely ergodic,
topologically mixing zero entropy map S on T

2d+4 so that if π is projection onto the final
coordinate, π(Swn0) = zn for sufficiently large n.

(We do not further work with the properties of unique ergodicity and topological
mixing, and so do not provide definitions here. However, we do note that Theorem 1.3
shows that even adding these hypotheses to Conjecture 1.2 would not make it true.) We
note that the entropy of the transformation S was never mentioned in [7]. However, S is
defined as a suspension flow of a product of a toral rotation and a skew product T under
a roof function 1 < g < 3. The skew product T is of the form (x1, x2, x3, . . . , xm) �→
(x1 + α, x2 + f (x1), x3 + x2, . . . , xm + xm−1) for a continuous self-map f of T. Since
its first coordinate is an irrational rotation, known to have zero entropy, the map T also
has zero entropy by Abramov’s skew product entropy formula. Then S has zero entropy as
well, by Abramov’s suspension flow entropy formula.

https://doi.org/10.1017/etds.2024.42 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.42


Minimal zero entropy subshifts can be unrestricted along sparse sets 3

Remark 1.4. Here are a few more relevant facts about the construction from [7].
(1) The map S is distal, meaning that for all x �= y, {d(T nx, T ny)}n is bounded away

from 0.
(2) The roof function g is C∞. The function f is C1, and for any desired k, it can be made

Ck by increasing the dimension m; this means that the same is true of the map S.
The second fact may be of interest since the authors of [4] prove a positive result for
convergence along prime iterates of similar skew products (x, y) �→ (x + α, y + f (x))

under the assumption that the function f is real analytic and provide some counterexamples
with continuous f. Though the constructions are not exactly the same, and though the
primes absolutely do not satisfy the assumption of Theorem 1.3, in some sense, fact (2)
suggests that no Ck condition is sufficient for good averaging of skew products along
sparse sequences.

We note that Theorem 1.3 clearly applies to any sequence wn = p(n) for a non-constant
polynomial p : N → N0 (possibly omitting finitely many terms), and so, by simply
defining zn to be 1

2 when μ(n) = 1 and 0 otherwise, one achieves

1
N

N∑
n=1

μ(n)π(Sp(n)0) = 0.5|μ−1({1}) ∩ {1, . . . , N}|
N

,

which does not approach 0 as N → ∞, disproving the polynomial Sarnak conjecture
for every non-constant p. The same is true of any function p with polynomial growth,
even for degree less than 2, e.g. p(n) = 	n1.01
. Theorem 1.3 cannot be applied to more
slowly growing p such as 	n ln n
. However, the author proved a different result in [7]
using subshifts, which applies to all sequences of zero Banach density. (A subshift is a
closed shift-invariant subset of AZ (for some finite alphabet A) endowed with the left-shift
transformation.)

Specifically, [7, Corollary 3.1] states that for any sequence of zero Banach density
(regardless of growth rate), there exists a minimal subshift whose points can achieve
arbitrary behavior along that sequence. However, entropy was not mentioned there, and
although the proof there can indeed yield a zero entropy subshift, it is not easy to verify;
the construction is quite complicated to achieve (X, T ) which is totally minimal, totally
uniquely ergodic, and topologically mixing.

In this note, we present a streamlined self-contained proof of the following result,
which shows that minimal zero entropy subshifts can realize arbitrary behavior along any
sequence of zero Banach density.

THEOREM 1.5. For any S = {s1, s2, . . .} ⊂ N with d∗(S) = 0 and any finite alphabet A,
there exists a minimal zero entropy subshift X ⊂ AZ so that for every u ∈ AN, there is
xu ∈ X where xu(sn) = u(n) for all s ∈ S.

We note that this proves that even with substantially weaker hypotheses, nothing in
the spirit of the polynomial Sarnak conjecture can hold under only the assumptions
of minimality and zero entropy. Even if p is only assumed to have a range of zero
Banach density and ρ : N → Z is only assumed to have lim sup (1/N)

∑N
n=1 |ρ(n)| > 0
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(equivalently, ρ takes non-zero values on a set of positive upper density), one can define
a subshift X on {−1, 0, 1} and xu ∈ X as in Theorem 1.5 for u(n) = sgn(ρ(n)). Then, for
f ∈ C(X) defined by x �→ x(0), the limit supremum of the averages

1
N

N∑
n=1

ρ(n)f (σp(n)xu) = 1
N

N∑
n=1

ρ(n)xu(p(n)) = 1
N

N∑
n=1

ρ(n)u(n)

= 1
N

N∑
n=1

ρ(n)sgn(ρ(n)) = 1
N

N∑
n=1

|ρ(n)|

is positive by assumption.
We note that when ρ = μ is the Möbius function, this means that

1
N

N∑
n=1

μ(n)f (σp(n)xu)

can be made to approach 6/π2 (for xu in a minimal zero-entropy subshift), a slight
improvement of [6] which showed that it could attain values arbitrarily close to 6/π2.

Remark 1.6. The phenomenon of a subshift achieving arbitrary values along a sequence is
closely related to the notion of interpolation sets defined in [2]; see [5] for a recent survey.

