
Bull. Aust. Math. Soc. 91 (2015), 167–174
doi:10.1017/S0004972714000689

CARDINALITY OF INVERSE LIMITS WITH UPPER
SEMICONTINUOUS BONDING FUNCTIONS
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Abstract

We explore the cardinality of generalised inverse limits. Among other things, we show that, for any
n ∈ {ℵ0, c, 1, 2, 3, . . .}, there is an upper semicontinuous function with the inverse limit having exactly n
points. We also prove that if f is an upper semicontinuous function whose graph is a continuum, then
the cardinality of the corresponding inverse limit is either 1, ℵ0 or c. This generalises the recent result of
I. Banič and J. Kennedy, which claims that the same is true in the case where the graph is an arc.
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1. Introduction

In the present paper, we explore the cardinality of generalised inverse limits on
intervals induced by an upper semicontinuous set-valued bonding function f : I → 2I .
It is a well-known fact that in the case where the bonding function f : I → I is a
continuous single-valued function, the corresponding inverse limit is either an arc-like
continuum or a singleton. In the first case the inverse limit consists of uncountably
many points and in the other of a single point. Therefore the cardinality of such inverse
limit can either be 1 or c. It has been shown by I. Banič and J. Kennedy in [2] that
there are examples of upper semicontinuous set-valued functions that produce inverse
limits with cardinality ℵ0. The main results proved in this paper are the following (see
Theorems 3.9 and 3.11):

(1) Let n be a positive integer. Then there is an upper semicontinuous function
f : I → 2I such that lim

←−−
f contains exactly n points.

(2) Let f : I → 2I be an upper semicontinuous function whose graph G( f ) is a
continuum. Then the cardinality of lim

←−−
f is either 1 or infinity.

We proceed as follows. In Section 2 we give basic definitions and introduce notation
that will be used in the paper. In Section 3 we prove the main results of the paper.
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2. Definitions and notation

Our definitions and notation mostly follow [4] and [6].
A continuum is a nonempty, compact and connected metric space.
If (X, d) is a compact metric space, then 2X denotes the set of all nonempty closed

subsets of X.
Let X and Y be compact metric spaces. A function f : X → 2Y is upper

semicontinuous if, for each open set V ⊆ Y , the set {x ∈ X | f (x) ⊆ V} is an open set in
X.

The graph G( f ) of a function f : X → 2Y is the set of all points (x, y) ∈ X × Y such
that y ∈ f (x).

The following characterisation of upper semicontinuous functions can be found in
[4, page 120]:

Theorem 2.1. Let X and Y be compact metric spaces and f : X→ 2Y a function. Then
f is an upper semicontinuous function if and only if its graph G( f ) is closed in X × Y.

The inverse limit of an inverse sequence {Xn, fn}∞n=0 is defined to be the subspace of
the product space

∏∞
n=0 Xn of all x = (x0, x1, x2, . . .) ∈

∏∞
n=0 Xn, such that xn ∈ fn(xn+1)

for each n. The inverse limit is denoted by lim
←−−
{Xn, fn}∞n=1.

These inverse limits have been studied intensively in the last decade. One reason
for such intense research is the fact that inverse sequences with very simple spaces
and simple bonding functions can produce very complicated continua as their inverse
limits. This may happen even in the case where all the spaces are closed unit intervals
and all the bonding functions are the same. They are a generalisation of standard
inverse limits and were introduced in [4, 5] by Ingram and Mahavier. The concept of
these generalised inverse limits has become very popular since their introduction and
has been studied by many authors; see [1, 3] where more references can be found.

In this paper we deal only with the case where, for each n, Xn is the closed unit
interval I = [0, 1], and all fn are the same function f : I → 2I . In this case we denote
the inverse limit lim

←−−
{Xn, fn}∞n=1 simply by lim

←−−
f .

For any upper semicontinuous function f , the set P( f ) was first introduced in [2]
to show some properties of inverse limits regarding their cardinality. We will also use
the set P( f ), which is defined as follows.

Definition 2.2. For an upper semicontinuous function f on [0,1], and a positive integer
n, define

Pn( f ) = {x ∈ [0, 1] : there is xn ∈ [0, 1] such that (xn, x) ∈ G( f n)},

and let

P( f ) =

∞⋂
n=1

Pn( f ).

We will also use the following result about P( f ) from [2].
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Figure 1. An example of the function from Lemma 3.1.

Proposition 2.3. Suppose that f : I → 2I is upper semicontinuous. Then

lim
←−−

f = lim
←−−

(P( f ), f |P( f )).

For every set A, we denote the cardinality of A by |A|.