2. Definitions
A topological dynamical system (X, T ) is defined by a compact metric space X and
homeomorphism T : X → X. A subshift is a topological dynamical system defined by
some finite set A (called the alphabet) and the restriction of the left shift map σ : AZ → AZ

defined by (σx)(n) = x(n + 1) to some closed and σ -invariant X ⊂ AZ (with the induced
product topology). A subshift (X, σ) is minimal if for every x ∈ X, {σnx}n∈Z is dense in X.

A word over A is any finite string of symbols from A; a word w = w(1) · · · w(n)

is said to be a subword of a word or infinite sequence x if there exists i so that
w(1) · · · w(n) = x(i + 1) · · · x(i + n). The language L(X) of a subshift (X, σ) is the set
of all subwords of sequences in X, and for any n ∈ N, we denote Ln(X) = L(X) ∩ An. For
two words u = u(1) · · · u(m) and v = v(1) · · · v(n), denote by uv their concatenation
u(1) · · · u(m)v(1) · · · v(n).

We do not give a full definition of topological entropy here, but note that it is a number
h(X, T ) ∈ [0, ∞] associated to any TDS (X, T ) which is conjugacy-invariant. We will
only need the following definition for subshifts: for any (X, σ),

h(X, σ) = lim
ln |Ln(X)|

n
.

The Banach density of a set S ⊂ N is

d∗(S) := lim
n→∞ sup

k∈N
|S ∩ {k, . . . , k + n − 1}|

n
.
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3. Proof of Theorem 1.5
Proof. As in [7], we adapt the block-concatenation construction of Hahn and
Katznelson [3].

We construct X iteratively via auxiliary sequences mk of odd positive integers,
Ak ⊂ Amk , and wk ∈ Ak . Define m0 = 1, A0 = A, and w0 = 0 (which we assume without
loss of generality to be in A). Now, suppose that mk , Ak , and wk are defined. Define
mk+1 > max(3mk|Ak|, 12(ln 2)(4/3)k+1) to be an odd multiple of 3mk large enough that
|S ∩ I |/|I | < (3mk)

−1 for all intervals I of length mk+1 (using the fact that d∗(S)= 0).
Define Ak+1 to be the set of all concatenations of mk+1/mk words in Ak in which every
word in Ak is used at least once and in which at least one-third of the concatenated words
are equal to wk . Define Yk to be the set of shifts of biinfinite (unrestricted) concatenations
of words in Ak , define Y = ⋂

k Yk , and define X to be the subshift of Y consisting of
sequences in which every subword is a subword of some wk .

We claim that (X, σ) is minimal. Indeed, consider any x ∈ X and w ∈ L(X). By
definition, w is a subword of wk for some k. By definition, wk is a subword of every word
in Ak+1. Finally, x is a shift of a concatenation of words in Ak+1, each of which contains
wk and therefore w. So, x contains w, and since w ∈ L(X) was arbitrary, the orbit of x is
dense. Since x ∈ X was arbitrary, (X, σ) is minimal.

We also claim that (X, σ) has zero entropy. We see this by bounding |Ak| from above.
For every k, each word in Ak+1 is defined by an ordered (mk+1/mk)-tuple of words in Ak ,
where at least one-third are wk . The number of such tuples can be bounded from above by

(
mk+1/mk

mk+1/3mk

)
|Ak|2mk+1/3mk ≤ 2mk+1/mk |Ak|2mk+1/3mk .

Therefore,

ln |Ak+1|
mk+1

≤ ln 2
mk

+ 2
3

ln |Ak|
mk

.

Now, it is easily checked that (ln |Ak|)/mk ≤ ln |A|(3/4)k for all k by induction. The
base case k = 0 is immediate. For the inductive step, if we assume that (ln |Ak|)/mk ≤
ln |A|(3/4)k , then recalling that mk > 12(ln 2)(4/3)k ,

ln |Ak+1|
mk+1

<
1
12

(3/4)k + 2
3

ln |A|(3/4)k≤ ln |A|
12

(3/4)k + 2
3

ln |A|(3/4)k = ln |A|(3/4)k+1.

Therefore, for all k, |Ak| ≤ eln |A|(3/4)kmk . Finally, we note that every word in Lmk
(X) is a

subword of a concatenation of a pair of words in Ak , so determined by such a pair and by
the location of the first letter. Therefore, |Lmk

(X)| ≤ mk|Ak|2 < mke
2 ln |A|(3/4)kmk . This

clearly implies that

h(X) = lim
k→∞

ln |Lmk
(X)|

mk

≤ lim sup
k→∞

ln mk

mk

+ 2 ln |A|(3/4)k = 0,

that is, X has zero entropy.
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It remains, for u ∈ AN, to construct xu ∈ X with xu(sn) = u(n) for all sn ∈ S. The
construction of xu proceeds in steps, where it is continually assigned letters from A on
portions of Z, with undefined portions labeled by ∗. Formally, define x(0) ∈ A  {∗}Z by
x(0)(sn) = u(n) for s ∈ S and ∗ for all other locations.