3. The cardinality of inverse limits

In this section we prove Theorems 3.9 and 3.11, the main results of the paper. We
start with several lemmas, which we use to prove Theorem 3.9.

Lemma 3.1. Suppose that f : I → 2I is an upper semicontinuous function whose graph
G( f ) is a continuum. Let a, b ∈ I, a < b. If | f (a)| = | f (b)| = 1, then B = ([a, b] × I) ∩
G( f ) is a continuum (see Figure 1).

Proof. B is obviously nonempty and compact. Suppose that the sets U′, V ′ are a
separation of B. One can easily see that U′ and V ′ are compact.

(1) If {a} × f (a) ⊆ U′, {b} × f (b) ⊆ V ′, we take U = U′ ∪ ([0, a] × I) ∩ G( f ) and
V = V ′ ∪ ([b, 1] × I) ∩G( f ). It is obvious that U and V are not empty, U ∪ V =

G( f ) and U ∩ V = ∅. Since U and V are compact, they are also closed in G( f ).
Therefore, U and V are a separation of G( f ).

(2) If {a} × f (a) ⊆ V ′, {b} × f (b) ⊆ U′, one can easily obtain the same result as above.
(3) If {a} × f (a), {b} × f (b) ⊆ U′, we take U = U′ ∪ (([0,a] × I) ∪ ([b,1] × I)) ∩G( f )

and V = V ′. Similarly as above, U and V are a separation of G( f ).
(4) If {a} × f (a), {b} × f (b) ⊆ V ′, the proof is similar to the previous case.

In all cases we get a separation of G( f ), which is a continuum—a contradiction.
Therefore B is a continuum. �
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Lemma 3.2. Suppose that f : I → 2I is an upper semicontinuous function whose graph
G( f ) is a continuum. Then there exists a ∈ I such that (a, a) ∈ G( f ).

Proof. Let D be the diagonal of I × I, D = {(x, x) | x ∈ I}. Suppose that G( f ) ∩ D is
empty. Then there exist (a, b), (c, d) ∈ G( f ) such that a < b and c > d (such points
exist since {0} × I , ∅ and {1} × I , ∅). We define U′ = {(x, y) ∈ I × I | y < x} and
V ′ = {(x, y) ∈ I × I | y > x}, which are mutually disjoint open sets in I × I. Taking
U = G( f ) ∩ U′ and V = G( f ) ∩ V ′, we get a separation of the continuum G( f ), which
is a contradiction. Therefore there exists a ∈ I such that (a, a) ∈ G( f ). �

Lemma 3.3. Let f : I → 2I be an upper semicontinuous function such that the
cardinality of lim

←−−
f is finite. If (a, a) ∈ G( f ), then | f (a)| = 1.

Proof. Suppose that there is b , a such that (a, b) ∈ G( f ), i.e. b ∈ f (a). Let b0 = b,
b−1 ∈ f (b0), b−2 ∈ f (b−1), . . . , b−n−1 ∈ f (b−n), . . . . Then, for each m ≥ 1, (b−m, b−m+1,
. . . , b−2, b−1, b0, a, a, a, . . .) ∈ lim

←−−
f , which is a contradiction, since lim

←−−
f is finite.

Therefore {a} × I intersects G( f ) only at the point (a, a). �

Lemma 3.4. Suppose that f : I → 2I is an upper semicontinuous function whose graph
G( f ) is a continuum such that lim

←−−
f is finite. Then there exists exactly one a ∈ I such

that (a, a) ∈ G( f ).

Proof. Suppose that there is b ∈ I, b , a, such that (b, b) ∈ G( f ). Without loss of
generality let a < b. We define B = ([a, b] × I) ∩G( f ). It follows from Lemmas 3.3
and 3.1 that B is a continuum.

First we prove that, for all x ∈ [a, b], there exists y ∈ [a, b] such that x ∈ f (y).
Suppose that this is not true. Then there exists x ∈ (a, b) such that, for all y ∈ [a, b],
x < f (y). We define U′ = [a, b] × [0, x) and V ′ = [a, b] × (x, 1] which are open sets
in [a, b] × I. Then U = U′ ∩ B and V = V ′ ∩ B are a separation of B, which is in
contradiction with B being a continuum.

Therefore, for every x ∈ [a, b], there exists a point in lim
←−−

f with x in the first
coordinate. This means that lim

←−−
f is not finite, which is a contradiction. Therefore,

there is exactly one point of G( f ) on the diagonal D. �

Lemma 3.5. Suppose that f : I → 2I is an upper semicontinuous function whose graph
G( f ) is a continuum such that lim

←−−
f is finite but contains more than one point. If

(a, a) ∈ G( f ) then a , 0 and a , 1.

Proof. Suppose that a = 0. We show that G( f ) is entirely below the diagonal. Suppose
that there exists (c, d) ∈ G( f ) such that c < d. Then, for every t ∈ (0, c), there exists
z ∈ (0, c) such that (z, t) ∈ G( f ) ∩ {(x, y) | y ≥ x}. For every t ∈ (0, c) there is z1 ∈ (0, c)
such that t ∈ f (z1), there is z2 ∈ (0, c) such that z2 ∈ f (z1), and so on. Therefore
(t, z1, z2, . . .) ∈ lim

←−−
f . That means we get infinitely many points in the inverse limit—a

contradiction. We have proved that G( f ) is entirely below the diagonal. It follows
that there is (x1, x2, . . .) ∈ lim

←−−
f such that x1 , 0 and x1 < x2 < x3 < · · · . Since this

sequence is increasing and bounded, it converges to some 0 < s ≤ 1. The sequence
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(xn, xn+1) ∈ G( f ) converges to (s, s) and therefore (s, s) ∈ G( f ). But from Lemma 3.4,
(0, 0) is the only point of G( f ) on the diagonal. By a similar argument we show that
a , 1. �

The following three lemmas are obtained as parts of the proof of [2, Theorem 3.14].
They have also turned out to be very useful when proving other results, so we state
them as separate lemmas.

Lemma 3.6. Suppose that f : I → 2I is an upper semicontinuous function and lim
←−−

f is
finite. Then every point of lim

←−−
f is periodic (if z ∈ lim

←−−
f , then there is a finite sequence

(e0, e1, . . . , el) such that z = (e0, e1, . . . el, e0, e1, . . . el, . . .)).

Proof. See [2, proof of Theorem 3.14, items 6 and 9]. �

Lemma 3.7. Let f : I → 2I be an upper semicontinuous function. For every x ∈ P( f )
there is some point z ∈ lim

←−−
f with x in the first coordinate. Therefore, if lim

←−−
f is finite,

P( f ) must be finite.

Proof. We take any x ∈ P( f ) and define the sequence (zn) as follows:

z1 = (x, y1
1, 1, 1, 1, . . .), x ∈ f (y1

1);

z2 = (x, y2
1, y

2
2, 1, 1, . . .), x ∈ f (y2

1), y2
1 ∈ f (y2

2);

z3 = (x, y3
1, y

3
2, y

3
3, 1, . . .), x ∈ f (y3

1), y3
1 ∈ f (y3

2), y3
2 ∈ f (y3

3);

...

It follows from the definition of P( f ) that such a sequence exists. Let s = (x, s1, s2,
s3, . . .) be a limit of some convergent subsequence of z1, z2, z3, . . . . One can easily see
that s ∈ lim

←−−
f , since (s1, x), (s2, s1), (s3, s2), . . . are in G( f ). �

Lemma 3.8. Let f : I → 2I be an upper semicontinuous function such that lim
←−−

f
is finite. Then the function f |P( f ) : P( f ) −→ 2I can be interpreted as a function
P( f ) −→ P( f ) which is a single-valued bijection on P( f ).

Proof. See [2, proof of Theorem 3.14, items 10 and 11]. �

Theorem 3.9. Suppose that f : I → 2I is an upper semicontinuous function whose
graph G( f ) is a continuum. Then the cardinality of lim

←−−
f is either one or infinity.

Proof. Suppose that the cardinality of lim
←−−

f is finite, but contains more then one point.
We take the uniquely defined a from Lemma 3.4. We denote L = lim

←−−
f .

(1) Let Orb(x) = {x, f (x), f 2(x), . . .} be the orbit of x. Recall that the function
f |P( f ) : P( f )→ P( f ) is bijective. Then, under f |P( f ), the orbit of each point of
P( f ) is finite: since P( f ) is finite there exist i, j ∈ N, i < j, such that f i(x) = f j(x)
and therefore x = f j−i(x). This means that Orb(x) is finite. Furthermore, different
orbits of elements in P( f ) are disjoint and Orb(a) = {a}.
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(2) We take p ∈ P( f ), p , a (we know that |P( f )| > 1 since lim
←−−

f contains more than
one point). Let J be the smallest closed interval that contains the orbit of p. Then
J = [p1, p2] where p1, p2 ∈ Orb(p) and of course p1 , p2.

(3) We claim that J ⊆ f (J). Since (J × I) ∩G( f ) is a continuum (this follows from
Lemma 3.1), f (J) is connected. It is enough to show that p1 ∈ f (J) and p2 ∈ f (J).
We know that p1 ∈ Orb(p) and therefore p1 = f i(p) for some integer i > 1. This
means that p1 = f ( f i−1(p)), where f i−1(p) ∈ J. We have proved that p1 ∈ f (J).
By a similar argument we show that p2 ∈ f (J).