Now partition Z into the intervals ((i − 0.5)m1, (i + 0.5)m1) (herein, all intervals
are assumed to be intersected with Z). For every i for which S ∩ ((i − 0.5)m1,
(i + 0.5)m1) �= ∅, consider the m1-letter word x(0)(((i − 0.5)m1, (i + 0.5)m1)). By
definition of m1, |S ∩ ((i − 0.5)m1, . . . , (i + 0.5)m1)| < m1/3m0 = m1/3, and so at
most one-third of the letters in this word are non-∗. Fill the remaining locations by
assigning the first m1/3 as w0 = 0. At least m1/3 letters remain, which is larger than
|A0| = |A| by definition of m1. Fill those in an arbitrary way which uses all letters from A
at least once. The resulting m1-letter word is in A1 by definition, call it w

(1)
i . Now, define

x(1) by setting x(1)(((i − 0.5)m1, (i + 0.5)m1)) = w
(1)
i for all i as above (that is, those for

which S ∩ ((i − 0.5)m1, (i + 0.5)m1) �= ∅) and ∗ elsewhere. Note that x(1) is an infinite
concatenation of words in A1 and blocks of ∗ of length m1 and that x(1) contains ∗ on any
interval ((i − 0.5)m1, (i + 0.5)m1) which is disjoint from S.

Now, suppose that x(k) has been defined as an infinite concatenation of words in Ak

and blocks of ∗ of length mk which contains ∗ on any interval ((i − 0.5)mk , (i + 0.5)mk)

which is disjoint from S. We wish to extend x(k) to x(k+1) by changing some ∗ symbols to
letters in A. Consider any i for which S ∩ ((i − 0.5)mk+1, . . . , (i + 0.5)mk+1) �= ∅. The
portion of x(k) occupying that interval is a concatenation of words in Ak and blocks of ∗
of length mk (we use here the fact that mk+1 is odd), and the number which are words in
Ak is bounded from above by the number of j ∈ ((i − 0.5)mk+1/mk , (i + 0.5)mk+1/mk)

for which ((j − 0.5)mk , (j + 0.5)mk) is not disjoint from S, which in turn is bounded
from above by |S ∩ ((i − 0.5)mk+1, (i + 0.5)mk+1)|, which by definition of mk+1 is less
than mk+1/3mk . Therefore, at least two-thirds of the concatenated mk-blocks comprising
x(k)(((i − 0.5)mk+1, (i + 0.5)mk+1)) are blocks of ∗. Fill the first mk+1/3mk of these with
wk . Then at least mk+1/3mk blocks remain, which is more than |Ak| by definition of mk+1.
Fill these in an arbitrary way which uses each word in |Ak| at least once. By definition,
this creates a word in Ak+1, which we denote by w

(k+1)
i . Define x(k+1)(((i − 0.5)mk+1,

(i + 0.5)mk+1)) = w
(k+1)
i for any i as above (that is, those for which S ∩ ((i − 0.5)mk+1,

(i + 0.5)mk+1) �= ∅) and as ∗ elsewhere. Note that x(k+1) is an infinite concatenation
of words in Ak+1 and blocks of ∗ of length mk+1 which contains ∗ on any interval
((i − 0.5)mk+1, (i + 0.5)mk+1) which is disjoint from S.

We now have defined x(k) ∈ (A  {∗})Z for all k ∈ N. Since each is obtained from the
previous by changing some ∗ symbols to letters from A, they approach a limit xu which
agrees with x(0) on all locations where x(0) had letters from A, that is, xu(sn) = u(n)

for all n ∈ N. Since S �= ∅, S ∩ (−0.5mk , 0.5mk) �= ∅ for all large enough k, and so
x(k)((−0.5mk , 0.5mk)) has no ∗, meaning that xu ∈ AZ.

It remains only to show that xu ∈ X. By definition, xu is a concatenation of words in Ak

for every k, so xu ∈ Y = ⋂
k Yk as in the definition of X. Finally, every subword w of xu is

contained in xu((−0.5mk , 0.5mk)) for large enough k, and this word is in Ak by definition.
Since all words in Ak are subwords of wk+1, w is also. Therefore, by definition, xu ∈ X

and xu(sn) = u(n) for all n, completing the proof.
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Remark 3.1. We observe that the assumption of zero Banach density cannot be weakened
in Theorem 1.5. Assume for a contradiction that S ⊂ N has d∗(S) = α > 0, and that every
u ∈ AN could be assigned xu as in Theorem 1.5. By definition of Banach density, there
exist intervals In with lengths approaching infinity so that |S ∩ In|/|In| > α/2 for all n.
For every n, since all possible assignments of letters from A to locations in S ∩ In give rise
to sequences in X, |L|In|(X)| ≥ 2|S∩In| > |A|α|In|/2. Then,

h(X) = lim
n

ln |L|In|(X)|
|In| ≥ lim sup

ln |A|α|In|/2

|In| = α(ln |A|)/2 > 0.

Therefore, no such X, minimal or otherwise, can have zero entropy.
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