(4) If we take arbitrary x ∈ J, there exist x1 ∈ J such that x ∈ f (x1), x2 ∈ J such that
x1 ∈ f (x2), and so on. For each x ∈ J, there is a point (x, x1, x2, . . .) ∈ L and this
is a contradiction, since L is finite.

So if lim
←−−

f contains more than one point, it is infinite. �

Inverse limits can be many things. One can get from a one-point continuum to
any arc-like continuum using single-valued bonding functions. So one can easily find
functions g and h such that | lim

←−−
g| = 1 and | lim

←−−
h| = c. The next example gives an

upper semicontinuous function f such that | lim
←−−

h| = ℵ0.

Example 3.10. Let f : I → 2I be an upper semicontinuous function whose graph G( f )
is the union of four line segments (see Figure 2):

• the first connects (0, 1
3 ) to ( 1

3 ,
1
3 );

• the second connects ( 1
3 ,

1
3 ) to (0, 1

2 );
• the third connects (0, 1

2 ) to ( 1
3 ,

2
3 );

• the fourth connects ( 1
3 ,

2
3 ) to (1, 2

3 ).

It is easy to see that

lim
←−−

f =

{(2
3
,

2
3
,

2
3
, . . .

)
,
(1
3
,

1
3
,

1
3
, . . .

)
,
(2
3
,

1
3
,

1
3
, . . .

)
,
(2
3
,

2
3
,

1
3
, . . .

)
, . . .

}
.

Hence, | lim
←−−

f | = ℵ0.

We have seen in Theorem 3.9 and Example 3.10 that | lim
←−−

f | ∈ {1,ℵ0, c} if G( f ) is
connected. If G( f ) is not connected, other possibilities may occur. In Theorem 3.11
we show that for any positive integer n there is an upper semicontinuous function such
that the corresponding inverse limit contains exactly n points. If n ≥ 2 than the graph
of each such function is disconnected.

Theorem 3.11. Let n be a positive integer. Then there is an upper semicontinuous
function f : I → 2I such that lim

←−−
f contains exactly n points.

https://doi.org/10.1017/S0004972714000689 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000689


[7] Cardinality of inverse limits 173

1

0

0 1

Figure 2. The graph of the function from Example 3.10.

Proof. For n = 1, we define the function f with G( f ) = I × {0}. It is obvious that
lim
←−−

f = {(0, 0, 0, . . .)}.
For every n ≥ 2, we define the function fn : I → 2I by

fn(x) =



0
n − 1

if 0 ≤ x ≤
1
n
,

1
n − 1

if
1
n
≤ x ≤

2
n
,

2
n − 1

if
2
n
≤ x ≤

3
n
,

...
n − 1
n − 1

if
n − 1

n
≤ x ≤ 1.

The function f4 is shown in Figure 3.
It is easy to see that, for every k ∈ {0, 1, 2, . . . , n − 1}, we have k/(n − 1) ∈

[k/n, (k + 1)/n]. Therefore (0, 0), ((1/n − 1), (1/n − 1)) , . . . , ((n − 2)/(n − 1), (n − 2)/
(n − 1)), (1, 1) ∈ G( fn). It follows that (k/(n − 1), k/(n − 1), k/(n − 1), . . .) ∈ lim

←−−
fn for

all k ∈ {0, 1, 2, . . . , n − 1}. Also, for every t ∈ I \ {0, 1/(n − 1), . . . , (n − 2)/(n − 1), 1},
there is no u ∈ I such that t ∈ fn(u). Hence lim

←−−
fn = {(k/(n − 1), k/(n − 1), k/(n − 1), . . .)

| k ∈ {0, 1, . . . , n − 1}}. Therefore the cardinality of lim
←−−

f is n. �

To summarise, we have shown in Theorems 3.9 and 3.11 and Example 3.10 that for
any n ∈ {ℵ0, c, 1, 2, 3, . . .} there is an upper semicontinuous function f : I → 2I such
that the inverse limit lim

←−−
f has exactly n points. In the special case, if the graph of

f is a continuum, the cardinality of the corresponding inverse limit is either 1, ℵ0
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1

0

0 1

Figure 3. The function f4.

or c. We conclude the present paper with the following open problem about possible
generalisations of these results.

Problem 3.12. Let X be any continuum and let f : X→ 2X be an upper semicontinuous
function whose graph is a continuum. Is it true that |lim

←−−
f | ∈ {1,ℵ0, c}?
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